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Abstract

A companion paper, "Redundancy in Data Structures:
Improving Software Fault Tolerance", provides an informal
introduction to robust data structures. Here, we present
the underlying theory for them, and use it to discuss the

synthesis and cost effectiveness of robust data structures.
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1. INTRODUCTION

In Part I of this two-part paper, we gave an informal
introduction to data structure robustness. This included
basic definitions, terminology, assumptions, examples of
robust data structures and their practical‘implementation,
as well as some empirical results. The purpose of this
second part is to give a more precise treatment of the
subject of robust storage structures, including more general
results which were very loosely argued in Part I.

We recall some of our assumptions from Part I. A
storage structure consists of a header and a (possibly
empty) set of nodes. We are concerned with changes to
structural data in the form of pointers, counts, and
identifier fields. The valid state hypothesis assumes that
there are no external pointers into an instance, and that
there are no identifier fields with values appropriate to a
particular instance outside of the instance. Finally, we
exclude all detection or correction procedures which make
use of exhaustive memory searches: we restrict them to
following sequences of pointers from the header of an
instance.

Section 2 provides some upper and lower bounds on
detectability, including additional definitions. Section 3
states and proves the General Correction Theorem by

exhibiting a general correction procedure. Section 4
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defines and discusses one class of compound data structures.
Section 5 provides a general discussion of robust data
structure synthesis which is complemented in Section 6 by a
discussion of the costs and effectiveness of robust data

structures. Finally, Section 7 presents a summary,

conclusions, and further work.

2., DETECTABILITY

The purpose of this section 1is to provide means of
determining upper and lower bounds on the detectability of a
storage structure. The first result provides a means of
determining an upper bound on detectability. Two techniques
for finding lower bounds on detectability are developed.
One allows detectability to be calculated directly. The

other makes use of the intermediate properties ch-same,

ch-repl, and ch-diff (defined below). Section 6 contains
another useful upper bound result.

The results will be illustrated by an example, the
double-linked implementation of a simple 1list. In this
example, the two 1lower bound techniques will provide the

same result. In other cases, one technique will provide a

greater lower bound than the other.
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Theorem 1 (Upper bound on detectability): If a data
structure allows an "empty" instance (i.e., an instance
containing only the header), and n is the number of
pointers in the header of its storage structure which do
not permanently point to a fixed location 1in the
header,l and there are j stored counts, then the
detectability of the storage structure 1is at most
n+ j- 1.

Proof: The header of an empty instance differs by at most n
pointer changes from any other 1instance, so n pointer
changes and Jj count changes can transform any instance to
the empty instance. Thus the detectability 1is at most

n+ 3 -1.10

For double-linked 1lists, n =2 and j =1, and so
Theorem 1 proves they are at most 2-detectable.

Several detectability results are related to the
concepts k-determined and j-count-determined. These may be
defined informally as follows. A storage structure is

k-determined if the pointers in each instance of the storage

structure can be partitioned into k disjoint sets, such that
each set of pointers can be used to reconstruct all counts,
identifier fields, and other pointers. (It must also be
possible to determine which pointers are in a particular set
without reference to any other ©pointers.) A storage

1A pointer in the header which points to a fixed

location in the header may seem unlikely, but does
occur in practice. For example, see the threaded tree
implementation in [2, p322].
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structure is Jj-count-determined if the pointers in each

instance of the structure can be partitioned into j disjoint
sets, such that each set can be used to calculate the number
of nodes in the instance. Clearly, the values of j and k in
"k-determined" and "Jj-count-determined" are two measures of
the amount of redundancy in a storage structure.

These definitions can be used in stating a number of

detectability results.

I

| Theorem 2: A k-determined storage structure is
| least) (k-1l)-detectable.
I
|

—~
o]
ot

Proof: We may detect errors in such a storage structure by
using each of the k sets of pointers to determine the values
which all counts, identifier fields, and other pointers
should have, and then comparing these with the actual
values. If at most k-1 changes have been made, then at
least one set of pointers contains no changes. Thus, when
it is used to check the rest of the structural data, an

error will be detected. []

In the case of double-linked linear lists, either the
forward or backward 1links may be used to reconstruct an
instance. This storage structure is thus 2-determined, a
fact which was used implicitly in the correction routine of

Part I to repair single pointer errors. It follows from
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Theorem 2 that double-1linked lists are (at 1least)

l-detectable.

Theorem 3: If a k-determined storage structure contains
identifier fields and a stored count, and if one or more
of the k sets of pointers contains only one pointer to
each node, then the storage structure is (at least)
k-detectable.

Proof: The proof of the previous theorem can be used except
in the case of exactly k changes, one to each of the k sets
- of pointers.

In this case, consider a set of pointers which has only
one pointer to each node. In this set, one pointer has been

changed, so the node it pointed to has disappeared from this

set. Thus either the stored count cannot agree with the
actual number of nodes in the instance or a "foreign" node
has been added to the instance. (That 1is, an area of

storage which is not a node of this instance now appears to
be one.) In the latter case, each of the k sets of pointers
would need to contain a changed pointer to the foreign node,
and a change is also required to place a proper identifier
field value in that node. This is a total of k+1 changes,

so the storage structure is k-detectable. []

We conclude from Theorems 1 and 3 that double-linked
lists are exactly 2-detectable, which formalises our

argument of Part I,
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Since the entire set of pointers 1in a structure
instance determines the count (or counts) and all identifier
fields, every structure is l-determined. Thus we have the

following as a simple corollary of Theorem 3:

Corollary: If a storage structure uses identifier fields
and a stored count, and there is only one pointer to each

node, then the storage structure is (at least) l-detectable.

Three properties of a storage structure are now defined
which provide an alternative method of determining Ilower
bounds on detectability. The minimum number of changes
(over all <correct instances) that transforms a correct
structure instance into another correct instance containing
the same set of nodes is defined to be ch-same. Ch-repl is
the minimum number of changes required to replace one or
more nodes in a data structure instance with the same number
of foreign nodes from outside the instance, leaving the
total number of nodes unchanged. Similarly, ch-diff is
defined to be the minimum number of changes that transforms
a data structure instance into another correct instance with

a different number of nodes.

|

| Theorem 4: The detectability of a storage structure is
| exactly min(ch-same, ch-repl, ch-diff) - 1.
l
I

Proof: This result 1is very simple to prove. The minimum
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number of changes which transforms one correct instance into
another is simply min(ch-same, ch-repl, ch-diff), and the

detectability is defined to be one less than this value. [l

This alternative approach to calculating detectability
was used informally in Part I to argue the 2-detectability
of chained and threadeq binary trees. However, one cannot
apply Theorems 1 through 3 to CT-trees, as they are not
2-determined. One reason they are not is that although it
is possible to construct a CT-tree given only the chains and
threads, the construction is not unique. (See [3] for a

more detailed discussion.)

Theorem 5: If each of the k sets of pointers in a
k-determined storage structure contains only one pointer
to each node, if m of those sets have exactly one non-
null pointer in each node, and if there are a minimum of
n identifier fields per node, then

ch-same > 2k

and
ch-repl > k + n + m.

Proof: Consider an undetectable sequence of changes which
leaves the number of nodes unchanged. There are two
possibilities: the same set of nodes exists, differently
structured, or one or more hodes have been replaced by
"foreign" nodes.

If the same set of nodes has simply been restructured,
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then there must be at least two changes in each of the k
sets of pointers. If only one change 1is made 1in a set,
there are two cases: (1) The former value of the changed
pointer was null and the new value 1is non-null. In this
case, some node must now have two pointers pointing to it,
which violates the hypothesis of the theorem and can be
detected. (2) The former value was non-null. In this case
the node formerly pointed to does not now have a pointer to
it 1in this set, which can be detected. (If both values are
null, the pointer has not been changed.) Therefore at least
2k changes are required, and thus
ch-same > 2k.

To place a foreign node in an instance, we must change
at least one pointer in each of the k sets and we must
insert n identifier fields in the foreign node. For m of
the k sets there must be an equal number of pointers
entering and 1leaving any set of nodes, so there must be at
least m pointers from foreign nodes to nodes in the
unchanged structure. So, the minimum number of changes to
place one or more foreign nodes in an instance is k + n + m,
and thus

ch-repl > k + n + m. [l

It might seem that we <could take m as the minimum
number of non-null pointers in a node, thus increasing
ch-repl in some cases. The following is a counterexample.

Referring to Figure 2.1, suppose a 1linear list
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implementation has three pointers from each node to the
following node. The list has two special "list end" nodes,
A and B, which have the property that, for odd-numbered séts
of pointers, B is the last node on the list (i.e., contains
a null pointer), and A 1is the second last. For even-
numbered pointers, the roles of A and B are reversed. Such
an implementation 1is 3-determined, and has m = 0 under the
original definition. If there is a stored count but no
identifier fields, then n = 0, giving ch-repl > 3. 1In fact,
ch-repl = 3: we can replace the pair (A, B) with two
similarly structured foreign nodes (X, Y) by changing only
the three pointers from C to (A, B). The revised definition
of m would give m = 1 and ch-repl > 4, which is false.

For double-linked lists, k = 2, m = 2, n = 1; thus
ch-same > 4 and ch-repl > 5. 1In fact, ch-same = 6 for
double-linked lists (for example, to exchange a pair of
adjacent nodes requires that three forward and three back

pointers be changed), but a lengthy argument, from first

principles, would be required to show this.

I I
| Theorem 6: If a k-count-determined storage structure |
| has j stored counts, ch-diff > k + j. |
I N I
I I

Proof: If we change the number of nodes in an instance, we
must change one pointer in each of the k sets of pointers

and also each of the j stored counts. [l
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For double-linked 1lists k =2, j =1 so ch-diff > 3.
(In fact, ch-diff = 3.) Applying Theorem 4 to the values
obtained for ch-same, ch-repl, and ch-diff we conclude that
double-linked lists are (at least) 2-detectable. This 1is
independent of the previous method which showed the same
result. Note that although the bound on ch-same 1is not
maximal, the resulting detectability is, since in this case
ch-diff 1is the limiting factor. Very often, the
detectability of a storage structure may most easily be
computed by first computing ch-same, ch-repl, and ch-4iff,
then applying Theorem 4.

It is possible to give examples which show that the
results of Theorems 2, 3, 5, and 6 are numerically maximal
and that none of the hypotheses can be removed from these

theorems [3].

3. CORRECTABILITY

The following theorem allows the correctability of a
storage structure to be determined if the detectability is
known, provided the storage structure contains identifier

fields.
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|
Theorem 7 (General correction theorem): If a storage |
structure employing identifier fields 1is 2r-detectable |
and there are at least r + 1 edge-disjoint paths to each |
node of the structure, then the storage structure is |
r-correctable. |

I

I

Sketch of proof (the details may be found in [3]): To prove
this result we need an algorithm which can perform the
indicated <correction. The algorithm has two main phases:
first, collection of all nodes 1in the data structure
instance and, second, the restoration of the instance to a
correct state.

The collection phase essentially consists of a depth-
first search of the instance. Since pointers may have been
modified, this search may lead outside the instance, but
checking of the identifier fields places a bound on the
number of nodes which can be examined which are not part of
the actual data structure instance. The algorithm
terminates 1its scan along any path which includes more than
r bad identifier fields.

Because there were originally r + 1 paths to each node,
this procedure must be able to find all nodes which were in
the instance before it was changed. It may also "find"
other nodes, but there is a bound on the number of such
nodes it will locate.

Once a superset of the nodes has been found, correction

can be performed on a trial and error basis. Since the
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storage structure is 2r-detectable, any two correct
instances must be at least 2r + 1 <changes "distant" from
each other. Sets of r or fewer changes are applied, so, we
have at most 2r changes at any time. Therefore, the only
correct instance which can be <created 1is the desired
instance. Unfortunately, the execution time behaviour of
this algorithm is wvery poor. Typically, to perform
r-correction on an instance of n nodes will take time

O(n**(2r + 1)). 01

We have shown that double-linked lists are
2-detectable. We clearly have two edge-disjoint paths to
each node: one using forward pointers and one using
backward pointers. Thus the hypothesis of the theorem Iis
satisfied for r = 1, and we conclude that double-linked
lists are l-correctable.

We may also use double-linked lists to illustrate the
operation of the correction algorithm. Figure 3.1 shows a
double-linked list in which one pointer has been changed, so
that it now points to an area of storage which is not a node
of the 1list. The figure also shows the contents of
NODE.TABLE (the set of nodes collected by the «correction
algorithm), which consists of node addresses and "bad
identifier field" counts. 1In this case, "node" X, which is
not part of the correct list, is the only one with a non-
zero "bad identifier field" count. We cannot conclude that

X must be removed--if the change had damaged an identifier
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field rather than a pointer, the appropriate correction
would be to change the identifier field wvalue. The
correction procedure will +try a number of corrections,
passing each "corrected" instance to the detection routine,
until one 1is accepted. It will attempt: setting ID(A) to
the correct identifier value; setting the forward pointer in
A to point to A itself; then setting this pointer to point
to B, and so on until we reach "Back(C) = B". This will
produce a correct instance (one accepted by the detection
routine), so the correction procedure will terminate with
this correction applied to the instance.

For a double-linked list of n nodes, this correction
procedure will take time 0(n3); however, we showed in Part I
that it is possible to write a special-purpose correction
procedure for double-linked lists which takes time O(n).

This result allows correctability to be determined in
most cases of practical interest. Unfortunately, no
analogous result is known which allows detectability to be

determined in general.

4., APPLICATION TO COMPOUND STRUCTURES

Our intent in this section 1is to extend the basic
results presented above to suitably defined compound
structures. The result is quite restrictive, but indicates
at least one direction for further research.

An instance of a compound storage structure, compounded
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from storage structures S(1), S(2), ..., S(t), is defined as
follows:

a) The structural information in every instance of
the compound structure (i.e., pointer and
identifier fields) may be partitioned 1into t
disjoint subsets.

b) The i-th set, with its 1list head and possible
stored counts, forms a data structure instance of
S(i), for i =1, 2, ..., t.

c) Excluding the list heads of the t instances,
each storage structure instance contains the same
set of nodes.

Some comments regarding the definition are in order.
It 1is important to notice that the component sub-structures
are logically unrelated. Thus, while one could consider the
double-linked 1list as a compound structure of two singly-
linked lists (onhe of which had no identifier fields or
count), this approach gives a lower value for detectability
since one can no longer claim to be able to reconstruct the
forward pointers from the back pointers. Note also that the
third condition implies that ch-diff and ch-repl types of
changes are reflected in each sub-structure.

We now compute ch-same, ch-repl, and ch-diff for a
compound structure. For simplicity, we consider a compound
data structure composed of two sub-structures, and we assume
ch-same, ch-repl, and ch-diff are known for each of the sub-
structures. We denote ch-same for the first sub-structure
by ch-same(l), for the second by ch-same(2), and similarly

for ch-repl and ch-diff.

a) Ch-same. As the two sub-structures are assumed to
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be 1logically independent, we need only re-arrange the nodes
with respect to one of the sub-structures in order to obtain
another correct compound instance over the same nodes:

ch-same = min ( ch-same(l), ch-same(2) ).

b) Ch-repl. 1In order to replace some number of nodes
in the compound instance with the same number of foreign
nodes, we must perform the same replacement on each sub-
structure. (If we do not do this, then we can detect the
change by simple comparison of the sets of nodes in each
sub-structure. The two sets will no longer be identical.)
Thus

ch-repl = ch-repl(l) + ch-repl(2).

c) Ch-diff. As with ch-repl, we must add or delete
the same set of nodes for both sub-structures, and thus
ch-diff = ch-diff(l) + ch-diff(2).
Using the wvalues just calculated and Theorem 1, we

obtain the following result.

Theorem 8. The detectability of a compound structure is
min (ch-same(l), ch-same(2),
ch-repl(l) + ch-repl(2),
ch-diff(l) + ch-diff(2) ) - 1.

The obvious generalization to a compound data structure with
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n sub-structures is:
min (ch-same(l), ch-same(2), ..., ch-same(n),
ch-repl (1) + ch-repl(2) + ... + ch-repl(n),

ch-diff(l) + ch-diff(2) + ... + ch-repl(n)) - 1.

We consider two examples: a compound structure composed
of two double-linked lists, and a composition of a chained
and threaded binary tree with a double-linked 1list. See
Figures 4.1 and 4.2.

We can show that for double-linked lists, ch-same = 6,
ch-repl = 5, and ch-diff = 3. Combining two such
structures, we find that the detectability of the compound
structure is min(6,6,5+5,3+3) - 1 = 5, Thus any set of five
or fewer changes to pointer, count, or identifier fields may
be detected. By the addition of a "redundant" linear list,
the detectability has been increased from 2 to 5. Then
Theorem 7 gives 2-correctability for the compound structure.

For our other example, we compound a double-linked

linear 1list with a chained and threaded binary tree. For

the latter, we have argued that ch-same = 3, ch-repl = 5,
and ch-diff = 3. For the detectability of the compound
structure, we thus have min(3,6,10,6) - 1 = 2, In this

case, the detectability does not increase, since ch-same of
the binary tree was the term limiting its detectability, and
the compound ch-same terms are not added.

Examining the theoretical results in the light of these

examples allows us to make some more general remarks about
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Fig. 4.1(b) Compound structure showing second list (L2)
pointers. Logical order (B,A,C,D)
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Fig. 4.2 (b) Compound binary tree - linked list, showing
list pointers. Logical order ( 76,19,43,12)
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the construction of robust data structures.

5. SYNTHESIS OF ROBUST DATA STRUCTURES

We have demonstrated two methods of adding redundancy
to improve detectability and correctability: an ad hoc
method which adds identifier, pointer, and count fields to a
given data structure in an attempt to improve robustness,
and compounding data structures whose robustness is known.
The first was exemplified by adding chain and thread 1links
to "ordinary" binary trees, thus achieving 2-detectability
and l-correctability. The second was illustrated by
compounding two double-linked 1lists, which increased the
detectability from 2 to 5.

Given an arbitrary data structure, we also wish to
consider increasing its robustness by compounding it with a
simple structure such as a double-linked list. The list
could be thought of as "roping" the overall structure
together for greater resistance to error. Under what
conditions is this approach reasonable, and can we gain more
robustness by adding more strands of rope (i.e., by adding a
second or even third double-linked list)?

The answers to these questions follow immediately from
the calculation of the compound detectability. Because the
ch-same's of the component structures do not add in the

expression, the compound detectability must remain less

than ¢, the original value of ch-same. Thus, if we consider
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adding one or more double-linked lists (where ch-same = 6),
the best we can do 1is increase the detectability to
min( c¢, 6) - 1. In fact, by compounding two double-linked
linear lists with the original structure, we are able to
guarantee a detectability of min( ¢, 6) - 1, because of the
addition of terms due to ch-repl and ch-diff of the 1linear
lists. This implies that we do not increase the
detectability by compounding more than two double-linked
lists onto the original structure. Finally, if ch-same was
the limiting term in the original structure, compounding it
with any structure cannot increase the detectability (e.qg.,
see the binary tree example in Section 4).

We have been considering ways of increasing robustness
by the addition of structural redundancy to storage
structures. We may also consider alternative ways of
organizing a fixed quantity of structural redundancy. We
loosely define the amount of structural redundancy in a
storage structure to be the number, p, of edge-disjoint
paths to each node. For fixed p, how can we vary the
detectability and correctability as we choose various
implementations of the same structure? While much work
remains to be done in this area, we present two examples.
For p =2, we saw in the companion paper that modified(2)
double-linked lists are 3-~detectable, whereas double-linked
lists are 2-detectable.

As a second example, we consider the compound structure
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composed of two double-linked linear lists, for which p = 4,
As we have shown, such an implementation is 2-correctable,
and 5-detectable. However, by choosing a different pointer
structure, we can find a linear 1list implementation with
four edge-disjoint paths to each node which is 3-correctable
and 8-detectable. Rather than choosing pointers from a node
A to adjacent nodes in the structure, we choose four
pointers to nodes at specified distances from A. ([3,
Section 5.3] gives a general indication of how this may be
done.) 1In both examples, the increase in detectability and
correctability is matched by an increase in cost: execution
time for insertions and deletions increases, and the insert
and delete routines are more complex. We conjecture that an
important difference between these two structures 1is the
rate of error propagation. 1In the first structure, errors
seem to propagate at the same rate as 1in double-linked
lists; 1in the second, they propagate approximately four
times as fast.

We conclude that the most critical quantity related to
the detectability of a data structure implementation 1is
ch-same, the number of <changes required to rearrange the
nodes in an instance of the data structure. If this wvalue
is small, no compound data structure formed from the given
one can have a larger detectability. In this case,
detectability might possibly be increased by an ad hoc

addition of redundant structural information in the form of
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extra pointers. We have also shown that compounding an
arbitrary data structure with one or two double-linked lists

may yield some improvement in detectability.

6. COSTS AND EFFECTIVENESS

The addition of redundancy to stored data combined with
software to make effective use of that redundancy can make a
system more fault tolerant and will also likely affect
performance. In some cases, the added redundant data will
allow simplification of some processing, thus improving
efficiency, but adding redundancy will usually degrade
performance. Thus, a tradeoff typically exists between
robustness and performance.

In the past, such tradeoffs have been made on an ad hoc
basis, because there was no appropriate theoretical
foundation for studying them. The purpose of this section
is to elucidate the relationships between robustness and
performance and to show that it is possible to establish a
balance between them. It is suggested that proper choice of
redundancy can vyield a high effective degree of robustness
at low cost.

The benefits and costs of a robust storage structure
cannot be stated in absolute terms. They depend on the
particular environment in which the data structure is to be
used. In this section, we therefore provide only an outline

of the <costs and the effectiveness of the techniques
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considered here.

The benefits are here considered only in terms of
detectability and correctability, which are measures of the
robustness of a storage structure. Benefits such as
simplification of processing due to the presence of
additional pointers will not be considered.

Various costs are associated with the robust storage
structures considered here. We identify three: additional
storage requirements, increased processing time for
insertions and deletions, and processing time to perform
change detection. The processing time used in checking can
be adjusted by varying the interval between executions of
the detection procedure. However, making the interval too
long may give an unacceptably high probability of multiple
errors or undetectable error propagation.

The storage cost of an encoding (of a storage
structure) can be considered to be made up of three parts:
data content, structural information, and redundancy. The
redundant data wused in encodings discussed here is of a
structural nature. In many cases, it 1is an arbitrary
decision as to what is structural information and what is

redundancy. Thus, we consider the storage cost to be the

number of words needed to store structural data (including
redundant structural data), per node. Fixed storage costs,
which do not vary with the number of nodes are generally of

minor importance unless the "typical" structure instance is
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very small.

Because insertion and deletion are inverse operations,
their costs are closely related. Thus we consider the cost
of an insertion as being representative of both. For
reasons similar to those discussed above, we will consider
the cost of an insertion to be the number of <changes which
must be made to pointers, counts, and identifier fields when
inserting a node.

Two theorems are now presented which provide lower

bounds on storage and insertion costs.

I
| Theorem 9: If a storage structure is k-detectable, then
| any correct wupdate of an instance must make at least
| k + 1 changes to structural and redundant data.

I

|

Proof: By a "correct" update, we mean one which transforms
one correct instance into another. Thus, this is a direct
consequence of the definition of detectability (as stated
informally in the introduction), since any sequence of k or
fewer chahges to an 1instance of a k-detectable storage

structure must produce an incorrect instance. []

This result directly bounds the number of changes which
must be made in wupdating an instance. In the <case of
double-linked 1lists, we have 2-detectability, so at least
three changes are required in any correct update.

In practice, the bound of Theorem 8 is likely to be
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significantly smaller than the number of changes performed
by a "typical" update routine. For many families of related
storage structures, the number of changes performed by an
update routine will always be much greater than the bound,
but the variation between storage structures will closely
follow the variation in the bound. Thus, detectability may
be of even greater significance in determining update cost

than the result of the theorem directly indicates.

Theorem 10: If a storage structure 1is r-correctable
then there are at least r + 1 edge-disjoint paths to
each node of the instance.

Proof: We make use of a graph-theoretic result, which
states that the maximum number of edge-disjoint paths is
equal to the minimum number of edges whose deletion destroys
all paths (Theorem 11.4 in [1]). Thus if there are fewer
than r + 1 edge-disjoint paths leading to some node in an
instance of a storage structure, there is a set of r changes
which destroys all the paths to that node. (For example,
change all those pointers to nulls.) This would be a
sequence of r or fewer changes which would completely
disconnect the node from the rest of the instance, making it
impossible for a correction routine to perform correction,
because it 1is wunable to find the node 1in question by

following a sequence of pointers from the header. []
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This result means that, minimally, there must be r + 1
pointers to each node in an r-correctable storage structure.
Of course, this does not mean that each node must contain at
least r + 1 pointers (some nodes may not contain any
pointers), but does mean that the total number of pointers
in an instance of N nodes must be at least N*(r + 1). Thus,
the correctability determines a lower bound on the storage
cost, and this 1lower bound rises 1linearly with the
correctability.

Finally, we may note an intuitive relationship between
the three forms of redundancy being considered and the three
properties ch-same, ch-repl, and ch-diff. We observe that
adding identifier fields will increase ch-repl but will not
affect ch-same or ch-diff. Similarly, adding one or more
counts will increase ch-diff but will not affect ch-same or
ch-repl. Adding redundant pointers to a storage structure,
however, may increase all three of ch-same, ch-repl, and
ch-diff.

We have shown that achieving very high detectability or
correctability has serious performance implications.
However, the empirical results of Part I indicate that the
effective detectability of a storage structure can be higher
than that which is analytically shown to be possible. This
is true because the specific combinations of changes that
are required to produce an undetectable error rarely occur

in practice, but must be considered in a proof. Thus, the
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double-linked 1list storage structure, which is 2-detectable
in theory appears to be better than 1l2-detectable in
practice. However, the single-1linked list storage
structure, which is l-detectable in theory also appears to
be 1l-detectable in practice [3]. A "rule of thumb" is that
for typical applications requiring fairly robust storage
structures, a 2-detectable, l-correctable storage structure
should initially be assumed to be sufficient. Only if such
a storage structure proves to be insufficiently robust in

practice should a more robust storage structure be sought.

7. SUMMARY, CONCLUSIONS, AND FURTHER WORK

In these two papers, we have attempted to provide both
an intuitive and a formal description of our approach to
robust data structures. 1In Part II, we first developed a
theory for evaluating the robustness of storage structures.
The basic approach relied on the wvalid state hypothesis,
although similar, but more complicated results can be
obtained without it. The results presented here were
extended to compound storage structures 1in Section 4.
Sections 5 and 6 used the theoretical results and practical
experience to motivate a general discussion of robust data
structure synthesis, 1including the associated cost and
effectiveness trade-offs.

Many areas for further work can be discerned. We used

the General Correction Theorem (Theorem 7) in order to
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determine the correctability of a compound implementation.
However, given correction procedures for sub-structures, 1is
it possible to deduce a correction procedure for the
compound structure? What can be said if we remove the
restriction that all nodes in the compound structure belong
to each constituent structure? Does there exist a wunified
approach to robustness involving both content and structural
data? What, in a practical sense, is a "reasonable" amount
of redundancy, and how 1is the effective robustness under
practical conditions related to the theoretical values of
correctability and detectability?

One message is clear: a little redundancy,
thoughtfully deployed and exploited, can yield significant
benefits for fault tolerance; however, excessive or
inappropriately applied redundancy 1is pointless. We have
shown experimentally in the companion paper ahd [3] that the
effective detectability of an implementation <can be
considerably higher than that which 1is guaranteed by the
theory. The major goal of our research is to find where and
how to apply redundancy to vyield cost-effective fault

tolerant systems.
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