SELECTION OF EFFICIENT STORAGE STRUCTURES #¥

Frank Wm.Tompa
Raul J. Ramirez

Department of Computer Science
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1

CS-79-40
November 1979

¥ The research reported in this paper was supported
in part by the Natural Sciences and Engineering
Research Council of Canada under grant A9292

and by the University of Waterloo.

ABSTRACT

The representations used to implement data structures
play a large part in determining the execution cost for most
applications. Because suitable representations may be
chosen from a very large class, it is important to search
systematically for the efficient ones.

In this paper, algorithms based on dynamic programming
are presented. It 1is assumed that an application's
behaviour is specified by means of evaluation matrices which
reflect the expected run time and storage space required by
each component of the application's data structure. Those
matrices must be searched to find representations for each
component which, when composed into a single storage struc-
ture, minimize the cost for the application according to a
given cost formula. The algorithms incorporate bounds on
the maximum allowable run time and storage space and solve
the selection problem in pseudo-polynomial time and space.

Keywords and Phrases: data structure design, space/time
efficiency, storage structures, library of implementa-
tions, evaluation matrices, dynamic programming.

CR Categories: 3.73, 4.33, 4.34, 5.25, 5.U42

November 15, 1979

I. Introduction.

Data structure design involves several levels of data
abstraction [Tompa77]. At one of the 1levels, the data
structure schema is defined in terms of a composition of
data types occurrences (e.g. occurrences of sets, trees,
sequences or tuples) and in terms of the valid operations
over each data type. Indeed, programming languages such as
Alphard [Shaw77], CLU [Liskov771], SETL [Dewar79] and Mesa
[Geschke77] provide ideal frameworks for expressing such
abstractions. This 1level of data abstraction has been

termed the abstract structure level.

Through data type encapsulation, ¢the only possible
interaction with a data type is by invoking the given set of
operations. As a result, "representation independence" is
achievable; that 1is, the use of an abstract data type need
not (in fact, cannot) rely on any particular implementation
for the type. This independence gives an implementer the
freedom to select or to change the representation of the
type sSo as to improve some desired measure of performance
(e.g. efficiency, reliability, maintainability, or portabil-

ity) without affecting the application's uses of the type.

The problem investigated in this paper is the selection

of an efficient composite storage structure for the abstract

November 15, 1979

-2 -

structure for a given application. In particular, the
representation 1is to be selected by composing appropriate
representations for each data type occurrence 1in the
abstract structure. Each representation must be chosen from
a finite set of implementations, henceforth called the

library of implementations, such that the composite storage

structure obtained is the most efficient one in terms of a

given cost formula.

Closely related work has concentrated on two areas: the
creation of a library of implemantations and the use of an
evaluation matrix to choose efficient representations based

on that library.

I.1 The library of implementations.

The library of implementations contains a set of possi-
ble representations for each of +the abstract data types
available at the abstract structure level. Thus each member
is a cluster of code that implements the defined operations

for a particular representation of the type.

Some of the implementations 1in the 1library may be
better suited than others for a given coperation. In order

to evaluate the appropriateness of the different representa-

November 15, 1979

tions objectively, it 1s necessary to characterize each
member of the library according to some measure. The measure
selected for most studies is that of efficiency in terms of
the expected run time for the set of operations and the

expected number of storage cells consumed by the data.

There exist several techniques for parameterizing the
expected run time and storage space of a program: counting
techniques [CohenT74, TompaT74], complexity analyses of the
algorithms involved [AhoT4, Knuth73], as well as the moni-
toring of the program execution [Wichman72, LowT78]. For
this paper, it will be assumed that an appropiate library
has been constructed by one or more of these techniques.
The remainder of this paper will concentrate on the selec-

tion of efficient representations based on such a library.

1.2 The evaluation matrix.

Given a library of implementations whose members have
been characterized by parametric formulas for the expected
run time and storage space, the next step is to evaluate how
the data types will be used in the particular application.
Because the number of occurrences of data types in an appli-
cation is typically very large, it is important to aggregate

them into substructures, homogeneous <collections of data

November 15, 1979

-4 -

type occurrences defined at the abstract structure level.
For example, although in principle each row of a matrix
could be represented by a different implementation, it is
convenient to treat them all homogeneously, that is, as one

substructure [Low78, Tompa76, Dewar79].

Each substructure 1is evaluated by considering the
parameters in each of the formulas for the type's implemen-
tations and substituting parametric values that represent
the application usage of this data type on the substructure.
These substitutions produce an evaluation matrix in which
the (i, Jj) element represents the expected run time and
expected storage space consumed by the ith substructure dur-
ing the application's lifetime when implemented by the jth
possible implementation for this substructure in the

library.

The search of an evaluation matrix to find the most
efficient structure for a given cost formula has been inves-
tigated by several researchers. If the number of possible
implementations for each of the N substructures is bounded
by M, an exhaustive search would require the evaluation of

O(M*¥N) alternatives.

November 15, 1979

I.3. Storage structure selection as a zero-one integer pro-

gramming problem.

The goal of storage structure design 1is to find an
assignation for each substructure such that the final selec-
tion is the most efficient among all possible selections.
Such a search of the evaluation matrix can be posed as an

integer programming problem in the following manner:

Let N be the number of substructures for which assigna-

tions are sought,

M(1i) be the number of implementations in the 1library

for substructure i,

X be a matrix of zero-one variables in which x(i,j)
represents whether or not implementation j is to

be selected for substructure i,

s(i, J) be the estimated storage space consumed by imple-

mentation j when used for substructure i,

t(i, 3D be the estimated run time of implementation j when

used for substructure i,

S, T be the maximum amount of storage space and running
time, respectively, available to be used by the

combined selected implementations,

November 15, 1979

and COST(X,S,T) be a monotonic cost function in terms of
the total amount of space and total amount of time
consumed by the final selection X when constrained

to the bounds S and T.

then:
Z = min{ COST(X,S,T) } (I.1)

for all X such that:

M(i)
S UM x(i,j) = 1 for iz1..N (I.2)
j=1
N M(1i) ‘
SUM S UM x(i,j) * s(i,j) <S (I.3)
i=1 j=1
N M(1i)
SUM SUM x(i,3) * t(i,j) <T (I.4)
i=1 j=1
x(i, j) = 0, 1 for all i=1..N, j=1..M(i) (I.5)

Equation (I.1) formulates the goal: to minimize a cost
that 1is a function of the storage space and run time con-
sumed by the final selection. Constraints (I.2) force the
selection of just one implementation for each of the N sub-
structures, since the x(i, j) can only assume zero or one
values (constraints (I.5)). Finally constraints (I.3) and
(I.4) allow only assignations that do not exceed the given

bounds.

There exist several methods for solving zero-one

November 15, 1979

integer programming problems (e.g. cutting plane techniques
[Salkin75] and enumerative techniques [Salkin75, Wagner751).
However, speciélized algorithms that exploit the special
structure of the given problem and that are more efficient

from the computational point of view are often employed.

In order to reduce the expected number of alternatives
examined, Low wused a hill-climbing technique attempting to
minimize the expected space-time integral of the program
execution [Low781]. This technique cannot ensure a global
optimum, and its running time is potentially exponential 1in

the number of implementations and substructures.

Tompa proposed a branch-and-bound technique to find the
assignment that minimizes the specified cost formula
[Tompa76]. Branch-and-bound will always produce a global
optimum, but it, too, may consume an amount of time that is

exponential in the number of susbstuctures.

In this paper, it will be shown that dynamic program-
ming can be used to find the optimal assignment in pseudo-
polynomial time, i.e. time polynomial in the length of the

input and some specified integer [Garey791].

November 15, 1979

II. A selection algorithm based on dynamic programming.

Dynamic programming is an optimization technique used
to make a sequence of interrelated decisions which maximize

(or minimize) some measure of value [Bellman57, Dreyfus77].

This technique is applicable since the original problem
I.17 to I.5 <can be partitioned 1into stages, each stage
representing a substructure for which an assignation 1is ¢to
be made.¥ Each stage has a number of associated states
corresponding to the value of the amount of storage space
and time remaining to be allocated. These states are used
to represent the various possible conditions in which the
system might find itself when trying to make an assignation
for that stage. The effect of such an assignation is to

transform one state into a state associated with next stage.

Thus a sequence of states results 1in assignations to
each of the substructures. Given a particular state, the
optimal policy for the remaining stages 1is independent of
the policies adopted in previous stages. Thus, an algorithm
solving this problem finds first the optimal policy for each

state with no stages remaining, composes it next with the

* The order of the substructures does not affect the
final selection; however, it may affect the efficiency
of the algorithm.

November 15, 1979

policy for each state with one stage remaining, etc., until

the final solution is computed. The principle of optimality

is central to dynamic programming:

"an optimal policy has the property that
whatever the initial state and initial
decision are, the remaining decisions

must

constitute an optimal policy with

regard to the state resulting from the
first decision." [Bellman57]

Therefore recursive formulations result.

IT.1 The selection algorithm.

To solve the selection problem stated in I.1 to 1I.5,

let

—_

F(i,s,t) =

if there exists a set of implementations
(assignafions) one for each of the substruc-
tures 1 to N, such that SUM(k=i..N) s(k) = s
and SUM(k=i..N) ¢t(k) = t, that is, if a set
of implementations fit exactly in the
resources available.

otherwise

The following recursive relationship can be derived:

F(1,s,t) =

F(i+1,s-s8(i,j),t=-t(i,3)) = 1

{1 if 4j such that
0 otherwise

November 15, 1979

- 10 -

The boundary condition 1is given by:

1 if 3j such that
{ s = s(N,j) and t = t(N,j)
0 otherwise

F(N,s,t) =

If COST(X,S3,T) is expressed as a function f(space,time), the
solution will be found by taking the MIN f(s,t) such that
F(1,s,t) = 1. In other words F(1,%¥,¥) will have non-zero
entries for all feasible solutions; thus the one that mini-

mizes the cost criterion is easily selected.

For applications in which the constraints I.3 and I.4
are not present, let the maximum values S and T of these
equations be the sum of the largest spaces and times respec-
tively. This makes every combination of implementations

feasible.

The straightforward implementation of the recursion
involves the computation of at most O(N¥M¥S¥T) operations,
since for each stage (substructure) there are at most S¥T
possible states (combinations of space and time available)
and each state requires at most M calculations. The space
required to trace the solution is O(N¥S*T) storage cells,
since at each stage it is necessary to store the outcome for

each state.

November 15, 1979

- 11 -

II.2 Reducing the number of alternatives for the state vari-

ables.

In the previous section the state wvariable s ranged
from O to S, the maximum amount of space available, at each
stage in the recursion; however, it is possible to apply the

dynamic programming recursion to a subset of the values of s

only.
Define:
smin(i) = M I N s(i,j) smax(i) = M A X s(i,]J)
J J
N N
sminN(i) = S U M smin(k) smaxN(i) = S U M smax (k)
k=1 k=i
i-1
smin1(i) = S U M smin(k)
k=1
Theorem:
Given a problem having a cost function in terms of a
state variable s, the range of s at stage i of the
recursion is bounded by:
sminN(i) < s(i) < MIN (S-smin1(i), smaxN(i)).
Proof:

Upper bound: if s(i) > smaxN(i) then every implementa-

tion fits into the resource constraints, thus it is

November 15, 1979

possible to select the best element for each 1implemen-
tation and the optimal solution for F(i,s(i),t(i)) is
identical to that for F(i,smaxN(i),t(i)). Substruc-
tures 1 to 1i-1 need at least smin1(i) resource units
Since otherwise no assignation is possible, violating
restriction I.2, thus S-smini1(i) resource units at most
will be left for substructures i to N. Therefore s(i)

< MIN(S-smin1(i), smaxN(i)).

Lower bound: At stage 1 it is necessary to have at
least sminN(i) wunits of resource in order that some
selection will be possible for each substructure

between i and N. Thus s(i) > sminN(i).

As a consequence of this theorem the required amount of
computation for the solution of the problem can be reduced
in practice. When more than one resource is consumed by the
implementations (e.g. space and time), it is possible to
find similar inequalities for each of the state variables,

i.e. a multidimensional bound will apply.

November 15, 1979

- 13 -

III. Re-selection of a storage structure.

An interesting related problem that 1is frequently
encountered in practice 1is the one in which the relative
frequency of operations performed on the abstract
structure's data types changes from time to time. For exam-
ple, this behaviour may be exhibited by a database that
first requires a relatively high number of insertion and
updates as compared to the number of queries, and once
reaching steady4state; requires fewer insertions and updates

and relatively more queries.

It is clear that in general, the best set of implemen-
tations for one phase of the application is not necessarily
the best for the next phase. It may therefore be worthwhile
to change the implementation of some (or all) of the sub-
structures between phases.* These changes have an associated
cost to convert the data from one representation to another,
and these costs might outweigh the savings gained by the new
assignation. Therefore special care should be taken when

such situations arise.

The problem studied in this section is the one in which

¥ There exist studies that deal with the detection of
phase changes for an application, see for example
[Winslow75].

November 15, 1979

- 14 -

an initial set of implementations has been adopted, and it
is suspected that that selection may no longer be the most
efficient one because the relative frequency of operations
has changed. It is desired to find the most efficient set
of assignations for this new phase taking into account the
initial set and the associated conversion costs. In other
words, the problem is to determine whether or not it will be
profitable to change the implementation of some (or all) of
the substructures and to which new implementations they

should be changed.

Mathematically this problem can be formulated as fol-
lows
N (1)
Z = MIN { COST(X,S,T) + S UM S UM c(i,j)*x(i,j) 1}
where c¢(i,j) is the conversion cost from the initial assig-
nation for substructure i to implementation j. The restric-
tions for this problem are identical to the problem in Sec-

tion I.3; for the sake of brevity, they are not repeated

here.
The solution of this problem is achieved by defining

G(i,s,t) to be the minimum cost for converting the

implementation of substructures i to N from

November 15, 1979

- 15 -

the initial assignation of implementations.

It is now possible to derive the following recursive
relationship for the solution of the problem:
MIN {c(i,j)+G(i+1,s-5(i,j),t-t(i,3))} ¥j such that
J
G(i,s,t)=1 G(i+1,s-s8(i,j),t-t(i,j)) is finite

infinite otherwise

.

The boundary condition is given by:

M IN {c(i,j)} ¥Jj such that
J
G(N,s,t)= s(N,j)=s and t(N,j)=t

infinite otherwise
and the solution will be obtained by taking:

Z =MIN{G(l,s,t) + f(s, t)}

s,t

The function G(1,s,t) will be finite if there is a
feasible solution that wuses exactly s space and t time.
However, rather than being a Boolean function as was F,
G(1,*¥,¥) will contain the minimum cost of converting the
implementations of substructures 1 to N from the initial
assignation. The second term in the above minimization for-
mula accounts for the cost of the implementations in this

new phase.

“November 15, 1979

- 16 -

The computational complexity of this algorithm is of
the same order as that in the previous section, although
more operations might actually be performed. Furthermore,
very similar bounds to the ones in Section II.Z2 can be
easily devised for this problem. Thus, the number of opera-
tions is O(N¥M*S*¥T) and O(N¥S¥T) storage cells will be

required.

November 15, 1979

IV. An Example.

The example presented in this section will help to
illustrate the application of the previous ideas. The exam-
ple selected is a hypotetical one in order that the main
ideas can be explained without overwhelming the discussion
with unnecessary details; however the values wused 1in the

example closely resemble those of actual applications.

Consider an application composed of four substructures
(e.g. array, set, tree, 1list, table) and a library of
implementarions containing five different implementations
for each of the substructures (e.g. contiguous store, unary
chain, binary tree, bit map). The following evaluation

matrices may apply:

Substructures Substructures

1 2 3 4 1 2 3 4
1) 2 2 10 10 | 1T 7 7 11 1 1 1
2 1 6 3 9 4 2 12 10 2 7 1
Implementations 3 | 4 5 8 3 1 313 8 3 8 |
4 1 3 4 4 2 | 4 1 5 9 7 9 |
5 11 1 1 1 5 110 12 17 17 |

SPACE TIME

In each of the above matrices, entry (i, j) represents the
amount of space or amount of time consumed by substructure i
when implementation j is employed. For example, if sSub-

structure 3 were represented by implementation 2, 5 units of

November 15, 1979

space would be needed for that substructure and 8 units of

time would be spent on that substructure's operations.

Assume that the cost formula is given by:

f(s, t) = (s *¥ t) + (.05 ¥ s ¥¥% 2)
This selection criterion is commonly used as a charging for-
mula by computer centers, since it reflects the total amount
of resources used weighted by the total amount of time used
and penalizing the large usage of scarse resources. Assume
furthermore that no restrictions on the total amount of
space or time have been imposed. The solution to this prob-

lem will use the method presented in Section I.3, where

N M(1i)
COST(X,S,T) = ((S UM S UM s(i,j)*¥x(i,3))

i=1 j=1
N M(1)

* (SUM S UM t(i,j)*x(i,3)))
i=1 j=1
N M(1i)

+.05 (S UM S UM s(i,j)*x(i,j)) ** 2
i=1 Jj=1

An iterative implementation of +the proposed method
proceeds from substructure N to substructure 1. Thus, the
first step is to use the boundary condition to compute
F(N,*¥,%), The value will be one for all possible space and

time combinations for which there exists an implementation

November 15, 1979

- 19 -

that fits exactly 1into that combination of resources. For
this example F(4,s,t) will have non-zero values for (s,t) 6
{(10,1), u,7), (3,8), (2,9), (1,17)}, and zero values for

all other pairs.

The next step is to compute F(3,%¥,%¥) using the recur-
sive relationship of Section I.3. This formula establishes
that F(i,s,t) will have a non-zero value for a particular
(s, t) combination if and only if there exists and implemen-
tation j for substructure i that uses s(i,j) units of space
and t(i,j) wunits of time and F(i+1, s-s(i,j), t-t(i,j)) is

non-zero.

At this point it is important to notice that, given s
and t units of resources there may exist several implementa-
tions that satisfy the above criterion, i.e. they collapse
into one entry of F(i,*¥,¥). As an example when considering
the third substructure the implementations with (s,t) 6
{(10,1), (9,2, (8,3)} collapse for F(3,12,10) since
F(4,2,9), F(4,3,8) and F(4,4,7) respectively have non-zero
"values. That is, solving for substructures 3 and 4 with 12
units of space and 10 units of time available has three
(equivalent) solutions. 1In fact F(3,s,t) will have non-zero
values for only 18 entries, representing the 5%¥5=25 possible

representations.

November 15, 1979

- 20 -

The same recursive relationship is next applied to com-
pute F(2,%¥ ,¥) for which there are 37 non-zero entries and to
compute F(1,%¥ ,¥) with 157 non-zero entries in this example.
Once F(1,%¥,¥) has been calculated the cost formula is
applied to each entry of this vector, and the minimum value
is +the cost of the optimal selection. For this example the
optimal selection 1s implementation 5 for each of +the sub-
structures; this selection wuses 4 wunits of space and 56
units of time and consequently has a cost of 224.8 cost

units.
Some of the advantages of this approach are:

- the method produces all available space/time possibili-
ties at no extra computation, thus once F(1,¥ ¥) has
been computed, several cost functions (charging rates)
can be applied without the need to solve the complete

problem again,

-~ bounds on the total amount of space and/or time can be
specified without increasing the amount of computation

(in fact, such bounds actually reduce it),

- at any time during the execution of the procedure the

optimal solution for a subproblem is at hand,

- if new substructures are added to the problem there 1is

November 15, 1979

- 21 =

no need to solve the complete problem again; rather
only the new F(k,s,t) values need be computed using

F(1,*%,*%) as the boundary condition.

When the hill-climbing algorithm proposed by Low 1is
applied to this example, it produces a solution which is 86%
worse than the optimal. Branch-and-bound performs rather
well for this example, using only 165 cost function evalua-
tions; however if there were bounds on the total amount of
space or time used by a solution the technique will not be
able to prune as much as for this example. Furthermore, 1if
all the implemantation costs are desired, an exponential
amount of computation is required wusing branch-and-bound,
and it cannot be known a priori whether or not the technique

will be exponential in time or in space.

To continue the example, assume that the relative fre-
quency of operations has changed such that it is suspected
that the original selection of implementations may no longer
be the Dbest. Assume furthermore that the new evaluation
matrices for the total lifetime of this phase of the appli-

cation are as follows:

November 15, 1979

- 22 -

Substructures Substructures

1 2 3 4 1 2 3 4
116 6 3 1 1T 19 6 8 10 |
2 17 4 10 5 1 2 17 10 1 6 |
Implementation 3 |10 5 9 4 311 8 2 7 1
4 19 8 8 31 4y 13 3 3 8 |
5 18 7 4 2 | 5 15 y T 9 |

SPACE TIME

It is possible to find the optimal set of implementa-
tions for this phase 1independently of the original one.
Unfortunately, if both phases are taken into consideration
this pair of selections may not be overall optimal because
of the cost of converting from one implementation to another
between phases. Assume that the conversion costs from the
initial implementation are as follows:

Substructures

1 2 3 4

——— - — - ——— —— - —

Implementations

Ul =)=
O
w
(@]
—
(@]
U
(@]

CONVERSION
Entry (i, j) in this matrix represents the conversion cost
from the implementation for substructure i in the initial
phase to implementation j in this phase. Notice that since
implementation 5 was the chosen implementation for each of

the substructures in the initial phase, no conversion cost

November 15, 1979

- 23 -

is incurred 1if these implementations are selected for this

phase.

As discussed in Section III, the method to solve this
type of problem is similar to the one in which there is only
one phase to the application. The difference is that when
only one phase is involved, if two or more assignations use
the same amount of resources the algorithm arbitrarily
selected one (since all have the same cost). However when
conversion costs 1link two phases these decisions cannot be
arbitrarily; rather if the resources consumed by the assig-
nations are identical, the algorithm will pick the one with
the smaller conversion cost. In fact, a more costly set of
assignations méy be chosen if the conversion costs are suf-

ficiently low.

Initially the algorithm uses the boundary condition 1in
Section III, thus computing G(N,s,t), for all implementa-
tions j for which s(N,j)=s and t(N,j)=t. For this example
G(4,1,10)=49, G(4,5,6)=52, G(4,4,7)=50, G(4,3,8)=48,

G(4,2,9)=0, and any other G(N,s,t) have infinite values.

The next step of the procedure is to compute G(3,% %)
using the recursive relationship presented in Section III.
Here is where the procedure differs from the one 1involving

only one phase: when two (or more) implementations collapse

November 15, 1979

- 24 -

into one value of G(3,s,t) the algorithm selects the one
that has the minimal conversion cost. For example, when
solving for G(3,14,8), i.e. solving for substructure 3 with
14 units of space and 8 units of time available to be allo-
cated, implementation 2 for which (s,t)=(10,1) and implemen-
\tation 3 for which (s,t)=(9,2) are candidates to represent
substructure 3, since both G(4,4,7) and G(4,5,6) are finite.
However, since G(4,4,7) is less than G(4,5,6), the former is
selected when this combination of resources 1is available.
For this example, G(3,¥,%¥) will have finite values for 12

entries.

When solving for substructures 2 and 1, the same recur-
sive relationship is used, i.e. every time several implemen-
tations collapse into the same G(i,s,t) the one with the
least conversion cost is preferred. 1In fact, for this exam-
ple there are 49 finite entries for G(2,%¥,¥) and 101 for

G(1,%,¥%),

Once G(1,%¥,%¥) has been computed, there will be finite
entries for every possible selection of implementations.
Moreover, the entry for a particular s and t combination
contains the smallest cost of converting from the initial
selection to a selection of implementations that use s and t

units of space and time.

November 15, 1979

- 25 -~

Thus in order to find the best selection, the cost for-
mula should be applied to every entry in the G(1,¥,¥) vec-
tor. 1In this example the best selection is given by imple-
mentations 3, 5, 2 and 5 for substructures 1, 2, 3 and 4,
respectively (with a total cost of 501.05 wunits), even
though this selection is not optimal when this phase is con-
sidered by itself. Clearly the algorithmic advantages men-
tioned for the first example are applicable to this pro-
cedure as well, and the savings gained by converting imple-

mentations in this case is approximately 10%.

November 15, 1979

- 26 -

V. Conclusion.

In this paper algorithms for solving two related
storage structures selection problems were presented. The
core of each algorithm is based on the principle of optimal-
ity for dynamic programming. As a result it is possible to

obtain pseudo-polynomial bounds for their running times.

An example involving few data type occurrences and few
library implementations was presented in order to demdn—
strate that intuition and a priori selections might not be
the best manner of solving such problems and that hill-
climbing or branch-and-bound methods may not be appropriate.
As the problem size grows, the advantages of the algorithms

presented here are even more striking.

There exist some special cases for which it is possible
to reduce the amount of computation required and/or the
amount of storage space consumed. For example, when the
cost formula 1is the ratio of two resources (e.g. the total
number of input/output operations per time unit) it is pos-
sible to devise algorithms whose running time is strictly
polynomial, in fact O(N**3 ¥ log N), N being the number of
substructures 1in the application (see, the minimal cost-to-
time ratio cycle problem [Lawler76]). As a second example,

for problems whose cost functions are separable (i.e. the

November 15, 1979

- 27 -

total cost of the final selection is composed of independent
contributions from each substructure), the use of a divide-
and-conquer technique will reduce the space required to
solve the problem to O(S*T) without significantly increasing

the running time [Ramirez80].

Finally when the relative frequency of operations per-
formed over the data type occurrences changes over time, the
optimal selections of implementations for consecutive phases
of the application might not be optimal overall because of
conversion costs. This dynamic selection problem is a
further generalization of the one presented in Section III
where it was assumed that there are only two phases to the
application and the implementations for the first of them
have already been selected. One approach to solving this
problem is to use a suitable form of dynamic programming to
compose solutions to the storage structure problems for each
phase [Ramirez801]. Unfortunately at this time no pseudo-

polynomial algorithm is known for this general problem.

November 15, 1979

[AhoT4]

[Bellman57]

[CohenTh]

[Dewar79]

[DreyfusT7]

[GareyT9]

[GeschkeT77]

[Knuth73]

[Lawler76]

[Liskov7T7]

- 28 -

REFERENCES

Aho A.V., Hopcroft J.E. and Ullman J.D. The
Design and Analysis of Computer Algorithms,

Addision-Wesley, Reading, 197L. '

Bellman R. Dynamic Programming. Princeton
University Press, Princeton, T1957.

Cohen J. and Zuckerman C. Two languages for
estimating program efficiency. Communica-
tions of the ACM 17, 6 (June 1974) 307-308.

Dewar R.B.K., Grand A., Liu S-C., Schwartz
J.T., and Shonberg E. Programming by refine-
ment, as exemplified by the SETL representa-
tion sublanguage, ACM Transactions of Pro-
gramming Languages and Systems 1, 1 (July
1979) 27-49.

Dreyfus S.E. and Law A.M. The Art and Theory
of Dynamic Programming, Mathematics in Sci-
ence and Engineering Volume 130, Academic
Press, New York, 1977.

Garey M.R. and Johnson D.S. Computers and
Intractability. A Guide to the Theory of NP-
Completeness, Freeman Co., San Francisco,

1979.

Geschke C.M., Morris J.H. and Satterwaite
E.H. Early experiences with Mesa. Communi-
cations of the ACM 20, 8 (August 1977) 5U0-
553.

Knuth D.E. Sorting and Searching. The Art
of Computer Programming 3, Addison-Wesley,
Reading, 1973.

Lawler E.L. Combinatorial Optimization :
Networks and Matroids. Holt, Rinehart and
Winston, Toronto, 1976.

Liskov B., Snyder A., Atkinson R. and Schaf-
fert C. Abstraction mechanisms in CLU. Com-
munications of the ACM 20, 8 (August 1977)
564-576.

November 15, 1979

[Low78]

[Ramirez80]

[Salkin75]1]

[Shaw77]

[TompaT6]

[TompaT7]

[WagnerT75]

[Wichman72]

[Winslow75]

- 29 -

Low J.R. Automatic data structure selection:
an example and overview. Communications of
the ACM 21, 5 (May 1978) 65-77.

Ramirez R.J. Efficient algorithms for
selecting efficient data storage structures.
Ph.D. thesis, Department of Computer Science,
University of Waterloo 1980 (in preparation).

Salkin H.M. 1Integer Programming. "Addison-
Wesley, Reading, 1975.

Shaw M., Wulf W.A., and London R.L. Abstrac-
tion and verification 1in Alphard: Defining
and specifying iteration and generators.
Communications of the ACM 20, 8 (August 1977)
553-564.

Tompa F.W. Choosing an efficient internal
schema. Systems for Large Data Bases, Lock-
emann and Neuhold (Eds.) North-Holland, New
York, 1976, 65-T77.

Tompa F.W. Data structure design. Data
Structures, Computer Graphics and Pattern
Recognition. Klinger, Kunii and Fu (Eds.)
Academic Press, New York, 1977, 3-30.

Wagner H.M. Principles of Operation
Research, second edition. Prentice-Hall,
Englewood Cliffs, 1977.

Wichman B. Estimating the execution time of
an ALGOL program. SIGPLAN Notices 6, 8
(August 1972) 24-44,

Winslow L.E. and Lee J.C. Optimal choice of
data restructuring points. Proceedings of
the International Conference on Very Large
Data Bases, Framingham Mass., 1975, 353-363.

November 15, 1979

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

