TEST SETS FOR HOMOMORPHISM
EQUIVALENCE ON CONTEXT FREE LANGUAGES*

by

J. Albert™®
and

K. Culik 117

Research Report CS-79-39

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

This research was supported by the National Sciences and Engineering
Council of Canada, under Grant No. A7403.

Institut fiir Angewandte Informatik und Formale Beschreibungsverfahren
Universitdt Karlsruhe
Karlsruhe, West Germany

This paper was written during the first author's visit at the
University of Waterloo.

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada



ABSTRACT

We show that for every context free language L

over some alphabet I there effectively exists a

test set F , that is a finite subset of L such

that , for any pair (g,h) of homomorphisms on
;

Z* , g(x) = h(x) for each x in F implies

g(x) = h(x) for all x inm L .

This result is then extended from homomorphisms
to generalized sequential machine mappings de-
- fined by machines with uniformly bounded number

of states.



1. Introduction

Problems concerning homomorphism equivalencerhave been in-
tensively studied recently. Specifically, the homomorphic equivalence
problem for a language family L is the following: Given a language
L in L and two homomorphisms g and h determine whether g and
h are equivalent on L , i.e. whether or not g(w) = h(w) holds for
all words w in L . It has been shown in Culik and Salomaa (1978)
that there exists a uniform algorithm answering this question for any
context free language L . In Culik and Richier (1979) the problem has
been shown decidable also for ETOL languages over two-letter alphabets.
It was conjectured in Culik and Salomaa (1978) that the problem is
decidable for indexed languages, however at the present time it is
open even for DOL languages (over at least three-letter alphabets).
Actually, the homomorphic equivalence problem for DOL languages can be
easily shown to be equivalent to the HDOL sequence equivalence problem,
a well-known open problem. The homomorphic equivalence problem for
(deterministic) context sensitive languages has been shown undecidable
in Culik and Salomaa (1978). The decidability of homomorphic equiva-
lence has many applications, the most important is probably in the
proof of the DOL equivalence problem, Culik (1977), Culik and Fris
(1977), for others see Culik (1979).

Older than the above results but closely related is the
",

following "Ehrenfeucht's conjecture Every language L has a finite



subset F such that , for any pair of homomorphisms (g,h) , g and
h are equivalent on L iff they are equivalent on F . Such a
finite set was called test set in Culik and Salomaa (1979) where it
has been shown that the conjecture holds true for languages over a
two-letter alphabet. It is also clear from the arguments in Culik and
Salomaa (1978) that the conjecture holds for regular sets over any
alphabet, and that in this case a finite test set can be effectively con-
structed. On the other hand it follows from the undecidability result
mentioned above that for context sensitive languages finite test sets
cannot exist effectively since that would, clearly, imply the decida-
bility of homomorphic equivalence for this family.

Our main result (Theorem 1) is that a finite test set exists,
and effectively so, for any context free language (given by a context
free grammar). This result clearly implies the main result of Culik
and Salomaa (1978), Theorem 4.1, namely the decidability qf homomorphic
equivalence for cbntext free languages. Our stronger result does not
follow from the proof of Theorem 4.1 in Culik and Salomaa (1978),
nevertheless we use a similar basic technique ("generalized pumping').

We actually prove a somewhat stronger result, namely, that
given a context free grammar G with n nonterminals and maximum m
letters at the right side of productions, the set of all words of L

3n+l

of the length at most m form a test set which does not otherwise

depend on G .



We conjecture that finite test sets effectively exist even
for all indexed languages, however it follows from the above dis-
cussion that to show this even for DOL languages - a very special case -
of indexed languages - seems to be very hard.

In the last section we extend our results from homomorphisms
to deterministic generalized sequential machines (with accepting states)

with uniformly bounded number of states.



2. Preliminaries

We study homomofphisms over free monoid Z* generated by
finite set (alphabet) I . The unit of Z* (the empty word) is de-~
noted by € . The length of w in £* 1is denoted by |w| , the
cardinality of a set S by card S . For the other elementary
notions of formal language theory we refer the reader to Harrison

(1978), Hopcroft and Ullman (1969) or Salomaa (1973).
/



3. Finite Test Sets For Context Free Languages

We will show that if arbitrary two homomorphisms agree on all
"short" strings of a context free language (CFL) they must agree on
the whole languagé. The size of the strings which have to be consi-
dered will be shown to be independent on the homomorphisms. The proof
will be based on "generalized pumping'. Tt is,of interest that it is
not sufficient to consider all strings derived with "one loop’ as’it is

shown by the following example.

Consider the context free grammar (CFG) given by productions

S->aSh | ¢, i.e. L(G) = {a"cb" | n 20}, and homomorphisms g, h

given by
g(a) =0 h(a) = 01
g(b) = 100 h(b) = 00
gle) = € h(c) = ¢

Here, we have g(c) = h(c) = € , g(acb) = h(acb) = 0100, however
g(aZeb?) 4 n(alch?).
We start with a simple lemma which modifies a well-known re-

sult, see e.g.qHarrison (1978), Theorem 1.3.2.

*
Lemma 1: For some alphabet I let u € Z+ , V,w,x € L such that
*
uvw = vx . Then there exist p ¢ I , p' € Z+ , 121, j =0 such
that u = (pp')i and v = (pp')jp . Furthermore, p, p', i, j can be

uniquely determined by choosing |pp'| minimal.



‘ *

Proof: The equation uvw = vx implies that there exist y,z € I

such that |y| = |u| $ 0 and x = yz . It follows uv = vy and by
' *

Harrison (1978), Theorem 1.3.2 there exist q, q' ¢Z , k 2 0 such

1

that u=qq' and v = (QQ')kq .

We can always assume q' $ € , because in the case q' =¢
we have u=q#$e, v= qk+1 and by defining r=¢€¢, r'=gq we

get the desired representation;

1

u=rr"' , v = (rr')k+ T .

From u=gqq' , v = (qq')kq , ¢'+€e, k20 it is clear
*
now that we can uniquely determine p € I , p' ¢ Z+ , 121, =20

such that |pp'| is minimal and u = (ep)" , v = (ep") . 0

The next lemma is crucial for the proof of our main theorem
and might also have applications in the study of systems of equations

over free monoids.

- - - *
Definition: Let I be an alphabet and a, B, Y, o, B, Y ¢ £ . The
set of pairs M = {(g,e), (2,2), (B,B), (Y,Y), (oB,Ba), (ay,ya) ,

(BYy,YB)} is then called an initial loop set.

*
Lemma 2: Let M be an initial loop set as above and u,w,y € L .

* *
If for any two homomorphisms g,h : £ =+ A
(1) g (uvwxy) = h(uvwxy)
holds for all (v,x) € M then (1) also holds for (v,x) = (asy,?é&), i.e.

g (uaBywyBay) = h(uaBywyBay).



Proof: For notational convenience let ﬂl = g(n), D2 := h(N) for

*
all M € ¥ . Thus we have

(2) U, V. w_X for all (v,x) e M.

1V1Y1%171 T %2Va¥oX0Y,

Since u. must be a prefix of u, or vice versa, and y1 must be

1

*
a postfix of y2 or vice versa, there are p,0 ¢ A such that one of

2

the following four cases occurs:

Case 1. u) =up ,y =0y, ; Case2. u =uyp,y,=0y

Case 3. u, = we s ¥, =0y 3 Case 4. u, = wp, y, =0y,

We will only consider cases 1. and 2.. Obviously, 1. and 3., 2. and 4.

are symmetrical.

Case 1. Since ulwlyl = u,w,y, and uy = u2p » ¥ < cyz we get

pwlO =W, and we can write (2) as uzpvlwlxlcy2 = uzvzpwlcfxzy2 and

-~

thus we have pvlwlxlo -vzpwloxz for all (v,x) g M. If ¢ 4 ,i

* +
then by Lemma 1, there exist p e L , p' € £ such that p = (pp") 1p

and for each (v,x) ¢ M there is a number di(v) 2 0 such that

v, = e,

By symmetric application of Lemma 1 to the postfix of
1 ook
= '] ‘=
PV W X 0 = V0w, 0%, , O + € implies o0 = (qq') "q for some q € ¥ ,
q' € £t and for each (v,x) ¢ M there is a j(x) 2 0 such that

X, = @i®



For each (v,x) e M we define

v, if p=c¢
Vz = i(v)
('p) if p % € and
x, if o=c¢
20T j (x)
(ag")? if ofe .

We can now reformulate the goal of this first section as
follows: If vlwlxl = V2W1x2 for all (v,x) e M, then also
0181 Y1v1 Y1810 = BoBy¥owY,oRoa,

Subcase 1.1. Let [all = |a2 . Then clearly ]all = |&2| and be-
cause of alwlal = azwlaz we have

(3) a =a, , a =a, .

Furthermore,

) | B1Y,¥ Y1y = By¥oviYo8,

by assumption. Combining (3) and (4) we get the desired equation
2B 71¥1 Y1810 = EpBy¥avyY,B,0, -

Subcase 1.2. Let Iall > |a2| . Then there is a u € A" such that

a, = &Zu and from (2) we have a,v.w.x o, = &292w %0, and

1 171717171 17272

VWX = Vzwliz for (v,x) € {(e,€) , (8,B), (Y,¥)} .



Thus,

Q1
QI

(5 HV WX 81 T VW %8y = V¥ X0y

for (v,x) ¢ {(e,€) , (B,B) , (Y,¥Y)} . In more detail we will consider

now

(6) uB.w.B.a. = B w,B

Q2

2 .

*
Again, by Lemma 1 we conclude, that there are re A, r' e N .

k. /
kl 21, 1i(B) 2 0 such that u = (rr') 1 . Bl = (I‘I")i(B)r‘

where r,r', kl » 1(B) can be uniquely determined. Hence, the

equation (6) is reduced to

k]_.._ - =
1 - ~
(r'r) wlslal wlﬁlaz .

+

*
Thus, for w., there exist s e A , s' e A , i(w) 2 0 such that

1

W = (ss’)l(w)s and by choosing |ss'| minimal ss'

=¥'r -

i(B’)t

Repeating the same conclusion for El , we get Bl = (tt")

and tt' = s's if |tt'| was chosen minimal.
k

Finally, (6) is reduced to (t't) 161 = éz .
In uwlal = wléZ , Wwhich is equatibn (5) for (g,€), we in-
sert now the representations of u,wl :
k1 itw) - iw) =
(rxr') “(ss') sa. = (ss") sQ

1

From the uniqueness of r,r' , s,s

k ~ k

(s's) 1&1 = &2 = (t"t) 1&1 . Thus, t't =s's = tt' .

' we derive rr' =ss' =r'r and



lo.

From rr' = r'r , tt'=+t"t, |rr'| and |tt'| being

+
minimal, we conclude that there are 9,n € A such that r = ﬁd ’

t ' :
=0, d+a =1, t=n°, t'=1°, e+e =1, c.f.

(Harrison 1978, Corollary on pg. 9). Furthermore, ss' =9 and

k R
s's = n, g= S 1 R Bl = 0i(8)+d , Wl = 191CW)S = Sni(W) ,
El = ni(B)+e‘ In analogy to this, we derive from
~ m
. - = = = 1 +2 - -
WY, = YT, . w=oe b, vy = oM, b = n 5 L gyrt),

?1 = wm(Y) o . We can assume minimality for |¢| , |¢| and conclude

¢=9 , m =k n(w) =i(w) , s=s, ¢ =

1 1°
The equation uBlYlwlYlBlal = BlYlwlYlsl , can now be proven
easily just by inserting all the representations computed above and

using 9 =ss' , n=s's . This completes Subcase 1.2 and the case

|al| < lazl' can obviously be treated in the very same manner.

Case 2: We have ul = uzp s y2 = oyl . From ulwlyl = uzwzy2 we obtain

now pw1 = w20 and we will treat first the case where wl; w2 are not
overlapping.

*
Subcase 2.1: Let T € A such that p = Wy T and 0 = ™V, . From (2)
we get
7 W, TV .W.X. = V_ W, X, TW

21171 2°221

for all (v,x) e M .

Just as in Case 1 we can use Lemma 1 to conclude: There exist
k

*
P,q € A, p',q' € At such that, if w, e , w, = (pp") Zp R



11.

k

1(v) M and if w, $e, v, = (qq") lq ’

for all (v,x)

m

. v, = (pp")

x, = (q'q)j(x) for all (v,x) e M . For (V,x) € {(Q,a),(ﬂ,é),(Y,y)}

we define
v, if w2 = g
v, =
I R T IAE
and
x1 ) if w1 =g
Rz o= |
TR AT w te
- So, we can rewrite (7) as
R (8) ™R = VT

for all (v,x) e M .

It follows immediately that there are words 71,r' , G(vl) , 6(%1) s
%

6(62) s 6(x2) € A such that for T$€, T = (rr') 1, .

= 1y (%) & s voai(x) % = 7!
v, (r'r) 6(Vl) » X o= 5(xl)(r r) , where G(Vl)G(xl) r'r
and ¥, = (rr')J(V)G(Q ), x, = 68(x )(rr')j(x) where

2 2 2 2
6(62)6(x2) =rr' |, for all (v,x) e M.
To reduce this case to Case 1 we introduce the following

notation:

- For (V,X) € {(asa)’ (Baé) ’ (Y’;)} let



12,

v2 if T =¢
92 s = <
@o¥Mewy 1 the
and
x2 if T =-¢
0
Xyt = ¢
Ex) I ae 14
such that
le@ )| = |86 lEx) | = [8(x,) |
and
o) - 4
E(E(x,) = r'x
The new formulation of Subcase 2.1 is now: If vlﬁl = 32§2 for all
A~ A A o) 0
=== _ 0 0 0 = = —
(v,x) € M, then also alslylylelal = 0‘252Y2Y282°‘2 .

After appropriate renaming, this is nothing but a special sub-
case of Case 1, where we had proven:

VWX S VWX, for all (v,x) e M

implies oy By Yy ¥ Boy = 8B YW ,B,
We just have to carry over the scheme of Case 1 and additionally we

have wl =€ .

Subcase 2.2: In pwl = w20 now let Wi W, be overlapping, i.e.
*
there is a T ¢ A such that w; = 10, w, = pT . And so from (2) we
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derive

9 PV, TOX; = V,pTX,0
for all (v,x) e M.

Applying the same technique of splitting again, we conclude by Lemma 1:

if p+4e _ then
4 * +
p=(pp") p for some p ¢ A , p' € A" and
v, = (Pp')l(v) for all (v,x) e M and if o % ¢
' *
o= (qq'") 1q for some q e A , q' € A+ and
x, = (q'q)J(x) for all (v,x) ¢ M .

For all (v,x) in M we define

x; if o=¢
X, t =

@ I®  if gl

v2 if p=c¢
5, ¢ =

N R T +e

Thus we get
v TR = VLT,

for all (v,x) € M. Now allelTYlBlal = a282Y2TY282a2 is to be derived.



l4l

With appropriate renaming this has been done already in Case 1. This
completes the proof of Case 2 and the proof of Lemma 2. O

Now, we are ready to prove our main result.

*

Theorem 1: For every context free language L ¢ I (given by a CFG)

there exists an effectively constructible finite subset L' <L , such
*

that for any two homomorphisms g, h om I |, g(x) = h(x) for all

x € L' implies g(x) = h(x) for all x e L .

Proof: Assume L 1is generated by some context free grammar

¢ = (N,Z,P,S) . Let D' be the set of all terminal derivation trees
generated by G such that on each path from the root to a leaf at

most three nodes are labelled by the same nonterminal from N . L' is
now defined as the set of terminal words generated hy D' (the yield

of D' ) . Clearly, L' is finite and L' c L .

Assume that there is a string z in L - L' such that

g(z) ¥ h(z) and let z be a minimal string in the sense that for

each z' in L where |z'| < |z] , we have g(z') = h(z'").
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By the construction of L' there is a derivation tree for =z of the

form

for some nonterminal A , some words u, w, ¥y and pairs of strings in
2 (0,8), (8,B) , (v,¥) distinct from (e,e).

Thus, by taking out any of these A —loops here, we get
derivation trees generating words shorter than 2z . Now, clearly

Lemma 2 applies and

g (waBywyBay) = ﬁ(uGBYW’?EaY) s

completing the proof of Theorem 1.
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' *
Definition: Let L c¢ I . We say that F 1is a test set for L if
* *
F c L and for any homomorphisms g, h : I + A, g(x) = h(x) for all

x ¢ F implies g(x) = h(x) for all x e L .

Corollary 1: Let G = (N,I,P,S) be a context free grammar with
n=card N and m=max (|X] : A>X e P) . Let

F=1{weL@): |w| < . Then F is a (finite) test set for L(G).

Proof: Clear by the proof of Theorem 1.

Obviously, Corollary 1 implies the main result of (Culik and
Salomaa, 1979, Theorem 4.1), namely, that given a CFL L and homomor-

phisms g, h, it is decidable whether g(x) = h(x) for all x in L . [
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4. Extension to gsm

Now, we will extend our result from homomorphisms to the
mappings defined by deterministic generalized machines (gsm's) (with
accepting states). We will construct a single test set for all deter-

ministic gsm with bounded number of states.

Theorem 2: For every context free language L ¢ Z* (given by a CFG)
and each natural number q there exists a finite subset L' ¢ L such
that for any two functions fl’ fz : Z* -+ A* given by deterministic
gsm's with at most q states, fl(x) = fz(x) for all x in L'

implies fl(x) = fz(x) for all x in L.

Note: The above theorem clearly does not hold, if the numbers of

states are arbitrary.

Proof of Theorem 2: Let G = (N,%,P,S) be an c-free CFG generating

L , where n=card N, d = card Z , m = max (IX[ | A>X e P) and k

is defined as k =2 - q4(n +d) +1 . Let

L' ={wel@) | |w| = moKtly

Consider any two deterministic gsm's Si = (Qi,Z,A,Si,qi,Fi),
i =1,2 (c.f. Hopcroft and Ullman (1969) or Salomaa (1973)) such that
*
card Qi < q. Let Di be the domain of Si » 1 =1,2. For x €k

and i = 1,2, define
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[y  where x ¢ D, Gi(qirx) = (p;>y?

for some p; € Fi

{

fi(x) : =

Lundefined otherwise

i.e. fi is the mapping defined by machine §

M=Ln(D1uD

i Furthermore, let

2) and M' = L' n (Dl U DZ) . Then, proving that

fz(x) for all x € M' implies fl(x) = fz(x) for all x e M

£,(x)
clearly establishes Theorem 2.

We proceed as follows: f., £, are decomposed into one in-

1’ "2
jective, length preserving function g and two homomorphisms hl’h2 »

such that for all x € D1 ] D2 : fl(x) = fz(x) iff hl(g(x)) = hz(g(x)),

hz(y) for all y € g(M') implies

and furthermore: hl(y)
hl(y) = hz(y) for all y € g(M). This function g operates on strings

X = aj3,,...,8 € D, u D2 as foliows, For i1=1,2,...,r, the letter a

1 i

of x 1is indexed by the states reached in S, and S2 just after

1

reading a ,a, ; and the last letter is barred if x is

19277085

accepted by exactly one of the gsm's S., S,. In more detail, for

1’ 72

a €D, ubD let

B b SRR R S A Jie S

gx) = al(ml,nl)az(mz,nz),...,ar_l(mr_l,nr_l)ar(mr,nr) where m1 =4 »
- = *

n = q,, 61(q1,al,...,ai_l) (mi,yl) for some v, € A",

1) = (vi,yz) for some Yy € A*, and

62(q2,al,...,ai_
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a if xeD, nD

ay 1if x e (D;-D,) v (D,-D) .

Clearly, g 1is length-preserving and injective and can be provided
effectively by a deterministic gsm .

Since the family of context free languages is effectively
closed under gsm-mappings, we can construct a context free grammar
G' = (N',I',P',8") such that L(G') = g() = g(L(G) n (D, v D,)).
Since the construction of G' 1is just a straightforward variant of
the well-known construction with new nonterminals being triples from
Qi x N x Qi , we omit the details for P' and consider only N'
It is obvious that the choice of

N': = {(p,q,X,p",q") , (p,4,X,p',q") | X eNe I,

p,p' € Ql,q,q' € QZ} u {s"}

is sufficient for}our construction.

Since, card N' < 2 - q4 * (n+d)+1=%k, by Corollary 1
it holds for any two homomorphisms hl’ h2 on g that hl(y) = hz(y)
for all y € g(M') implies hl(y) = hz(y) for all y ¢ g(M).
Specifically, for any a e¢ X , p € Q1 s 4 € Q2 let
hl(a(p,q)) =y where Gl(p,a) = (p',yl) for some p' € Ql s
#

1l

hl(a(p,q)) for some new symbol #l . Analogously, let

19
= = | ]
hz(a(p,q)) Yy where 62(q,a) (q ,y2) for some q' ¢ Q2 s

#

hz(S(p,q))

2 for some new symbol #2 + #l‘. Since g : M > L(G'")
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is bijective and 1ength~preserﬁing, we conclude: hl(g(x)) = hz(g(x))
for all x ¢ M' implies hl(g(x)) = hz(g(x)) for all x e M,
which proves Theorem 2, because of hl(g(w)) = fl(x) , hz(g(x)) = fz(x)_
*
for all x e L n D1 n D2 and hl(g(x)) e A {#1} ,
*
hz(g(x)) e A {#2} for all x e L n ((Dl - D2) U (D2 - Dl))' O

Finally, we note that the proof of Theorem 2 suggests that
Theorem 2 might be possible to extend to a larger family of languages
L, e.g. even indexed languages, if the efféctive existence of finite
test sets were shown for L and if [ has some other properties like

the family of CFL .
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