SOME COMMON MISCONCEPTIONS ABOUT LUOUID

E.A. Ashcroft
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

W.W. Wadge
Department of Computer Science
University of Warwick
Coventry, England

Research Report CS-79-38
December 1979

SOME COMMON MISCONCEPTIONS ABOUT LUCID

Ed Ashcroft Bill Wadge

Computer Science Department Computer Science Department
University of Waterloo University of Warwick
Waterloo, Canada Coyentry, England

Abstract

This paper attempts to clear up several misconceptions about
the language Lucid. In the process we claim that Lucid is in fact a
real programming lanugage, and indicate various ways in which implemen-
tations might be feasible.

0. Fntroduction

Lucid [3] began to be developed five years ago, by the
authors, as a language in which it would be easy and straightforward
to prove assertions about programs. Rather than devote our efforts to
developing more powerful tools to verify programs in existing languages,
or attempt to modify existing languagés to make them more verifiable,
we concentrated our efforts on re-assessing what constitutes a programming
language and on inventing a completely new language based on mathematical
principles. This language, Lucid, has achieved a certain amount of
success, for example attracting some interest from people doing research
in parallel computation, but, in spite of this, Lucid is not really taken
seriously as a practical programming language. This is partly because
there is, as yet, no really practical implementation, and partly because
the language is still being developed. Moreover, the current lack of a
practical implementation is caused by the fact that standard compiling or
interpreting techniques cannot be used or are not relevant, and this had
led some to conclude that Lucid is so unusual that it is inherently im-
practical (although paradoxically, there are others who say that it adds
nothing new!). We feel that these views, while understandable, are wrong,
and are based on simple misconceptions, for which we ourselves are partly
to blame.

In this paper we. therefore will try to clear up some of these
misconceptions, answering six of them in detail. These are not just
misconceptions about Lucid, but are misconceptions about all nonprocedural
languages and about more general issues, particularly the relationship
(actual and desired) between operational and mathematical semantics.

We will list what we see as the main misconceptions, following
each one by a discussion which, hopefully, clarifies the issue. It is
assumed that the reader has some familiarity with [4] and [5].

1. rLucid is just another purely recursive language

Purely recursive languages have been around for a long time,
for example Pure LISP [13] and ISWIM [11], and, of course, Kleene's
recursive equations [10]. All have the same power in that they can
compute (assuming the availability of arithmetic operators) any partial
recursive function. They do this without using assignment statements
or indeed any forms of command that cause changes in the values of
variables, and the languages are therefore referentially transparent.
(This means, to quote Stoy [16], "The only thing which matters about
an expression is its value, and any subexpression can be replaced by
any other equal in value. Moreover, the value of an expression is,
within certain limits, the same whenever it occurs.") This gives such
languages very desirable mathematical properties. Lucid is such a
language, one in which expressions denote infinite sequences of data
objects.

Apart from the choice of the data domain, the difference
between Lucid and the others is purely a matter of form; but for pro-
gramming languages, which are, of course, tools, form is very important.
The data objects and operations in Lucid are such that many Lucid pro-
grams can be understood as programs using a general form of iterationm.

We feel that most programmers find iterative algorithms, when appropriate,
to be more understandable than recursive ones, and we feel that
implementations which use iteration (when appropriate) can be extremely
effective.

For example, compare the following ISWIM program for fast
exponentiation, to compute x,
pow (n,x) = aux (n,1,x)
wherec
aux &,y,p) = if k eq 0 then y
else if ewen(x) then
aux(k div 2,y,p-p)
else aux(k div 2,y-p,p-p)
end.

with the corresponding Lucid program:

valof
first x = n
first p = =

firsty=1

next y = if even(k) then y else y-p
next k =k div 2
next p=p-p

result =y 333 k eq 0
end.

(The operation 3s3 is a$ SOOn as and the operation div is
integer division.) It is obvious from the Lucid program that an

iterative algorithm is being used, and the nature of the algorithm is
clearer.

(The Lucid program can be written more concisely using the

operation fby or followed by:

valof
k = n fby k div 2
p = x fby p-p
y = 1 fby if even(x) then y else y-p

result = v 2sa k eq 0

end.

There seems to be a paradox here; Lucid claims to be a mathe-
matical language but one of its big advantages (iteration) is concerned
with operational matters. This is another misconception - operational
thinking and can be very useful as a programming aid and iteration is
very useful, both conceptionally and practically. The nature of the
language is still mathematical. The problem with purely recursive
languages is that they are too general and use only a few basic, but
very powerful, tools. Lucid is richer and allows one to express simple
algorithms in a simple way.

Purely recursive languages can imitate Lucid by defining a
separate function for each Lucid variable, this function taking one
argument, a special "time parameter".* Thus, corresponding to the
previous Lucid program, we would have four functions, including

y(@) = 1f i eq 0 then 1 else if even(k(@-1)) then y (@E-1)
else y(i-1)-p(i-1)
and
result(i) = y(£(0)) wherec
£(j) = if k() eq 0 then j
else £(71)
end.

This is clearly syntactically more complicated than the Lucid
program and is using an unnecessarily powerful tool (recursion) to ex-
press a simple idea (iteratiom). If this "time parameter” idea is used
only to model iteration then the function definitions will have restricted
syntactic forms, suggesting that they could be generated by a preprocessor
from some less clumsy notation. Lucid is exactly such a notation, and
it has the advantage that it has its own semantics and enjoys all the

* rd - 3
A variant of the "time parameter" idea is found in the work of Arsac

[1], who independently developed a language based on recurrence
equations.

desirable properties that the recursive language has. Moreover, if the
"time parameters'" are used in non-standard ways, for example to get at
the "past history" of variables, the same effects can usually be obtained
in Lucid by using new operations, like hitherto. 1In other words, new
operational features are obtained by extending a simple language rather
than weakening the restrictions on a more powerful one.

2. Lucid is just another single-assignment/data-flow/coroutine language

The idea of single-assignment languages [17,2] predates
Lucid. Basically, single-assignment languages are conventional iterative
imperative languages with assignment, in which syntactic restrictions
are imposed. These restrict the use of assignment statements so that
for each loop and. each variable changed by the loop there can be only
one assignment to the variable before entry to the loop and only one
inside the body of the loop. There are also restrictions on conditional
statements so that the same variables are assigned to in the two branches
of the conditional.

Single assignment languages vary, but in general each single-
assignment program corresponds to a simple Lucid program in a fairly
direct way (especially if we write the Lucid program using first and next
rather than igx). These corresponding Lucid programs will themselves
obey certain restrictions (no Lucid operations on the right-hand-sides
of equations, restricted use of 3S38, no defined functions, etc.) so both
these and single assignment languages are special cases of more general
languages. In the case of single-assignment languages however, removing
these restrictions is a step backwards to general imperative languages,
whereas with Lucid, removing these restrictions retains the fundamental
properties of the simple Lucid programs (for example, referential trans-
parency) and gives a more powerful language. New operations, such as
fby, upon and whenever, (not corresponding to any imperative construct)
can be added, as can user-defined functions, even non-elementary and
non-pointwise ones. Lucid is far more than a single-assignment language.

Lucid functions can often be understood operationally as
defining coroutines, as indicated in [5]. Some imperative languages
(for example EPL [12] and Kahn & McQueen's language [9]) have been
designed to give the user the 'facility' to establish coroutines, by
having "actors" pass "messages' to each other. Some people have jumped
to the conclusion that Lucid is just another such coroutine language.
The difference is that Lucid is defined mathematically and some form of
message passing can be used to implement certain Lucid programs -
although other methods (e.g. compiling) could be used as well.

The coroutine languages were operationally motivated and the
user has the burden of creating actors and sending and receiving
messages. In Lucid these simply correspond to defining functions and
using them in the conventional way, giving them expressions as arguments
and composing them to form other expressions. For example, we can write
two Lucid functions, produce and consume, such that consume(X) gives us
an infinite stream of results, where X is an infinite stream of
'resources' (many resources may have to be consumed to provide one

result, or one resource may provide many results), and produce(Y) gives
us an infinite stream of resources, where Y is an infinite stream of
external data items (once again, one data item may produce many resources,
or many data items may be needed to produce omne resource). These
functions can be interpreted as coroutines, and the expression

consume (produce(Y)) corresponds to linking them together in the usual
way. We can even feed the results of consumption back as the data items
that determine the resources that are produced, as follows:

X = consume (produce(y fhy %)).

Here the first data item in Y sets the whole thing off, subsequent inputs

to produce being the results of consume. Clearly this might give us
deadlock, which corresponds to the value of X, according to the mathematical
semantics, being undefined (L) at some point.

Many meaningful Lucid functions can not be viewed as coroutines,
unless we have a 'restart' facility. Consider, for example, the
following function Mom2

Mom2 (X,M) = valof

s=r1fby s+nextr
T=()~(—M)2
r=1fby +1

result = S/1
end

which is such that Mom2 (A,N) at time t 1is the second moment, about

the value of ¥ at time t, of the first t+1 values of A.*% (If we have
a function Avg that produces the stream of running averages of its input
stream, then Mom2(A,Avq(A)) will be the stream of running variances of
the stream A4.) Mom2 (A,N) can be interpreted as a coroutine, which is
being fed with two streams A and N, but only if for each value of N the
coroutine can internally restart the stream A in order to subtract this
latest value of ¥ from the latest and all the previous values of A (and
square the results and take the average). Lucid is clearly more than a
normal coroutine language.

Wadge [8] has indicated how some simple Lucid programs (which
are just sets of equations) can be implemented as data-flow networks,
In fact all such networks correspond to such simple Lucid programs.

The fact that there are Lucid programs that are not equivalent to such
simple ones means that Lucid is more than a language for programming
data-flow machines. This subject is considered more in section 5.

3. Lucid lacks features needed by real programmers

Basic Lucid as described in [3] is a very spartan language,
there being no procedures, no data structures (in particular no arrays),
no control structures and mno I/O.

The first value of A 1is, by convention, the value of A at time O.

a) Procedures literally make no sense in Lucid, but functions do
make sense [5]. Procedures can be simulated by using functions which
return several values, just as blocks are simply phrases (compound
expressions) which return several values. ~“Functions, like phrases, can
refer to global variables, but cannot change them (that wouldn't make
sense semantically). In other words, there are automatically no side-
effects.

b) Control structures make no sense in Lucid. This does not mean
that the Lucid user has no control over execution of his or her program.
If a particular implementation uses various operational devices to run
programs then the user can, to a certain extent, determine the behaviour
of the program by altering the form of the program (for example, putting
it into a form with a simple iterative interpretation). The user does
not need precise control of the program's behaviour because the semantics
of the program is independent of operational considerations. The Lucid
user specifies the meaning of the program exactly but only suggests (by
the form of the program) its behaviour. This presupposes an implementa-
tion which selects the method of executing the program by analysing the
form of the program. The mathematical nature of Lucid (lack of side
effects, etc.) makes such analysis feasible.

; Incidentally, some "control structures" have, in reality,
nothing to do with control and can be used in Lucid without any problems
(e.g. conditional expressions, case expressions).

c) Data structures do make sense in Lucid, because Lucid was
defined independently of data objects. If you want lists, for example,
you just have to base your version of Lucid on an algebra of lists and
operations on them. (These operations must, of course, be mathematical
functions, i.e. without side~effects.) For arrays, the operations
could include an "update" operation U_, for each number of dimensions
n, such that Un(A,i sin,1 ,k) is the grray similar to the n-dimensional
array A except that its i.,i,,...,i —-th component is k. In this way,
Lucid could "handle" the normal way of using arrays in algorithms, where
arrays are changed incrementally. Probably a better way to use arrays
is to use the APL approach of having operations which take whole arrays
as arguments and return whole arrays as results. This fits in better
with the Lucid philosophy of specifying the results of computations
rather than the details of how these results are to be achieved. Also,
the programs tend to be simpler and more understandable.

An alternative approach to arrays, which requires some
extension of the semantics of Lucid, is to have functions which convert
histories into one-dimensional arrays, and vice versa. These arrays
are naturally infinite, and we call them 'chains'. Chains can only be
processed linearly, and are not "random access", but are very natural
to use for certain problems.

Again there is no explicit control over the operational
behaviour of programs, but implicit control is possible.

d) Lucid cannot have commands for inputting and outputting data.
A Lucid program is a term whose value is taken as the output of the
program, and whose free variables are the input variables. If the input

and output are streams, an implementation can be devised in which input
is demanded when needed and output is produced when available. If the
input to the program depends, via the user, on previous outputs, a
'dialogue' with the program is set up.

e) Another feature missing in Lucid is error exits. Errors can
instead be handled by suitable use of "error objects'", like "integer
overflow", "subscript range error" etc., which are the result of
operations applied to operands not in their normal domain. The basic
data algebra of the language must be extended to allow such objects.

f) Since there are no control structures, there is of course no
goto statement. Several languages nowadays do not have such a statement,
but this was always the result of a conscious design decision - transfers
make sense but are not permitted. 1In Lucid, goto statements would be
meaningless, since there is no concept of 'execution' being at any particular
'point' in the program anyway. Like side-effects, the question of allowing
them or not does not arise. They just have no.place in Lucid.

The main features lacking in Lucid are control structures, and
a little practice in programming in Lucid will reveal this lack to be a
positive asset. Not having to worry about control flow is remarkably
liberating.

4, Lucid is inherently inefficient

This is probably the most common misconception. It arises
naturally since most other languages have essentially one implementation,
determined by the semantics. Since the Lucid semantics of even the
simplest program involves infinite objects, the conclusion appears
inescapable.

The flaw in this argument is that the Lucid semantics, being
mathematical, specifies goals (or ends) of an implementation, not the
means. For example, the computation of the value of the program

valof
X

0 fby x+1
1 fby v+2-x+3

{gﬁplt = X asa Y>N

Y

end

at (external) time t when N has the value 10 does not require the
computation of an infinite number of values of the variables X and Y.

It requires the value of result at (local) time t. This requires only
the values 0,1,2 and 3 and 1,4,9 and 16 of X and Y respectively at local
times 0,1,2 and 3, because at this last stage Y > 10 is true for the
first time and the corresponding value of X, namely 3, is the value of
X asa v > 10 at any time, in particular at time t. Thus the value of
the program at time t 1is 3, the integer square root of 10.

This program has been especially simple, but even for more
complicated programs that don't correspond clearly to iterative programs
it will always be the case that if the value of the program at a partic-
ular time is defined, according to the mathematical semantics, then only
a finite number of the values of the variables need be calculated in
order to determine what this defined value is.

There is in fact an implementation based directly on the
mathematical semantics which computes only the values which are required.
This is a demand-driven interpreter [6] where a demand to compute a
particular variable at a given time generates other demands for other
variables at other times. In its simplest form it is inefficient because
if the value of a variable at a given time is needed again it will be
recomputed from scratch. It can be made more efficient by saving some
of the computed values, but once again it is inefficient, in space this
time, if all the values are saved. Finding an appropriate balance is
one of the main problems of implementing Lucid using an interpreter.

This implementation scheme can be used when variables represent
arrays, but it can then be inefficient if the recommended APL-~like style
of programming is not adopted, and the incremental approach, using U ,
is used instead. In this case the implementation will be keeping arBund
several copies of arrays, differing in slight ways. It is possible,
with some analytical overhead, to avoid copying an array, with some
updating, by keeping just the updating information around until the
previous array is not needed any more, at which point the actual up-
dating can be performed. Then instead of several copies of an array we
will have one copy together with information on various updates to be
performed.

In general it will not be the case that we can put a bound on
the number of different values of a variable (or the number of updates)
that need to be remembered. It is quite possible to write programs that
will be enormously expensive to compute. (This is true for other
languages also.) However, it appears that many programs (like the one
given) have the property that a good interpreter would only need a
bounded number of instances (for different times) of each variable. 1In
such cases, the program can be executed in a different way - it can be
translated into a conventional iterative program, and this program can
be executed. In other words, such programs can be compiled rather than
interpreted [7,8].

It is clear that the fact that the semantics of Lucid is
mathematical rather than operational leaves a great deal of freedom to
the implementer to come up with ingenious, efficient implementations.

5. Practically no Lucid programs can he implemented gs iteratiye pro-
grams, data-flow nets or coroutines

This point of view contrasts sharply with that considered in
section 2. The crux of the problem here is seen to .be that the Lucid
semantics is mathematical and, in order for a program to have a defined
value at a particular time, this value depends only on the values of

certain variables at certain times and is independent of the wvalues of
all other variable/time combinations, even undefined values. The yvalue
of a program is independent of the results of irrelevant computations.
Any implementation which attempts to evaluate a particular variable at

a particular time, without first being certain that that wvalue is
definitely needed for the value of the program, runs the risk of getting
stuck in a non-terminating computation when, in fact, the wvalue of the
program Is defined, according to the semantics. In Lucid it is meaning-
ful for a sequence or stream or history to be "intermittent", that is,
it can contain undefined values (L) followed by defined ones, and these
later defined ones may be crucial for determining the value of the pro-
gram.

In a "pure data-flow" implementation of Lucid [18] the
sequences of data items flowing along the data lines should correspond
exactly to the histories of streams in Lucid. This is not possible if
the streams are intermittent since this would require the recognition
of non~terminating computations in order to produce an object correspond-
ing to 1.

This isn't as unfortunate as it seems, because pure data flow
is too restrictive to implement even conventional programming languages.
For example, in order to implement conditional expressions, pure data
flow uses a 3-input node, these inputs corresponding to the test and
the two values corresponding to the two branches of the conditional.
When the node has received the value of the test and the value for the
appropriate branch, this latter value is passed through. However, it
is not possible to subsequently select the other branch until the value
of that branch, corresponding to the value that was passed through, has
arrived and been discarded. Even in cases where this produces the
right answer (i.e. it doesn't cause the program tc 'hang up'), it per-
forms more computation than necessary in order to do so.

Pure data flow has to be modified to avoid doing unnecessary
computations, and this is exactly what is necessary in order to correctly
implement Lucid. It seems that by using sophisticated analysis techniques,
data-flow nets can be constructed for the programs in a large subset of
Lucid.

Similar problems occur with simple coroutine implementations
and simple compilers into iterative programs. However, using more
sophisticated algorithms, both these techniques can be extended to large
subsets of Lucid.

Similar problems occur with simple coroutine implementations
and simple compilers into iterative programs. However, using more
sophisticated algorithms, both these techniques can be extended to large
subsets of Lucid.

Some people may be tempted to tinker with the semantics of
Lucid. in order to avoid things like intermittent streams, but the result
would be a language that didn't have many of the nice properties of
Lucid. Anyway, since pure data flow is inadequate anyway there doesn't
seem to be much point in getting a language that can be implemented in
this way.

10

6. Lucid is too strange for ordinary programmers to use

On first sight, Lucid does have many strange properties:
i) order of statements within phrases is irrelevant;
ii) the values of variables are infinite sequences;
iii) statements are just equations;
iv) there is no flow of control, no idea of where the execution
of the program is 'at'.

The usual conclusion is that it is difficult to write Lucid programs.
This is certainly true for many people, but this is not because Lucid
is unreasonably weird but because it really requires a completely
different style of programming.

The question that should be asked is not which style is strange
compared to which, but rather which style is better. Programmers used
to the imperative style of programming usually see Lucid as a very
restrictive language but (as indicated earlier) the exact opposite is
true.

For one thing, the Lucid style is freer because it is not
committed to one particular operational viewpoint. An equation like

I =1 fby r+1

can be understood
a) as defining successive values of a loop variable
b) as defining an infinite sequence
c) as defining a module which spontaneously generates the numbers
1,2,3,...
or
d) as a coroutine which supplies the numbers on demand.
Some of these meanings allow for a more modular view of programming than
is found in imperative programming. For example, we can understand
this first equation by itself and then add the equation

P = fixst ¥ fby p-next x .

P gives us the running products of the values of X, that is, the
factorials of the successive positive integers. In a conventional
language we would have various assignments to P and X intermingled in a
loop, and the order of these assignments could be crucial. Tt would be
less obvious that the roles of P and X can be understood separately, and
the program would be harder to modify.

Above all, in Lucid the programmer is freed from having to
understand (and specify) exactly what is going on.

We have also seen how functions in Lucid can be thought of as
coroutines, and in fact Lucid programs using functions are much clearer
and easier to write than programs in existing coroutine languages.

Tongue-in-cheek comment. It 1s quite possible that programmers
of the future will look back at imperative languages and find them strange,
and wonder at the fact that programmers were able to write programs in them,
in much the same way that we wonder at the ancients' ability to do arithmetic
with Roman numerals. (End of tongue-in-cheek comment.)

11

7. Lucid has no limitations

In spite of all we have said, we are forced to admit that there
are genuine limitations in the use of Lucid as a programming language.
We don't consider this to be a failure because we never intended for
Lucid to be able to '"handle" everything.

One very fundamental property of Lucid programs is that they
are definitional. If you want the value of a variable to be an integer
between 1 and 10 you have to specify exactly which one you want. If
you are going to use a Lucid loop to calculate the sum of some numbers,
you have to specify the way in which the numbers are to be combined.

Obviously these are examples in which the programmer is required to
over-specify.

At first sight, this would seem to be an easy problem to fix,
by simply adding McCarthy's amp function [14]; amb(a,b) arbitrarily
returns a or b, and we can't predict which. Unfortunately this destroys
the mathematical semantics, the rules of inference, and consequently
the whole of Lucid.

There may be another way to weaken the specifications, and
that is to make them general assertions rather than equaticns. This
means basing the language on predicate calculus rather than USWIM [4]
(which is a variant of ISWIM, which is based on A-calculus). However,
to develop such a genuinely assertional programming language is a large
project which we must leave to the future.

Lucid's main strength as a programming language is that no
behaviour is specified, but this is also a weakness when control of
behaviour is the aim of a program, as in real-time computing. We talk
about values at certain "times' for interpreters, but these are not real
times. To control behaviour we must consider particular implementations
or else modify the formal semantics to take account of real time, using
possibly a "clock pulse object" (which the second author has named a
"hiaton").

The fact that Lucid has limitations does not signify failure.
Trying to obtain too much generality in a single language has in the past
often led to failure. Moreover, although the particular language, Lucid,
is a product of the general philosophy of using mathematics as the basis
of language design, the fact that Lucid has some limitations should not
be taken as implying that there are limitations to the mathematical
approach. Lucid is only one language that was designed this way. The
mathematical approach has also been used, to varying extents, to design
LISP, ISWIM, APL and PROLOG, and we certainly expect other new languages
to be designed this way, especially since there are now many powerful
new results in the theory of domains [15] that can be used.

10.

11.

12.

13.

14.

15.

16.

17.

18.

12

REFERENCES

Arsac, J., "La Construction de programmes structurés", Dunod, Paris (1977).

Arvind, Gostelow, K.P. and Plouffe, W., "The (Preliminary) Id Report",
Department of Information and Computer Science (TR1ll4a), University of
California at Irvine (1978).

Ashcroft, E.A. and Wadge, W.W., "Lucid, a Nonprocedural Language with
Iteration", CACM, 20, No. 7 (1977).

Ashcroft, E.A. and Wadge, W.W., "A Logical Programming Language",
Cs-79~20, Computer Science Department, University of Waterloo (1979).

Ashcroft, E.A. and Wadge, W.W., "Structured Lucid", CS-79-21, Computer
Science Department, University of Waterloo (1979).

Cargill, T.A., "Deterministic Operational Semantics of Lucid" CS-76-19,
Computer Science Department, University of Waterloo (1976).

Farah, M., "Correct Translation of Lucid Programs", in Program Transformations,

Proceedings of the 3rd International Symposium on Programming, Dunod,
pp. 367-380 (1978).

Hoffman, C.M. "Design and Correctness of a Compiler for a Nonprocedural
Language", Acta Information 9.

Kahn, G. and McQueen, D.B., "Coroutines and Networks of Parallel Processes",
IFIP 77, pp. 993-998 (1977).

Kleene, S.C., "Introduction to Meta Mathematics", Van Nostrand, Princeton
(1952).

Landin, P.J., "The Next 700 Programming Languages", CACM 9, No. 3 pp. 157-166
(1966) .

May, M.D., Taylor, R.J.B. and Whitby-Strevens, C., "EPL: an Experimental
Language for Distributed Computing", Proceedings of "Trends and Applications:
Distributed Processing”, National Bureau of Standards, pp. 69-71 (May 1978).
McCarthy, J. et al., "LISP 1.5 Programmer's Manual”, M.I.T. Press (1962).

McCarthy, J. "A Basis for a Mathematical Theory of Computation", in Computer
Programming and Formal Methods, North Holland, Amsterdam pp. 33-70 (1963).

Scott, D., "Data Types as Lattices", SIAM J. on Comput 5, No. 3, pp. 522-587
(1976) . -

Stoy, J.E., "Denotational Semantics: the Scott-Strachey Approach to
Programming Language Theory", M.I.T. Press (1977).

Tesler, L.G. and Enea, H.J., "A Language Design for Concurrent Processes”,
Spring Joint Computer Conference, pp. 403-408 (1968).

Wadge, W.W. "An Extensional Treatment of Dataflow Deadlock", Lecture Notes
in Computer Science, No. 70, Springer Verlag (1979).

	
	
	
	
	
	
	
	
	
	
	
	
	

