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B ror semanrIcs

Abstract

We would like in this note to offer a constructive criticism
of current work in the semantics of programming languages, a criticism
directed not so much at the techniques and results obtained as at the
use to which they are put. The basic problem, in our view, is that
denotational (or "mathematical') semantics plays on the whole a passive
(we call it "descriptive") role, while operational semantics plays on
the whole an active (we call it "prescriptive") role. Our suggestion

is that these roles be reversed.



We would like here to offer a constructive criticism of current
work in the semantics of programming languages, in particular, work in
denotational ("mathematical") "Scott/Strachey” semantics. For the most
part we are criticising not the tools and techniques developed, but
rather the use made of these tools, and the role which semantics plays
in language design.

In semantics and in other branches of computer science there
are two points of view concerning the role of mathematics. One point
of view sees mathematics as playing primarily a passive role. According
to this point of view the entities considered by computer scientists
are shaped mainly by forces outside their control; their job therefore
is to develop the necessary tools to study computer science, i.e. to
describe, to model, to classify. We will call this the descriptive
approach.

The other point of view sees mathematics as playing primarily
an active role. According to this point of view, machines, languages,
and systems are (or should be) the computer scientists' own creations,
so that they can freely choose to create them so that they conform to
mathematically simple principles. The mathematics is directed towards
design rather than study, and mathematics is used not so much to describe

existing objects as to plan new ones. This we will call the prescriptive

approach.

In general, the descriptive approach aims for generality even
at the expense of simplicity and elegance, while the prescriptive
approach aims for simplicity and elegance, even at the expense of

generality.



Our criticism is that operational semantics is being used
prescriptively and denotational semantics descriptively, whereas it

would be better if the roles were reversed.

It would not be correct to say that Scott, Strachey and their
followers intended to develop a purely descriptive system. Strachey's
interest in mathematical semantics stemmed from his interest in language
design, and in one of their first joint papers [25], Scott and Strachey
at one point present what is in fact a good explanation of what it means
to use denotational semantics prescriptively:

"The authors have the peculiar idea that the domains

of our concepts can be quite rigourously laid out before we

make final the choice of the language in which we are going

to describe these concepts...This is not to deny that there

may be some vague ideas of language which influence our choice

of domains. What we suggest is that in order to sort out

your ideas, you put your domains on the table first. Then we

can all start talking about them."
They in fact proceed in the same paper to define a small language along
these lines. Furthermore, in the later works of Tennent [27], Milne and
Strachey [20] and Stoy [26], (they are now the 'standard' presentations
of the subject), the authors express the opinion that one (or even the
best) use of the method is as a design tool. Tennent himself (in [281)
used principles derived from the denotational approach to produce some

valuable proposals (unfortunately neglected) for the improvement of

Pascal,

Nevertheless, despite these intentions and efforts the Scott/
Strachey method has in fact evolved as a descriptive tool. Researchers
in the field began working through the language manuals, devising denota-
tional characterizations for construct after construct. The three expo-
sitions of the method mentioned above, and the more recent book by Gordon [13],

all have the same form, namely the presentation of a simple example language



to illustrate the method followed by a series of explanations of how
the method can be extended to handle various complications. In Tennent's
survey paper alone the following features are discussed: assignment,
conditional and repeat statements; side effects; coercions, pointer
variables; dynamic allocation and deallocation; opening, closing and
rewinding files; call by name, value and reference; and goto statements,
exits, error stops, backtracking and coroutines. According to Milne,
semantics have already been given for (among many others) Algol 60,
SNOBOL and Algol 68, and work was then "under way'" on a description of
PL/1.

Ironically, since '"nasty" features like those mentioned above
have been largely banished from programming courses, the only place

students come across them is in courses in semantics!

In the development of the Scott/Strachey method, generality
has emerged as the main objective. Milne in his book lists four
properties that a semantic specification method must possess, and the
second of these states that "it must be applicable to all programming
languages". According to Milne, "the method of mathematical semantics
has the applications and properties just mentioned". The summary on
the flyleaf of the book repeats the claim that the methods "are appli-
cable to any programming language". Tennent, in the first paragraph
of his survey paper, states that the method of Scott and Strachey has
proved to be adequate, despite "the complexity and varjiety exhibited
by modern programming languages".

As is to be expected, this generality has been achieved at
the expense of simplicity. The semantic descriptions become so large
and complex that it is difficult to see how they can be useful or even

how there can be any assurance of their correctness.



What lies behind this quest for generality is the idea that
the Scott/Strachey method is a method for giving semantics to alreadz
existing languages, i.e. a method for recording design decisions
already made. This attitude can be perceived clearly in almost all
writings on the subject, despite the remarks about the method's use as

a design tool. Milne refers to the Scott/Strachey method as a method

for formalizing semantics; presumably, this means giving precise
descriptions of a semantics already prescribed but formulated informally.
Tennent calls the Scott/Strachey method a method for giving "formal
models" of the meanings of languages. Gordon simply entitles his book

"The Denotational Description of Programming Languages'.

It is certainly true that some Scott/Strachey semanticists
see themselves as playing a part in the language design process; but
the parts they are offered are quite peripheral. They must act as
assistants or advisers to the designer. When a design is proposed, the
semanticist formalises it and is allowed to offer suggestions, some of
which (if they are not too radical) might possibly be accepted. In any
case the semanticist is required (and able) to formally describe what-
ever the designer chooses as his or her final design. (We have first-
hand knowledge of one such situation in which a colleague was called
in by the designer of one of the Ironman language candidates. He did
have some influence on the language, but this was limited because the
domains of the designer's concepts had been quite rigourously laid out
by the Ironman specification.) For all intents and purposes, the

semanticist is used as a describer. In fact Stoy concedes that the

time when language design will be the main use of the Scott/Strachey

method lies "in the future"; at present it is being used for description.



This attitude (at least in its extreme form) sees programming
languages as naturally occurring objects (like heavenly bodies); they
see the semanticist as being in essentially the same position as an
astronomer gazing through his telescope at some distant star or galaxy¥.

Indeed we might continue the analogy and liken the Scott/Strachey method

to the cosmological theories of the ancient astronomer Ptolomy, which
very successfully described the apparent motions of the planets in terms
of an elaborate system of cycles and epicycles. Ptolomy's technique

was completely general in the sense that any planetary motion could be
described by adding enough epicycles,

We suggest that this preoccupation with generality and
description could have an effect exactly opposite to that originally
intended (as stated in the passage in Scott and Strachey [25] quoted
earlier). Language designers worry a lot about their languages. For
example, they worry about whether or not they will be powerful,
efficient, well-structured and amenable to verification. The fact that
the Scott/Strachey method can deal with goto statements fairly easily
makes it more likely, not less, that this feature (and worse ones) will
be included in the language. Milne in his book presents a language,
Sal, of his own design to illustrate the method. He deliberately
includes in Sal facilities of "dubious merit"; for example, storable
label values which permit "bizarre jumps back into blocks". He does
this in order "to illustrate the ways in which mathematical semantics

can handle both wise design decisions and foolish ones" (page 384). The

*
Algol is in fact the second brightest star in the constellation Perseus!



method is so powerful it allows, ér even encourages, language designers
to ignore the advice of semanticists. It offers language designers a
blank cheque and constitutes, to paraphrase Dijkstra [ 9], an open
invitation to language designers to make a mess of their language.
Although we have accused denotational semantics of the Scott/
Strachey variety of playing on the whole a descriptive role, it would

not be correct to say that denotational semantics in general has played

no role at all in language design. In fact, one of the first and yet
most successful and influential of all programming languages, LISP, was
the result of an early attempt (not completely successful it is true)
to use denotational ideas prescriptively. Other examples include APL,

Turner's SASL [29], the coroutine language of Kahn and McQueen [15],

Dijkstra's "guarded command" language [10], PROLOG [17] and Lucid

[ 2, 3, 41. &although none of the designers used the Scott/Strachey

method as such, the languages were denotationally prescribed in that

the designers began with abstract, denoted objects (functions, rectangular
multi-dimensional arrays, streams, infinite sequences) and then pro-
ceeded to specify the language and investigate implementations.

We are not the first to perceive the difference between the
prescriptive and descriptive approaches, nor are we the first to
recommend the prescriptive approach in semantics. We are not even the
first to use the word in this sense; Dijkstra used it in EWD 614 [ 9]
in March 1977. A good presentation of the prescriptive viewpoint can
be found in Jack Dennis' opening remarks to the IFIP sponsored 1977
semantics conference* [ 7 ] where he offers the motto

Let us not formalize what exists; rather, let us
discover what should exist.

* .
The corresponding IFIP Working Group is unfortunately entitled "Formal
Description of Programming Concepts'.



Dennis was talking about semantics in general, but we have
also seen that in denotational semantics in particular, there is under-
standing of the issue and a desiré to play a more active role. What
requires explanation then is the fact that the more active role has
been so slow in emerging. Some undoubtedly believe that the trouble
is that denotional semantics is still not general enough, and that the
answer is to extend the method even further to handle such things as
nondeterminism* and fairness. These technical questions may be worth
pursuing, but from what we have seen earlier it is very unlikely that
even a completely successful resolution of these problems would result
in a real change of direction.

We can obtain some indication of the real nature of the pro-
blem by looking a little more closely at the early history of LISP (191,
one of the first attempts to use denotational methods prescriptively.
McCarthy was motivated by the early work of Church [ 6 1 on the A-calculus
and of Kleene [16] on recursion. His original intention was to produce
a language in which a program was simply a set of recursive function
definitions, the meaning of which was one of the functions so defined,
i.e. the least fixed point of the program.

This intended semantics of LISP, however, was never completely
formalized by'McCarthy, probably because the necessary mathematics was
not well enough understood at that time. Instead, the semantics was
specified by giving an interpreter proéram (written in LISP itself),
which, it was believed, correctly computed the results of the functions

defined.

It is in fact true that there is still no general and completely
satisfactory domain-theoretic characterization of nondeterminism.
This is the famous "powerdomain" problem discussed, for example,
in [217.



Unfortunatgly it was later discovered that this was not the
case — the interpreter used only a simple "pairlist" for binding values
to variables, and did not always select the appropriate value. This
situation was never corrected. The problem was not just that programmers
were consciously and eagerly using 'dynamic binding'; the real difficulty
was probably the fact that a correct implementation of static binding
is not easy to construct. Some form of elaborate Algol-like stack is
needed, together with (for handling higher-order functions) a system
for carrying around closures (expression - environment pairs). If a
completely correct implementation of recursive definitions is required,
interpreting functions and functional applications in the usual sense,
some form of call by name is also needed [30], and this complicates the
interpreter even more. This is not to say that these implementation
problems are unsolvable; but there is no simple LISP language interpreter
which is correct, completely general, and reasonably efficient, all at
the same time.

We could summarize the history of LISP by saying that its
developers discovered that a simple denotational semantics of LISP was

inconsistent with a simple operational semantics (implementation) and

that they chose the latter as its basis. It is our thesis that this
situation is not peculiar to LISP, that it is only a particular instance
of a general phenomenon, namely the existence of a significant degree
of conflict or incompatibility in the relationship between denotational
and operational considerations.

At this point it is worth saying a few words about the terms
"denotational” and "operational" and the difference between denotational
and operational semantics. Semantics in general is the study of the

association between programs and the mathematical objects (e.g. func-



tions) which are their meaning. In some simple languages, for example,
the meaning of a program will be the functional relation between its
input and output, so that correctness (but not efficiency) refers to

the meaning alone. The phrases '"denotational semantics" and "operational

semantics" are somewhat misleading because they seem to imply that the
different approaches give different meanings to the same program;
instead, the proper distinction is between different methods of
specifying the same meanings. It would be better to talk of "giving
semantics operationally" or "giving semantics denotationally" rather
than "giving operational semantics" and "giving denotational semantics".

To specify the semantics of a language denotationally means
to specify a group of functions which assigh mathematical objects to the
programs and to parts of programs (modules) in such a way that the
semantics of a module depends only on the semantics (i.e. not on the
form) of the submodules. The approach is inherently modular, and indeed
"modular semantics" is a possible alternative name. For complex
languages the semantic objects assigned to modules may be required to
have very unusual properties, and Scott, Strachey and their followers
developed the theory of domains and domain equations to establish the
existence of such objects.

To specify the semantics of a language operationally means
to specify an abstract machine together with the machine behaviour
which results when a program is run on a machine. The meaning of the
program is not the behaviour itself; but the meaning (e.g. the input/
output relation) is specified in terms of the behaviour. Operational
methods are not necessarily modular.

The words "denotational" and "operational" are also used in a
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wider context, with the first referring to concepts related to
denotations of modules and static semantic objects in general, and the
second referring to concepts related to machines, behaviour and dynamic

considerations in general. The essential difference is that denotational

ideas refer to what a program or module is computing, whereas operational
concepts refer to how it is computed. One refers to ends, the other to
means.

It should be clear then that when we say that there is an
element of incompatibility between operational and denotational view-
points, we do not means that they are mutually exclusive. On the
contrary, the concepts are basically complementary; in general the
semantics of a programming language should be specified both operation-
ally and denotationally so that we know both what we want a program to
compute as well as how we can compute it.

When we say that there is an element of conflict between the
two points of view we mean to say that they are not completely
symmetrical, not simply mirror images of each other, and that things
favored by one are not necessarily favored by another. It seems to be
a general rule that programming language features and concepts which
are simple operationally tend to be complex denotationally, whereas
those which are simple denotationally are complex operationally - at
least if we are interested in operational concepts which are efficient.

One can give very many examples of this phenomenon. Goto
statements seem so simple and natural in terms of machines, but their
denotational descriptions require the elaborate methods of continuation
semantics. Dynamic binding uses a very simple single pairlist evaluation
technique, but its description [12] involves a complex “"knotted"

environment. Call by value uses a simple-minded evaluation algorithm,



11

but complicates the denotational notion of function involved. On the
other hand, we have already remarked that a truly functional language,

though mathematically simple, can require sophisticated, or at least

complicated, implementation techniques, such as closures and static
binding.

Given tﬁis situation we can see that language designers are
faced with an endless series of choices to make, decisions about whether
or not a feature will be mathematically simple or operationally simple,
é.g. whether to use recursively defined data types or pointer variables.
The tendency will be for the choices to be made consistently and thus
to design a language which is either mathematically or operationally
étraightforward. The first approach means designing a language based
on simple denotational concepts; we have already seen that this is the
denotationally prescriptive method. The second approach means designing
a language based on simple operational concepts; it should be clear by

now that this can only be the operationally prescriptive method. Most

conventional programming languages are designed this way.

This conclusion, that operational semantics is used pre-
scriptively, might at first seem somewhat surprising because our
criticism of denotational semantics, that it is used mainly descriptively,
certainly applies as well to operational systems like the Vienna
Definition Language [ 3]. These systems, however, are formal systems;
we have already seen that the denotationally prescriptive method can be
used informally, and the same is true of the operationally prescriptive
method. Indeed the vast majority of modern languages were in fact
designed using the informal operational method.

To design a language operationally means to begin with

operational (not denotational) concepts and then proceed to develop the
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language itself on this basis. It means designing first a (more or less)
abgtract machine together with some idea of the kinds of behaviours
allowed, and then formulating language features with which the desired
behaviour is to be specified. Denotational considerations can play

some role, but only insofar as they do not interfere with the general
approach; and usually denotationally motivated features are generalized
on an operational basis, so that, for example, pure functions become
functions with side effects and a variety of calling conventions.

The approach is usually implicit and the machine is specified
very informally, but occasionally the technique is more explicit and
formal. The language BCPL [23], for example, is specified or at least
implemented using a simple abstract machine with a stack, some registers
and a modest instruction set. The entire BCPL compiler (except for the
éode generator) is available in the abstract machine language, and
implementing BCPL on a new computer involves mainly implementing the
abstract machine.

We said that operational design begins with the design of an
abstract "machine", and the word is appropriate because this mathematical
machine is usually closely modelled after the conventional Von Neumann
architecture and is centred around some form of storage. Sometimes,
however, the machine has a very different structure - say with locations
or registers capable of holding strings of arbitrary length. Sometimes
the language is based not so much on a particular machine as on some
general concept or~model of computation; for example, interprocess
communication (EPL [181, csP [14]) or lazy evaluation (Friedman & Wise
[11]). These latter languages are nevertheless still examples of
operational prescription because the design is still based on dynamic

concepts, on notions of behaviour and on the change of state of some
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system. The operationally prescriptive approach is bottom-up in that
design starts with the machine and works upward.

The fact that convéntional languages are designed operationally
explains why their denotational semantics are so complex. It is often
assumed that programming languages are inherently complicated because
they are practical tools, but this is not the case. Their complexity,
or at least the complexity of their denotational semantics, is (in our
view) the sum total of a whole series of design decisions, the vast
majority of which are made at the expense of the denotational view. Of
course the fact that a particular kind of description is complicated
does not necessarily mean that a language is poorly designed; but
denotational semantics is, as we have indicated, modular semantics, and
the fact that the denotational semantics is difficult may simply reflect
the fact that the language is not very modular. The complexity of the
denotational semantics of languages with 'nasty' features (such as jumps
and side effects) is just another confirmation of the fact, already well
understood, that these nasty features destroy the modularity of a
language by enormously increasing the ways in which modules can inter-
act.

It is certainly true that the methods of Scott and Strachey
can give almost any language a semantics which is formally modular
(denotational); but no amount of description can change the real nature
of a language. The words "operational" and "denotational" are more
usefully applied to describe the nature of a language itself, rather
than the nature of its descriptions. The emphasis on denotational vs.
operational descriptions can be very misleading and can even give rise
to an almost mystical belief in the power of description; a belief that
the problems with a language can somehow be solved by finding a new

description, instead of by changing the language itself.
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Operationally based languages are still operationally based
no matter how they are described, and giving them a denotational seman-
tics does not make them any more denotational. Quite the contrary, the
nasty features are very resistant to any form of description, and their
inherently operational nature shows through very clearly even in their
Scott/Strachey semantics. In fact the attempts of this school to extend
their methods to "handle" such features has merely resulted in supposedly
denotational descriptions which are suspiciously operational. This
phenomenon, of the blurring of the distinction between the two descrip-
tion methods, has been noticed and clearly described by Anderson, Belz
and Blum [ 1 ]. 1In their words

"In early "low-level" programming languages, a pro-—
gram was directly related to a machine and, in particular, to
the memory (or store) of the machine. Both the addresses
(locations) and the contents of memory cells were objects of
computations. In higher level languages, this idea also
proved useful for various computational purposes; e.g. for
"assignment" of values to variables and for creating and
manipulating data structures. However, the idea is also
present in the meaning [our emphasis] of programs because
language designers sometimes include in their languages not
only the conventional types which the average applications
programmer wishes to use in his computations, but also types
which reflect the ways and means to implement the language.
Thus, in attempting to give a meaning to a program, we come
face to face with machine or computational types such as
locations (or "references", direct and indirect) and with
functions associating "identifiers" with locations (i.e.
"environments”) and functions associating locations with
their contents ("states").

Certainly Semanol [the authors' semantic systeml],
which is operational, must include such types in its concep-
tion of semantics. However, these types are fundamental to
the ODM [Oxford Definition Method, i.e. Scott/Strachey methodl,
and meanings in ODM turn out to be not purely functions from
input data types to output data types, but rather functions
from states to states or from environment-state pairs to
states ..... it has the consequence that ODM definitions have
an underlying machine-like aspect, abeit an abstract one,
since they refer to, or are understood in terms of, states
and state transitions. Indeed considerable attention is paid
to the store, updating it, allocating and deallocating loca-
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tions etc. These machine-like constructs are basic to the

ODM conception of semantics and they are used in all but the

very simplest ODM descriptions. The fact that in ODM a state

assumes a somewhat abstract shape, namely, as a function from

locations to values, may make it more mathematical, but it

does not in any way detract from its machine-like character.”
Examples of this phenomenon can be found in the denotational description
of almost any imperative language. Tennent [28], for example, gives
an expression which denotes the meaning of an assignment statement.
The expression involves the three variables ¢, ¢', and o". The first
is the state of the store before the assignment is executed, the second
the state of the store after the expression on the right of the assign-
ment is evaluated, and the third the state of the store after the
expression on the left is evaluated. The denotation of the assignment
statement is the function which yields (given 0) the fourth and final
state of the store.

It might seem at this point that we are contradicting what
was said earlier by arguing now that the denotational and operational
descriptions are essentially the same, but in fact there is no real
contradiction. The two points of view need not be equivalent because
the denotational view is potentially more abstract. In Scott's own
words [24]

"functions are independent of their means of computation

and are hence "simpler" than the explicitly generated, step-
by-step evolved sequences of operations on representations.
In giving precise definitions of operational semantics there
are always to be made more or less arbitrary choices of schemes
for cataloguing partial results and the links between phases
of the calculation ... and to a great extent these choices
are irrelevant for a true "understanding" of a program.
Denotational semantics can be simpler and more abstract because it refers

to the ends themselves, and not to complicated and arbitrary means

to these ends.
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This potential is not realized, however, when the method is
applied to describe operationally based languages. The denotational
semantics of a language is able to 'abstract out' operational consid-
erations only to the extent that these considerations are a means to
an end, e.g. the means to compute a function. The operationally based
languages with their nasty features give programmers more direct control
over the machine and allow them to bring about behavior which is not
necessarily a means to a simple end. The cataloquing of results and
the linking of computations become ends in themselves, and must therefore
appear in the semantic description (in the form, for example, of stores
and continuations). An assignment statement with side effects may be
used by a programmer in the course of computing a simple object but by
itselfbit is simply a complicated command which results in three changes;
in the state of a system.

This ‘operational' tendency in the Scott/Strachey approach
can already be seen in the original paper of Scott‘and Strachey where
the authors use their technidques to design a simple language. Unfor-
tunately, the language is imperative: it has assignment statements,
expressions and procedures (both with side effects), and commands and
locations as assignable values, The semantic equations for some of the
simpler features are given in full, but with the assignment statement
... the sequence of events is more complicated. 1In this paper we
shall not try to write the equation for [thé meaning of assignment]
but we can say in words more or less what happens”, What happens, of
course, is the usual complicated series of change of the state of the
store, depending on the values (commands, locations) involved.

Scott and Strachey have given an example of the prescriptive
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use of denotational techniques, but their language is nevertheless
operationally inspired. Their semantics is (or could be) formally
denotational but the approach is (has to be) operational in spirit -
the meaning of constructs such as assignment is specified in terms of
changes of "the internal states of our hypothetical machine". The
mathematical tools developed by Scott and Strachey, in particular the
theory of domain equations, are in essence being used to further the
operational approach. The authors in the paper under consideration use
a domain equation to specify (the domain of states of) an abstract
machine whose memory locations are capable of storing commands and pro-
cedures as well as labels and values.

The basically operational nature of Scott and Strachey's
example language is by no means accidental; rather it is a direct out-
come of the authors' belief, expressed clearly in the first part of
their paper, that programming languages are somehow, as a general rule,
inherently operational. In their words

"We begin by postulating that the interpretation

of the language depends on the states of "the system". That

is to say, computer-oriented languages differ from the

mathematical counterparts by virtue of their dynamic charac-

ter."
The evolution of the Scott/Strachey method has on the whole followed
the directions set by its founders. In extending the method to handle
more and more of the features of imperative languages the mathematical
techniques have been used, on the whole, to develop more and more
elaborate models of "the system" underlying these languages. It is
certainly true that the formal Scott/Strachey description of, say, Algol

60, can be considerably simpler than a conventional operational one; in

part this is because Algol does have a denotational element which can
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be abstracted; but mainly it is because the theory of domains permits

the specification of very abstract machines.

The 'Oxford method', when applied to imperative languages, is
sﬁperior to (say), the Vienna method only because the Oxford Definition
Language (our term) has a superior data type specification facility.
Qur objection is not to the theory of domains per se but to its use as
the basis of a very abstract theory of automata.

At this point it is necessary for us, having said so much about
the operational approach, to try to indicate more precisely what con-
stitutes a genuine denotationally prescriptive approach. This is not
easy ta do, for the simple reason that there is very little experience
to draw on - the overwhelming majority of programming languages were
(and are) designed on an operational basis. Nevertheless we feel that
our own work on Lucid [ 2, 3, 4] allows us to make some contribution.

With the denotational approach the design of the language
begins with the specification of the domains of semantic objects. The
obvious question is, which domains? We have already seen that some
domains are essentially machines, i.e. the elements of such domains
are the states of a machine. If we base our design on such a domain,
we will very probably find outselves taking the operational path. From
our limited experience, it seems that the best strategy is to choose
domains of simple conventional objects, e.g. numbers, sequences, sets
and functions. There are several simple domain-building equations that
are useful: for example, if A is a domain of interest and

L=A+LXxL
then L is the domain of LISP "s-expressions" buiit up with elements

of A as atoms (this is in fact McCarthy's original domain equation).

The work of many semanticists who concentrate on developing domains of new

semantic objects and their corresponding theories 1s relevant here.
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The language Lucid is based on a very simple domain consisting of
infinite sequences of elements of a base domain, and on the derived
function domains.

It should be emphasized very strongly that operational con-
siderations can play an important part in the denotationally prescriptive
approach. If a language is based on domains of lists, the designer can
reasonably expect that programs in the language may be implemented or
even understood in terms of pointer-linked structures. Operational
concepts can be valuable design and programming aids provided they are
kept in the proper perspective and do not come to dominate the thinking.
In the denotational approach it is the implementer who must play the
role of trusted advisor.

In the development of Lucid, our initial concern was with
capturing the idea of iteration in a mathematical way, and at first it
seemed very difficult because of the normal requirement that loops
terminate which seemed to imply that computation traces should be
finite., We finally realized that although only a finite amount of
activity is necessary to yileld the output of a finite computation, it
is much simpler mathematically to specify this output by extracting it
from infinite histories of notionally unending computations. This
puts more of a burden onto implementers, because the implementation has
to decide when and how to stop following these infinite computations.

On the other hand, because the semantics suggests but doesn't specify
the operational behaviour, it is possible to use other iterative methods,
such as data flow, or even methods which are not iterative at all.

The full Lucid language did not suddenly appear in its
completed form; Lucid developed over a period of time, as do all pro-

gramming languages. The two different approaches (descriptive and



20

prescriptive) are actually approaches to the development of languages.

As languages (and families of languages) develop, both aspects of
semantics (denotational and operational) must develop together; but the
question is, which aspect plays the leading role. The operationally

based languages develop by generalizing existing operational notions

and devising new ones (e.g. procedures, then procedures with elaborate
calling conventions, then coroutines and actors, and so on). Denotational
languages, on the other hand, develop by generalizing denotational

ideas, adding new functions, domains, domain operations, and so on.

With Lucid, for example, the next step was to develop the
mathematical side, in almost the simplest possible way, by considering
functions from histories to histories. Although it was never our
intention to develop a '"coroutine" language it emerged that modules
specifying such functions can be understood operationally as coroutines
with persistent memory; and whole programs can be understood‘as
producer/consumer (or dataflow) networks of such "actors" computing in
parallel. Furthermore, this operational interpretation can be used as
the basis of a distributed implementation. By contrast, the addition
of "parallism" and ''message passing' features to a conventional
operationally based language results in enormous complications and
makes a denotational description nearly impossible. For example, the
(aforementioned) colleagues working on the Ironman description wisely
declined to handle any of the language's parallel features.

One of the most important advantages of the denotational
approach is the fact that in general it produces languages with simple
inference and manipulation rules. Our discussion so far has beeﬁ almost
entirely in terms of operational and denotational semantics, and it

might seem that a third party, namely "axiomatic semantics', has been
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ignored. Verification considerations are of course extremely important
in design; fortunately, however, it seems that the axiomatic and
denotational requirements are essentially the same. We have seen that
the 'nasty' operationally motivated features complicate the denotational
semantics because they reduce the modularity in the language; the same
features. complicate the rules of inference, and for the same reason.

In a sense the goal of the denotationally prescriptive method
is to restore the proper relationship between theoretical and practical
matters in the field of language design. At present, the languages are
operationally based and their definitions more or less specify the means
of implementation. The real interest seems more in finding ways of
describing them, for which mathematical theoreticians devise elaborate
techniques. Theoretical computer scientists are to a large extent
outside observers. In the future, languages will (we hope) be designed
on denotational principles, and mathematics will be applied actively to
the problems of design and implementation. The denotational approach
paradoxically offers both implementers and semanticists more freedom.
Implementers will have more freedom because they will be free to
investigate a variety of genuinely different implementations. Semanti-
cists will no longer have to worry about describing strange constructs,
and will be free to investigate genuinely interesting domains.

The denotational approach may at last offer some hope of
solving what Reynolds [ 22] called "a serious unsolved problem'" in
language design, namely ''the simultaneous achievement of simplicity and
generality". It is possible that modern general purpose languages fail
to be simple because they are operationally designed. It seems that no

general language can be simple for the purpose of writing programs and
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and also have a simple implementation. Operationally designed languages
are by nature close to the machine and so place much of the burden of
efficiency on the shoulders of the programmer. As a result, designers
are forced to include a great number of extra features, constructs,
options and so én, in ofder to give the programmer the desired control
over the behaviour. As a result the languages (and programs) are any-
thing but simple. The situation may well be different with the
denotationally defined languages. To quote Dijkstra 9 1;

"the semantics no longer needs to capture thevpraperties of

mechanisms given in some other way, the postulated semantics

is to be regarded as the specifications that a proper

implementation should meet".
It is not impossible for such languages (e.g. Lucid) to be both general
and simple, because programmers are not required to specify behaviour.
For these languages it is the implementation which must bé complex, and
may involve sophisticated analysis and transformation techniques.
Fortunately these languages are mathematically so simple that these
techniques could possibly be very effective — complicated or sophisti-
cated implementations are not necessarily iﬁefficient.

In summary, our argument is as follows: at present, languages
are prescribed on the basis of simple operational conceéts and advanced
denotational techniques are developed to describe them. A far better
idea is that languages be prescribed on the basis of simple denotational
principles and that sophisticated operational techniques be developed
to describe, i.e. to implement, them. This is our prescription for

semantics.
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