FENGE BECASTHENT
ENGE BeranTueNT

JER &€

Mt
MPUTER

3 &

YA

L
II¥§
ITY

;

SITY OF WATERLOO COMPUTER SC

IVER
VER
VER

On The Relationship
Between The
LL(1) And LR(1) Grammars

John C. Beatty

CS-79-36

October 1979

ON THE RELATIONSHIP
BETWEEN THE LL(1) AND LR(1) GRAMMARS

John C. Beatty

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3Gl

ABSTRACT

It is shown that every p-reduced LL(1) grammar is LALR(1),
and as a corollary that every A-free LL(1) grammar is SLR(1). A
partial converse to this result is also demonstrated: if there is at
most one marked rule in the basis of every state set in the canonical
collection of sets of LR(k) items for a grammar G then G is LL(k).

ON THE RELATIONSHIP
BETWEEN THE LL(1) AND LR(1) GRAMMARS®

John C. Beatty

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

1. INTRODUCTION

The LL(1) and LALR(1) grammar classes are pre-eminent among the sub-
context free classes for the practicality and usefulness of their parsing algorithms.
Hence properties of these grammar classes, and especially their inter-relationships,
are of particular interest.

Kral and Demner [10] established that exactly one production appears in the
basis of any element of the canonical collection of LR(0) items for a A-free LL(1)
grammar. We show that this property of A-free LL(1) grammars can be extended
to any LL(1) grammar whose variables are all able to derive a non-null string (a
p-reduced grammar). It is then possible to show that every such grammar is
LALR(1). As an easy corollary we show that the A-free LL(1) grammars are all
SLR(1), a result which was stated but not proven by Hunt and Szymanski [9].
We also exhibit a pathological grammar which demonstrates how LL(1) grammars
containing variables which derive only A may fail to be LALR(1), although this is
not always the case.

Finally we make use of our knowledge about the size of the LALR(1) basis
sets for p-reduced LL(1) grammars to investigate the relative sizes of the LL(1)
parser for a p-reduced LL(1) grammar G and the LALR(1) parser for G.

2. DEFINITIONS

For the standard notation, definitions and theory of context-free and LR(k)
grammars the reader is referred to Harrison [6]. The remainder of this section
introduces less familiar material and notation which we will need subsequently. In
what follows let G = (V,Z,P,S) be a reduced cfg, let N=V -2, and let

=2z J AL

The size |G| of G is defined to be E lg(Aa). A variable of G is said to
A—>a€EP
be a null variable if it derives only the null word A; otherwise it derives at least
one non-null string and is said to be p-reduced. G is said to be p-reduced if all the
variables of G are p-reduced. The sets first(8) and follow,(8) are defined for any
g e V" as

* Research partly supported by the U.S. Department of Energy under Contract
No. W-7405-Eng-48 and by NSERC under grant A-3022.

2 JOHN C. BEATTY

first(8) = {w € =" |
lg(w) < k and 8=>" w or
lg(w) = k and B=>" wy for somey € =" }
follow(8) = {w € =" | for somea € V"
lg(w) < k and S =>" afw or
lg(w) = k and S =>" aBwy for somey € ="}
For a terminal string x we may write (X)x instead of firsty(x).
. AcfgG = (VZPS)is LL(k) iffl for any A € N; w, x, y € N8 B8, vE
V'; and any two derivations
S =>] wAy =>| why =>[wx
S =>[wAy => wi'y =>[wy
for which 9x = ®y we necessarily have 8 = §'. G is SLL(k) iff for any A € N;
w, W, X,y E =% 8,8, v, Y € V*: and any two derivations
S => wAy =>| wly =>1th
S =>] WAY =>| wB'Y =>[wy
for which ®)x = (k)y we necessarily have 8 = 8’. This is equivalent to requiring

for every variable A of G that

firsty (8 follow (A)) () firsty(8' follow(A)) = &

for every distinct pair of rules A = 8 and A = ' in P. [2]

Acfg G=(V,Z,P,S)is LR(k) for some k>0 iff S => g S is impossible

in G and for any w, w', x € > a, o, 8,8 v A, A’ € N; and derivations
S =>g aAw =>p aBw
S =>Rp dA'Xx =>g a'B'x = afw'

if Ww = ©w’ then (A—>B, | aB]) = (A=, | 8]).

For an algorithm which computes the set Vi(y) of valid LR(k) items (also
called state sets) for the viable prefix 4 of G, and for definitions of the canonical
collection Sy of sets of LR(k) items, of the function goto(s,X) where s is a state
set and X is a grammar symbol, and of LR(k) consistency, the reader is again
referred to Harrison. [6]

For an LR(k) state set s, the basis sy, of s is the set of LR(k) items in s in
which the dot is preceded by at least one symbol, while the closure s of s is the

set of items in s in which the dot is not preceded by a grammar symbol. These
definitions are equivalent to those used by DeRemer [4].

LL(1) AND LR(1) GRAMMARS 3

The core of a set s of LR(k) items is the set of dotted first components
(marked rules) of the items in that set. Thus the core of { (A—=>aB,u)} is
{(A=>ap)}

It will sometimes be convenient when discussing a set of items s to write
(A—a8,R), where R is the set of all the second components (lookaheads) of
items in s having the core A—=>a8. If R ={u;,..., uy} we will also write
(A—>af,uy /.../ up rather than (A=>a-@,{uy, ..., ugy).

For n > 1| and a8, € V* the sequence of items (Ag—=> a'A g, a9),
(A|—>‘A251,31), (AQ_"A352732) yooos (Ap—> 'An+lﬂn7an) in which
a; € firsty(B;—aj—1), for 0<ig n is a chain. It is a sequence of items which will
cause (A,—> A,+18n.2,) to be added to the closure of a set of items containing
(Ap—=>a-A 1By, 20). There is an obvious leftmost derivation
Ay =>1" Ap+18n- - - B corresponding to each such chain which involves no A-
rules, except perhaps the rule A, > A, +6,-

The LALR (k) state sets for a grammar G are formed by first computing
the LR(k) state sets and then merging together LR(k) state sets having identical
cores. G is said to be an LALR (k) grammar iff every such LALR(k) state set for
G is LR(k) consistent. A language is said to be LALR (k) iff it is generated by an
LALR(k) grammar.

A cfg grammar is said to be SLR (k) iff every LR(0) state set s for G has
the following property for A,BEN; a,8,8,€ V" g, & N: if
(A>a)Es, (B—>g-6,) Esand

followi(A) (1) firsty(8, follow(B)) # &

then (A—>a') = (B—=>8'8y). If this condition fails for some LR(0) state set s of
G then we say that s has an SLR (k) conflict, or is SLR (k) inconsistent. The
conflict is said to be an SLR (k) reduce /reduce or read /reduce conflict depending
on whether, for the two items in question, 8, is A or a terminal symbol. A
language is said to be SLR (k) iff it is generated by an SLR(k) grammar.

3. RESULTS.

We begin by verifying that LL(1) grammars containing A-rules may fail to
be SLR(1).

Theorem 1: The family of LL(1) grammars is incomparable with the family of
SLR(1) grammars.

Proof: The p-reduced grammar G given by
S = 1X | 2Ag
X — Af | Bg
A= 3 | A

4 JOHN C. BEATTY

B— 4 | A
is SLL(1) since

first)(1X follow(S))= {1}
first|(2Ag follow(S)) = {2}
first;(Af follow(X))= {3,f}
first;(Bg follow(X))= {4,g}
first;(3 follow;(A))=1{3}
first;(A follow(A))= {f,g}
first;(4 follow((B))= {4}
first;(A follow(B))= 1{g}

and is therefore LL(1) since every SLL(1) grammar is LL(1) [1].
The canonical collection of sets of LR(0) items for this grammar contains the state
set

(S—=1-X)
(X—>Af)
(X—Bg)
Vo(l) = { (A>3
(A=)
(B—>-4)
(B>

which contains the items (A—-) and (B—). Since the follow sets for A and B
are {f. g} and {g}, respectively, this state set violates the SLR(1) definition so that

the prammar is not SLR(1).
On the other hand, the grammar G given by
S—=+S8Sa| a
i trvially SLR(1), but not LL(1) since it is left recursive, which can never be the
case for an L1(k) grammar [11]. Q.E.D.

Ihe corresponding language question is well-known, in that every LL(1)
Lopagee s TR [1,2], and every LR(1) language (in fact every LR(k) language)

LL(1) AND LR(1) GRAMMARS 5

can be generated by an SLR(1) grammar [2,5]. Since there are LR(k) languages
which cannot be generated by any LL(k) grammar [11], it follows that the LL(1)
languages are a proper subset of the SLR(1) languages.

However, we will be able to show that if an LL(1) grammar is A-free then in
fact it is SLR(1) as well, and also that p-reduced grammars such as the grammar
presented in Theorem 1 are necessarily LALR(1). We obtain these results by
examining the structure of the canonical sets of items for an LL(1) grammar. The
next lemma, in which we generalize a result due to Kral and Demner [10], is the
key to these results. In understanding this lemma it may help to observe that we
could assume | core(sp)| = 1 rather than |core(sy)| <1 were it not for Vy(A),
whose basis set is by convention empty and is therefore of size 0.

Lemma 2. Let G = (V,Z,P,S) be a reduced LL(1) grammar. Let s be an
element of S, the canonical collection of sets of LR(1) items for G. If
| core(sp)| <1 and s’ = goto(s,X) # & for some p-reduced symbol X in V then
| core(sp’)| = 1. '

Proof: Suppose that | core(sy’)| >1. In particular, s,y must contain at least two
items with distinct cores, which we represent by
1A' = (Ao Xas,Ry) € sy
Ig' = (B>B,X-82,Rp) € sy’
for some ay, az, 81, 82 € V*. 1t follows that s must contain items of the form
Io = (A= o Xaz,Rp) E s
Ig = (B>B1XB2Rp) € s

from which I' and Ig' are obtained.
Claim A: I, and I both belong to the closure s, of s.

Proof of Claim A: Suppose, for the sake of a contradiction, that the claim is not
true. Assume first that X € Z. Since | core(sp)] < 1, one of 15 and Iy must
belong to s.. But this is impossible, for then in the only item belonging to sy the
dot precedes a terminal, so that s, must be empty.

Therefore assume that X € N. Again, since |core(sp| < 1, at least one of
I and I must belong to s.. Without loss of generality suppose that I € sy, and
Ig € s.. Then I and Ig have the form

In = (A=>a;-Xaz,Rp)
Ig = (B—=>-X82,Rp)
and for some m > 0, y; € V', u; € 2, there exists a chain of items

Jo = A —=oaXy ,up)

6 JOHN C. BEATTY

Ji =X = Cv ,uyp)
L = = Cm ,up)
Jn-1= (Cun-2 = Bym-1 ,Up-1)
Jm =B = XB8 ,uy)
to which there corresponds the derivation X =>% X8sy,_; - - - ;. But this is

impossible since G is LL(1) and therefore not left-recursive. O

Thus 15 and Ig both belong to s, and must have the form

IA = (A»'Xa%RA)

Ig = (B> -XB,Rp)
We will now select arbitrary elements of I and Ig and consider the chains
A and B whereby they are added to s. The items which begin 4 and B must have
the same core, since | core(s)| < 1; however, we shall see that eventually the

chains diverge, in that their respective cores differ, and the corresponding leftmost
derivations will violate the LL(1) definition.

Let the basis of s be the set of items [= (Y—=>0Cvg,Ry), and let
[, = (A=>Xaya) € 5 = (A>XaRp)
Iy = (B>-XBy,b) € Iy = (B>-XB,,Rp)

I, and Iy, are arbitrary elements of 15 and Ig. Then for v;,8; € V' u;,v; € Z,;
C;,D; € N, there must exist items

(Y=o Ciyp,up €1 = s

(Y=o Cyyp,vo) €1 = sy

and chains
Ag = (Y=>oCivo ,u9)
A, = C=> Cm o)
A; = (G~ Cyyz ,uz)

Amn-1= Con-1 > CaYm-1>Um-1) = (Cpn—1 > "AYm—-1,Um-1)
= Coun—=> Chut+1Ym > Um) = (A= Xay ,a)

N
=]
[

and
By =(Y—=>aDis ,v)=(Y—=>aCivo ,Vvo)
By =(Di= Dyi ,v1)

LL(1) AND LR(1) GRAMMARS 7
By =(Dy—=>:D3s ,v2)

By 1=(Dy—1 = Dpdy—1 »Vn—1) =(Dy—1 = Bép—1 , Vp-1)
B, =(Dy = Dyyi6y ,vn) =(B =+ X8, ,b)

of items, where m, n > 1 by virtue of Claim A, C; =D and yo= d,

Claim B: The 4 and B chains must diverge. That is, there exists an index / such
that

(1) 0 </ < min(m,n)
(2) core(A;) = core(B) ,0<i !
(3) core(A;41) # core(B;+1)

Proof of Claim B: Suppose not. Since core(A4) = core(Bg) there exists an index
which is < min(m,n) that satisfies (2). We must show that the largest such index
is < min(m,n). This follows immediately if m=n, since 15 and I are distinct.
Suppose, without loss of generality, that / = m < n and that

core(A4;) = core(B;),0i<m

Let r = n—m. Then corresponding to chain A4, and its continuation to form chain
B, is the derivation

Y =>" o XYmYm—1 - Y0 = 0Xdmbm—1 - o= oXapm-1 - do
=>r0'X5n e 50= GXﬂzén_] e 50
which contains the left recursion X =>f X856,-1 -+ 8p+1. Since G is LL(1)

this cannot happen, and a satisfactory index / must exist. O

Next let u € L(g). As a consequence of Claim B we know that corresponding to
chains A4 and B are the leftmost derivations

Y =>{ uCj4i7
=>r uCiyyi417
=>1 uXarYm-1 " V417
and
Y=> uCjy7
=>L uDy42b 417
=> uXBodn_1 - 8417

8 JOHN C. BEATTY

where C; 4277+ # Dyy2d/41and 7=y - -+ yo =4 -+ o

Since X is a p-reduced symbol either X = a € T or X € N and there exists a
terminal a and string v € 2" such that X=>[av. Then we have derivations

Y =>£ UC[+1T
=>r uCrp2vi+17
*
=>L uavayym—1- - YI+IT
Y=>] uCjyi7
=>p uD;420 417
=>[uavBdy_y - 04T

where C;41>Cr427/+1 # Cr41> Dy 4206/41. Thus

first; (Cy427s+1 follow| (Cy +1)) () first (D} 428,41 follow| (C;41) # &

contradicting the fact that G is LL(1).

Therefore we cannot have two such distinct items I4 and Ig in s. Consequently
| core(sp’)| = 1, as desired. Q.E.D.

We then immediately apply this lemma in the obvious way to obtain the
following essential fact.

Lemma 3: Let G = (V,Z,P,S) be a p-reduced LL(1) grammar and let s€ S,
be an LR(1) state set for G. Then | core (sp)| < 1.

Proof: Every such set s is V,(y) for some ¥ € V*. The lemma is clearly true for
Vi(A), whose basis set is empty. A trivial induction, making use of Lemma 2,
then suffices. Q.E.D.

Since the proof of Lemma 2 did not actually make use of the lookahead, we
have also the following result.

Corollary 4: Let G = (V,Z,P,S) be a p-reduced LL(1) grammar and let s € S
be an LR(0) state set for G. Then | core(sp)| < 1.

It is easy to prove directly from the LL(1) definition that a A-free LL(1)
grammar G generates a prefix-free language. From [7, Thm. 3.5] it follows that
such a language is strict deterministic, and therefore LR(0) [8, Thm. 4.1].
However, using the above corollary we can prove the following somewhat stronger
result.

LL(1) AND LR(1) GRAMMARS 9

Theorem 5: Let G = (V,2,P,S) be a A-free LL(1) grammar. Then G is LR(0).

Proof: Suppose that G were not LR(0). Then there is some LR(0) state s for G

which is inconsistent. The inconsistency must involve a reduction.

If the reduce item in question is in sy then we know from corollary 4 that it
constitutes the entire basis. The closure of s must then be empty, so that there is
no other item in s with which the reduce item might conflict.

But the reduce item cannot belong to the closure of s, for such an item must have
a A-rule as its core, and G is A-free.

Therefore s cannot be inconsistent and the theorem is established. Q.E.D.

Parenthetically we note that it is not the case that every A-free LL(1)
grammar is strict deterministic [7]. For example, it is easy to see that the
grammar

S > A
A —>Bly

B —-x

is LL(1) but not strict deterministic.

We are now ready to establish the conditions under which an LL(1)
grammar is LALR(1). Our proof of the following theorem makes essential use of
the fact that every LL(1) grammar is LR(1). For a good proof of this fact see [3].

Theorem 6: Let G = (V,2,P,S) be a p-reduced LL(1) grammar. Then G is
LALR(1).

Proof: We know that G must be LR(1). Suppose, however, that G fails to be
LALR(1). Then there exists an LALR(1) state set s, formed by the merger of
LR(1) state sets ¢y, . . . ,¢p (h > 2), which contains a conflict.

It follows from Lemma 3 that | core(sp)] < 1. The conflict may be either (I) a
read/reduce conflict or (II) a reduce/reduce conflict.

(I) Suppose that s has a read/reduce conflict. Then s contains two distinct s-items
I, = (A—>0caab)
Ip = (B—>f,a)
for some a € T and b € Z,. Since | core(sy)| < 1, at least one of these items
must belong to s.. However, if sy, contains either I, or Ip, then it consists exactly

of that item, and the closure must be empty, which is not the case. Hence both
items belong to s.. This implies that 8 = A, so that we have

I, = (A>caab)

10 JOHN C. BEATTY

Ig = (B—>-a)

By definition every ¢; for 1<igh, contains an item of the form
I, = (A>g-aa, - - -), albeit with distinct lookahead sets. Ig = (B—-,a) must
belong to at least one ¢;, say t,. But then ¢, contains both 1, and I, so that the
LR(1) state set 7, has a conflict. But this is impossible since G is LR(1).
Therefore s has no read/reduce conflicts.)

(IT) Suppose that s has a reduce/reduce conflict. Since |core(sy)| < 1, if the
basis of s contains any reduce item, then the closure of s is empty and s consists of
exactly one item, which is not the case. Therefore the reduce items which are in
conflict must both belong to the closure of s. Hence we may represent them by

Ipo = (A= Ra)
Ig = (B—>+,Rp)
Since these items are in conflict, there is some c& X, such that
¢ € Ry and c € Rg. We will be concerned henceforth with the items
L=A—=>-,0
Iy=B—=>"-,0

Every LR(1) state set ¢; contains an item with core A = - and an item with core
B — -. At least one state set 7 o contains the item (A — -, c), and at least one
state set tg contains the item (B — -, c). Furthermore, 5 and tg must be
distinct LR(1) state sets — if they were not we would have an LR(1) state set for
G which contained a conflict, which is impossible. Let

{(C—=> o X7 ,uy/...[u) }

be the basis of 7 5 and let
{(C—=> o Xr,vi/.../vs) }
be the basis of tg. For 7 = ag = g let
ba=(C—=> aXag,u;)
Ay =(X—=> Ay, ay)
Ay =(A1—~> Ay, ay)

Apm=(An-1—~> Aoy, ay)
IL,=(A—> -,¢c)
be a chain of m+2 items (m > 0) leading from the basis of ¢ 5 to I, and let
bp= (C—=>0aXBo,V;)
B= (X—=> ‘BB, by)

LL(1) AND LR(1) GRAMMARS 11
By= (B;—=> By, by)

B,= (B,_1=>BB,,by)
Ip= (B=> -,c¢)

be a chain of n+2 items (n > 0) leading from the basis-of ¢ to Iy, Consider the
A chain. Either c=u; for some i (1€i<r) and ap - - apg=> A, or
c € firsty(ay - - ag).

In the latter case there must exist an [/, 1g/<<m, such that
¢ € first)(ay) and @, - - - @y 4;=>"A. But then it follows from the algorithm for
computing the closure of ¢ that the chain

bp = (C—=>oXap,Vv;)
(X=> Ay, a)
(A= Ay, ay)

(Aj—1=> Ay, a;)

(A= Ajyia141,¢)

(‘A‘m—l_> 'Aam,c)
Ia=(A—’ ‘,C)

will place I, in ¢, which is not the case. Therefore ¢ =u; for some i in the range
I<i<rand ay - - -a0=>* A.

An entirely symmetric argument ensures that c=v; for some j in the range
1<j<s and By - - Bog=>" A.
But then the chain

bg=(C—=>oXapy,c)

A =(X—> Ay, c)

Ay = (A= Ay, c)

Am =(Ap-1~> ‘Aay,¢)
Ia=(A_’ .’C)

must place I, in tg, so that tg contains both I, and I, and is consequently
inconsistent. But G is LL(1), hence LR(1), and ¢ g is an LR(1) state set for G, so
that tg must be consistent. It follows that s must be consistent.

12 JOHN C. BEATTY

Hence G is LALR(1). Q.E.D.

The obvious question to ask next is whether an LL(1) grammar which fails to be
p-reduced must also fail to be LALR(1). The answer is trivial — the LL(1)
grammar having rules S —= Axand A = A is not p-reduced, although it is
LALR(1) and its basis sets all have size at most one.

Furthermore, the LL(1) grammar given by the rules S = Ax | Ay and
A—> A is also LALR(1) even though it has an LALR(l) state set
{(S=>Ax,A),(S=>A-y,A)} whose basis set is comprised of two items. This
state set is, of course, accessed by a null variable, and it also follows implicitly
from previous arguments that an LL(1) grammar which fails to be LALR(1) must
contain a null variable and have a state set the core of whose basis has size at least
2. We next demonstrate that such a grammar exists.

Theorem 7: The LL(1) grammar
S = aF | bG
F—> Xc | Yd
G - Xd | Yc
X = IA
A= A
I - A
Y — IB
B —> A
is not LALR(1).

Proof: It is easy to verify that this grammar is SLL(1) and therefore LL(1). On
the other hand, if we compute the canonical collection of sets of LR(1) items for
this grammar, we obtain the two sets

(X—=>1-A.0) (X=1-A,d)
(Y—I-B,d) (Y=1-B,c)
ViaD = | (oo) and VibD) = (x5)
(B>-d) (B—.c)

which have the same core and are therefore merged to form the LALR(1) state set

(X-I-Ac/d)
(Y-I-B,c/d)
(A—>-,c/d)
(B—>-,c/d)

LL(1) AND LR(1) GRAMMARS 13

which contains a reduce/reduce conflict. Q.E.D.

We may also enquire as to the reverse direction, namely whether every
LALR(1) grammar whose basis sets have a core of size at most one is necesarily
LL(1), and indeed this is true for all but an easily characterized set of LALR
grammars. In fact we can establish this property for the LR(k) grammars in
general. This is not really a surprising result, for if | core(sy)| < 1 for every
LR(k) state set s of a grammar then an LR(k) parser “knows” which rule it will
eventually parse at the time it begins reading the right hand side of the rule, and
in an intuitive sense this is the property which distinguishes the LL(1) grammars.

Theorem 8: Let G = (V,Z,P,S) be a reduced LR(k) grammar such that for every
LR(k) state set s of G | core(sy)| < 1, and in which A-free derivations of the
form S=>[" Sy are impossible for every vy € V*. Then G is LL(k).

Proof: Let G = (V,2,P,S) be a grammar satisfying the hypothesis but suppose the
theorem to be false. Then it follows easily from the definition of an LL(k)
grammar [2] that there exist two derivations

S =>P wBb => wy;d =>[wx 1)
S =>PwB8s =>] wy =>[wy 3]

such that ®x = (k)y but y; # v,, for some w,x,y € =" Y1, Y2, 0 € vV, BEN:
n> 0. Let A— SB§ be the rule used in (1) and (2) to deposit the explicitly
shown B in wBd, for some A€ NandpB, é € V*. For some
w', w' € 2" and §” € V" we may write

S =>E w' A"’ =>_ w'BB&§'S" =>|t ww''Bs's" = wBb

where w = w'w" and &6 = 89", Then there exists [21 an
a € V" and X1, X2, X3, ¥, ¥2, ¥3 € =" such that

S =>g aAx3 =>R aBBé'x3 => g afBxx;3 =>R afy XX3
=>f{ afxxx3 = affx =>ﬁwx

S=>pg aAy3 =>g afBd'y3 =>Rr afBysy3 =>g aByyy3
=>g aByiyy3 = afy =>g wy

where a =>"w, B=> y1=>"x;, B=>17, =>*y1, 8 =>"xy 8 =>"y,
8" => x3, and & =>"y3. By definition the LR(k) items

I, = (A= BBd , ®x3)
I, = (A= BBy, My;)
I3 = (B— -y1, ®(xx3))
Iy = (B~ v, yay3))

are all valid for the viable prefix aB, and therefore belong to the set of items

14 JOHN C. BEATTY

Vi (af). There are two cases:

(I) 8 # A, in which case the core of the basis of Vi(af) is exactly A—3-Bé'.
Because B =>+y;=>"x; and B=>y,;=>"y, there exist chains
ILi,I3=1Jo,J1,...,Jpn and I5,14=Kp,K,..., K, from I3 and I4 which
terminate either in a reduce item whose core is a A-rule and whose lookahead is
®K)x = Ky or in a shift item whose lookahead component is again ®x = Ky,
Let us represent these chains in the following way.

(A—>B-Bs’, x3) (A= BBy, Kyy)
(B—>-vy, W(xx3)) = (B=>-v3, ®yay3) =

Jo = (Ug=>-Upp,uy) Ko = (Vo= -Vir1,v1)

Ji = (U= -Upmy,uy) Ky =(Vi=-Vu,,vy)

Jon = (Up=>-apnyg.Umsr) Kp= (Vo= brps1,vpt1)

where a,bE X,; if a=A then pupy)=A; if b=A then w41 = A; for
0i<mu eV, y,eZ, UyEN; for0<ign vie V', v;e 2", V;EN;
Ox = firsty(apms (Um+1) = Arst(bvpevarr) = ®y. From this last fact it
follows that if a# A # b then a=b.

Claim: Core(J,—;) = core(K,—;), 0 € i € min(m,n).

Proof of Claim: The proof is by induction on i.

Basis. Consider the case in which i=0. If au,4+| = bry4+; = A then we must have
Up = = V,—> -, as otherwise Vi{af) has a reduce-reduce conflict. Similarly, if
a€ X and bvyy; = A or b € Z and app+y = A then Vi(aB) has a shift-reduce
conflict, so this cannot happen. Finally if'a # A # b, then a = b and we must
have Uy = -app4+1 = Vo= -bryy since otherwise the core of the basis of
Vi (aBa) would contain two distinct items, which is prohibited by assumption.

Induction Step: If J,_;=K,—i for 0 €1 < min(m,n) then in particular
Um—i = Vu—i. It then follows that core (J,,—j—1) = core (K —ij—1), since otherwise
Vi (@BU,—;) would contain two distinct items (Uy—i—; = ‘Up—igm—i,Um—i) and

(Viu-i-1=? Upn-wn—inva-y). O

Without loss of generality we may assume that m < n. Furthermore we may not
have m = n, for in that case the claim requires that we have ¥ = <5, which is not
the case. If, on the other hand, we have m < n, then for j = n—m we have
Iy=Jg= (Vj—>'Vj+1Vj+1 ,Vj.H). It follows that (Vj..]"'VjVj,V‘) may be written
(Vj—1—>Bwj,v;), whose core clearly differs from (A—>@3-Bd', (k{y3) since 8 # A.
But then the core of the basis of Vi(a8B) is too large. Thus it is not possible to
have 8 # A.

(II) 8 = A. Then for some rule X—=> Y7, where ¢,7 € V' and Y € N, the basis
of Vi {aB) = Vi (a) consists entirely of items having the core X—=¢ Y7 and there

LL(1) AND LR(1) GRAMMARS 15

exist chains

Jo =(X—=>a¥Y7,up) Ko =(X—=>0Yr,vg)
Ji1 =(Y=>Up,uy) Ki =(Y=>-Vu,v))
Jp = (Up=> Upyippt1,up+1) Kqg = (Vq=>:Vg+1vg+1,Vg+1)
= (A—>-By ,x3) = 1 =(A-> By, Wy =1,
Jo+1 = (Ups1=> -Upsopps2,up+2) Kg+1= (Vge 1> Vaswq+2,Vq+2)
= (B=>-v1 ,®xx3)) = (B> v, , Mywy)
Jn = (Un=-apum+1,Um+1) Ky = (Va=> brgt1, Voer)
where p, q > 0; 2 be€ Zy; if a= A then u41 = A; if b= A then vy = A
weEV, e U,EN for 0igm »EV, V;eZ V,EN for
0<ign ®x = firstg(@pmeUmet) = firstg(brgsevoser) = ®y. Again it

follows that if a # A # b then a = b. Note that it is possible to have p = 0
and/or q = 0, with ¢ = A. This is the case in which Vi(a) = Vi (A), and it will
require special attention.

As in (I) we can establish that core(J;,—;) = core (K —;), 0 € i € min(m,n). Let
p’ = m—p and q = n—q, and suppose that p =q'. Then
core (Jp+1) = core(Ky41) which requires that y; = ;. Since we have assumed
this not to be the case we must have p’ # q'. Without loss of generality we may
assume that p' < q. Then in the K chain we have the items
Ky = (A=> B ,vp41) and K = (A—>-Bd’,vg41), so that at least one core is
repeated in the K chain. Let K; be the first item in the chain containing a core
which is repeated and let K; be the first item in which this core is repeated. (This
represents the first instance of a left recursion in the k-chain). There are 3
subcases.

(a) i = 0. Then we must have ¢ = A and consequently & = A (since otherwise K
must be in the closure of Vi(as)), so that Vi(aB) = Vk(‘A) Then V;=V;=8§
and core(K;—1) = Vj—;—>Syj, so that for some v € V' there exists a A free
derivation S =>{" Sy. Since this is prohibited by assumption, this case cannot
occur.

(b) i = 1. Then Ki_; = Kg = (X—=>0'V7r,vg) and Kj—l = (Vj—l_"vll'j’vj)
have distinct cores, whence the basis of the core of Vi (afV) has size at least
two, which is prohibited.

(¢) i > 1. Then K;—; = (V1= -Vp;,v;) and Kj—1 = (Vj=1=>-Vpj,v)) have
distinct cores and again the basis of the core of Vi (aBV;) has size at least two,

16 JOHN C. BEATTY

which is prohibited.

It follows, then, that two such distinct derivations as (1) and (2) cannot exist, so
that G is LL(k), as desird. Q.E.D.

It is necessary in Theorem 8 to assume that S =>[" Sy is impossible, as is
evident from the trivial grammar LR(0) grammar S = Sa | a, which otherwise
satisfies the hypothesis of Theorem 8 but fails to be LL since it is left recursive.

We might next logically enquire whether our results for the LL{1) grammars
can be extended to larger values of k. Unfortunately that is not possible. For k
> 1 the relationship between LL(k) and LALR(k) grammars (and by implication
between the LL(k) and SLR(k) grammars, since every SLR(k) grammar is
LALR(k)) is fixed by the following result:

Theorem 9: The following A-free LL(k) grammar is not LALR(k) for any k > 2.

S = aF | bG
F - Xc | Yd
G —> Xd | Ye
X => w
Y > w

Proof: It is not hard to verify that the above grammar is SLL(k) and therefore
LL(k) for any k > 2. However, if we compute the LR(k) state sets for this
grammar we obtain (among others) the sets

(X—=>w-,¢) X=>w-,d)
Vi (aw) = {(Y»w- , d)} Vi (bw) = {(Y—’W‘ ,€) }

Since these sets have the same core they are merged to form the LALR(1) state
set { (X—=>w-,c/d),(Y=>w-,c/d) }, which is inconsistent. Q.E.D.

We can use Lemma 3 and Theorem 6 to investigate the relative sizes of
LL(1) and LALR(1) parsers for a p-reduced LL(l) grammar, much as Kral and
Demner did [10]. For a cfg G let us denote by rg the sum of the lengths of the
right hand sides of the rules of G.

Theorem 10: Let G = (V,2,P,S) be a p-reduced LL(1) grammar. Then the
number of LALR(1) state sets for G is (1+rg).

Proof: Let A—>aXB be an arbitrary non-A-rule of G, where «, 8 € V' and
X € V. Since G is reduced there exists a derivation S =>gsAw =>g caXgw for

LL(1) AND LR(1) GRAMMARS 17

some ¢ € V' and w € 2. Then the LR(]) state set s = V| (eaX) must contain
an item (A—aX-8,R) for some lookahead set R, since this item is valid for caX.
Since X # A,(A—aX-3,R) is an element of the basis of s. Since every LALR(1)
state set has exactly one item in its basis, this means that there are at least rg
LALR(!) state sets which are accessed by a non-null symbol. There is exactly one
LALR(1) state set which is not accessed by some non-null symbol X, namely
Vi (A), so that there are a total of at least (1+rg) state sets.

By definition there cannot be two LALR(1) state sets whose basis sets have
the same core. Hence there are exactly (1+rg) LALR(1) state sets. Q.E.D.

Corollary 11: Let G = (V,Z,P,S) be a A-free LL(l) grammar. Then the
number of LR(0) state sets for G is (1+1g).

We can now use Theorem 10 to compare the amount of data required for
the standard representation of the LL(1) parser for an LL(1) grammar (see [1], for
example) with the amount of data required for the standard representation of the
LALR(1) parser for the same LL(1) grammar.

The primary data structure for an LL(1) parser [1] consists of an expansion
function M(A,a) which, for A € N and 1-lookahead a € Z,, yields the index of
the rule for A which should be used to obtain the next left sentential form. The
expansion function thus potentially requires O(| N| | 24|) = O(| G| ?) space
(assuming that |N| and | Z| are linearly proportional to |G]). Other information
required for an LL(1) parser, such as the rules themelves, requires at most O(| G})
space.

For an LALR(1) parser the storage needed is also O(G|), except for the
tabulation of the parsing action and goto functions® for each state, which can
increase non-linearly with the size of the grammar (even though the number of
states increases linearly, as we shall see).

Suppose that this data is stored in arrays and accessed by indexed lookup.
Then the expanion function for- a grammar would be stored in an array of
dimension (N|,| 24|), so that an LL(1) parser would require O(| G| ?) storage.
The LALR(1) parser would require O(| T'| -| V|) space for the goto functions and
O(| T| -| Z4]) space for the parsing action functions, where T is the collection of
LALR(1) parsing tables for G, and |T| is equal to thc number of LALR(1) state
sets for the grammar.

In2 view of Theorem 10, the storage required for both kinds of parsers is thus
O(| G| 9).

+ The parsing action function f(T,a) yields one of the actions shift, reduce and er-
ror as a function of the table (state set) T and lookahead a € Z,. The goto or
transition function g(T,X) yields the next table (state set) or error as a function of
the current table and the grammar symbol X € V. See [1] for details.

18 JOHN C. BEATTY

If we assume that the expansion, goto and parsing action functions are
stored as lists, so as to squeeze out the error entries, then the story is somewhat
different. Even though we know the exact number of LALR(1) state sets for a p-
reduced LI(1) grammar, we can show that there are LL(1) grammars for which
the LL(1) parser will be substantially smaller than the LALR(1) parser for the
same grammar (in that fewer pieces of data will be required), and vice —versa.

Consider the family of grammars
S = A
A = A,
A, = Aj

An—l_"An
Ag > 1] 2]3] -~ |n

A particular grammar from this family has size 4n. There are (n+1) variables,
and the expansion function for each such variable A; (let Ag = S) has n pairs
(a,p), where a € {1,...,n} and p is the rule A7>A;;,ifi <nand A;7>a ifi = n,
so that the total list storage required for the LL(1) parser is O(| G| 9. The
LALR(1) state sets for any member of this family look like

2n transitions
n lookahead strings
{(S—= A, M)}
S—=-A1.,7A) no transitions
(A1 = A2, A)

n lookahead strings

{ (Aﬂ“l - An' ’ A) }

(An—2 = ‘A1, A)

(An—l _"AH,A) ‘(‘Al—> l" A)}
(An -] s A) { (A2 - 2. \ A) } no transitions

. R n lookahead strings
(Ap = 1, A) {(Ap—=>n-, 4))

There are a total of 2n non-error goto‘s and n non-error lookahead strings (action
entries), in the initial table (associated with the state set on the left above). The
other tables contribute no non-error transitions and 2n non-error lookahead
strings, so that the total storage required for the LALR(1) parser is O(G|), while
the LL(1) parser required O(| G| 2) space.

Consider, on the other hand, the family of grammars given by
S = AlA|- - AA (n occurences of Aj)
Al = A

LL(1) AND LR(1) GRAMMARS 19

A2—>A3

An—l_’ An
A, = 1

A particular grammar in this family has size 3n+1. The expansion function for
each variable A; (again let Ay = S) of any grammar in this family consists of the
single element (1,p;), where p; is the unique rule for A;, so that the total storage
required by an LL(1) parser for such a grammar is O(G|). However, the
LALR(1) state sets for a grammar in this family are of the form

S = A A, A) S —=>A - A,A)
(A= Ay, 1) (A; =>-Ay, M)

9 = Tt Spop = .. :
Ay —-1,1) (Ay =1, 47)

s = (A= Ay, 1/A)) co sy -1 = (A= 1, 1/A))

son = {(S=A - - - A,A))

There are a total of n(n+1) non-error goto‘s and 3n+1 non-error lookahead
strings, so that the total list storage required for the LALR(1) parser is O(| G| 2),
while the LL(1) parser required only O(| G|) space.

ACKNOWLEDGEMENTS

The author is grateful for the suggestions of Professors M. A. Harrison and
K. S. Booth, and for S. G. McCaulay‘s assistance in typesetting.

REFERENCES

[11 A. V. Aho and J. D. Ullman, The Theory of Parsing, Translating, and
Compiling, Vols. 1 and Il (Prentice-Hall 1972 and 1973).

[2] J. C. Beatty, Iteration Theorems for the LL(k) Languages, Ph.D. Thesis,
University of California, Berkeley, California (1977). Available as UCRL -
52379 from the Technical Information Department, Lawrence Livermore
Laboratory, Livermore, California.

20

(3]

4]

[5]
(6]

(7]

18]

%]

(10]

(11]

JOHN C. BEATTY

J. C. Beatty, Two Iteration Theorems for the LL(k) languages, to appear in
Theoretical Computer Science.

F. L. DeRemer, Simple LR(k) grammars, CACM 14:7 pp. 453-460 (July
1971).

M. M. Geller, unpublished notes.

M. A. Harrison, Introduction to Formal Language Theory (Addison-Wesley
1978).

M. A. Harrison and I. M. Havel, Strict deterministic grammars, JCSS 7:3
pp. 237-277 (June 1973).

M. A. Harrison and I. M. Havel, On the parsing of strict deterministic
grammars, JACM 21:4 pp. 525-548 (October 1974).

H. B. Hunt and T. G. Szymanski, Corregendum to lower bounds and
reduction between grammar problems, JACM 25:4 pp. 687-688 (October
1978).

J. Kral and J. Demner, A note on the number of states of the DeRemer
recognizer, Institute for Computation Techniques of the Czech Technical
University, Praha 2, Horska 3, Czechoslovakia (May 1972).

D. J. Rosenkrantz and R. E. Stearns, Properties of deterministic top-down
grammars, Information and Control 17:3 pp. 226-256.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

