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1. INTRODUCTION

The increase in complexity and size of modern software
systems and the increase in society's dependence on computer
systems has been accompanied by an increase 1in the costs
associated with their failure. This has in turn created an
interest in achieving reliable, fault tolerant systems. In
this pair of papers, we discuss one particular approach to
increasing fault tolerance: the detection and correction of
errors in stored data structures. The first paper presents
a survey of related work, terminology, and an informal
development of the approach, including some experimental
results. The second paper complements this with a more
rigorous treatment of the basic results, as well as
extensions to them, and concludes with some remarks on the
synthesis of robust data structures.

Avizienis (3] defines two complementary approaches ¢to

achieving software reliability: fault intolerance and fault

tolerance. The former includes techniques applied during
system development to ensure that the running system
satisfies all reliability criteria a priori: examples are
proofs of program correctness, structured design and
programming methodology, and development aids for systematic
testing and debugging. This approach cannot cope with
residual design flaws, bugs, hardware malfunctions, or user

errors, all of which suggest using the complementary
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approach of fault tolerance. This approach attempts to
increase reliability by designing the system to continue to
provide service in spite of the presence of faults.

The need for software to cope with 1its own errors,
errors introduced by undetected hardware faults and mistakes
by users seems to have been recognised first by designers of
real-time control systems, notably telephone switching
systems [4, 8]. More recently, designers of operating
systems and data base systems have also recognised that
detection and correction of software-induced errors are
important. (An example of this concern is shown in the
design of IBM's 0S/VSs2-2 [22, 23], which contains error
detection and recovery routines not included in previous IBM
operating systems.)

Redundancy 1is the key to error detection, correction,
and recovery [2, 3, 20]. Redundant data in the system are
essential in order to detect and recover from many types of
hardware or software malfunctions. Special software is
required to maintain and make effective use of the redundant
data; some redundant data may be essentially coded into this
software. Other types of malfunctions can only be detected
by observing the behaviour of the system, and comparing this
with known or expected behaviour derived from analysis of a
system model or experience using the system. There are, 1in
fact, four forms of redundancy which can be used to enhance

system fault tolerance: redundant hardware, redundant
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software, redundant data, and redundant information about
the system's behaviour. A compromise between the cost of
failures and the <cost of the facilities necessary to cope
with them determines the amount and type of redundancy which
should be used to improve reliability.

Recovery relies on the use of redundancy to reconstruct
damaged data. The redundancy can be in the form of backup
copies or can be achieved by wusing redundancy 1in the
representation of the data. A systematic recovery techniqgue
is the use of "recovery blocks" and the associated "recovery
cache" [21]. For each recovery block, a sequence of
alternate sections of code is provided. Each alternate |is
tried in turn until the "acceptance test" associated with
the recovery block is satisfied. After each unsuccessful
alternate, the system state is reset from the recovery cache
to its contents on entry to the block. Useful acceptance
tests depend on the existence of appropriate redundancy.

Various ad hoc techniques have also been developed for
using redundant representations of data for recovery. For
example, Waldbaum [27] summarizes some techniques for wuse
with a set of 1linked <control blocks, and Lockemann and
Knutsen [15] describe a particular technique for wuse in
correcting disk allocation data after a system crash.

A general description of error recovery in a data base
environment 1is given by Fry and Sibley [9]. Many recovery

techniques for data base systems make use of backup copiles
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of portions of the data base. Some ways of making use of
such backup copies in recovery are described in [6, 16].

Ideally, there should be systematic techniques for
synthesising the software components of a system to achieve
specified 1levels of reliability and recoverability. There
is also a need to analyse software systems to predict or
measure their reliability. Attempts are being made to
satisfy these needs: a good survey may be found in [2].
Unfortunately, there is little underlying theory to explain
why one technique is better than another or to assist in the
development of new techniques. Even when it is realised
that redundancy is the key to performing error detection,
diagnosis, and recovery, there is no systematic technique
for adding redundancy to stored data, or for exploiting such
redundancy.

The major goal of our research is to find where and how
to apply redundancy to yield cost-effective fault tolerant
systems. A little redundancy, thoughtfully deployed and
exploited, can yield significant benefits for fault
tolerance; however, excessive or inappropriately applied
redundancy is pointless. These papers illustrate one way of
measuring and comparing the effectiveness of alternative
ways of structuring data, the goal being to find storage
structures that are robust in the face of errors and
failures. The work 1is 1in a sense parallel to (and

complements) that of Gotlieb and Tompa [l1] which provides a
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technique for selecting a storage structure from a set of

alternatives based on efficiency considerations.

2, TERMINOLOGY

In discussing fault tolerance, we will |use some
definitions suggested by Melliar-Smith and Randell [{18]. A
failure occurs when a system does not meet its
specifications: it 1is an externally observable event. An

erroneous state is a system state that can lead to a failure

which we attribute to some aspect of that state. An error
is that part of an erroneous state which can 1lead to a
failure. A fault is a mechanical or algorithmic cause of an

error. A fault tolerant system is one which attempts to

prevent erroneous states from producing failures. This
paper discusses the effect on fault tolerance of wusing
redundancy in the representation of data structures.

The following definitions will be used 1in discussing

data structures. A data structure is defined to be a
logical organisation of data. A storage structure is a
representation of a data structure. The representation

specifies whether nodes are to be adjacent or connected by
pointers, what pointers are used, and so on. An encoding of
a storage structure is its representation on a particular
storage medium, The encoding specifies how pointers are
represented (absolute, relative, etc.), what fields are

packed into a single word, and so on. Thus, "binary tree"
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is a data structure; a representation in which there are
pointers from each node to the left and right sons of the
node is a storage structure for a binary tree; and if we
also specify that pointers are stored as absolute addresses,
that 1is an encoding of a binary tree. (This terminology is
adapted from Tompa [26].)

We define a data structure instance to be a particular

occurrence of a data structure. When the context makes the
meaning clear, we will also use "data structure instance" to
refer to the storage structure for the instance or its
encoded form.

We define a change to be an elementary modification to
the encoded form of a data structure instance. (The meaning
of "elementary modification" can be specified to suit the
environment; here it will mean the modification of a single
word.) Since a change modifies a data structure instance at
the encoding level, the effect of the change on the storage
structure depends on the encoding used. There is a mapping
which transforms a change into one or more "changes" in the
storage structure. For simplicity, we will assume that each
change corresponds to only one "change" in the storage
structure unless the encoding is explicitly noted as packing
two or more fields into one word. (Here, the only example
of the latter case occurs 1in Section 3.2.) We do not
specify the types of faults which cause the changes, but the

following are possibilities: hardware faults; "wild" stores
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by incorrect programs; incorrect update procedures; and
incomplete execution of update procedures, possibly
resulting from an unrelated event (e.g., an operating system
crash). For this last possibility, the instance which has
been partially updated is left some number of changes "away"
from the initial configuration and from the final desired
configuration.

To illustrate our definition of change, consider the
following storage structure for a linear list. Suppose the
list contains four items, each of the first three has a
pointer to the next, and the last contains a null pointer:

A ->B ->C -> D -> NULL
If somewhere in storage there is a node which contains X and
a null pointer, then a single change in the pointer of node
C can produce:

A ->B -» C -> X -> NULL
This single change effectively replaces D by X.

In this paper, only changes affecting structural
information (such as pointers, counts, and identifier
fields) will be considered. That is, we are concerned here
with structural integrity rather than semantic integrity.

Semantic integrity [11, 16, 19] concerns the meaning of the

data being represented: does it correspond to a possible
configuration of the real world entities being described?

Structural integrity [9, 28] concerns the correctness of the

representation of the data: whether pointers have values in
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the right range, whether internal structural redundancy is
consistent, and so forth.

In order to discuss error detection and correction in
instances of data structures, we must give our definition of
a "correct" instance. For the purposes of this paper, we
define an instance of a data structure to be "correct" if a
"detection procedure"” applied to the instance returns the
value "correct".

Detection ©properties of a data structure encoding are
stated in terms of changes. If a single change can
transform a correct data structure instance into another
correct instance, as in the linear list example above, the
encoding has no detection capabilities. If at least two
changes are required to transform any correct instance into
another, then single change detection 1is possible. 1In
general, if at least N changes are required to transform any
correct instance into another, any set of one to N-1 changes
can be detected.

If all sets of N or fewer changes can be detected, we

say the encoding is N-detectable, (i.e., 1its detectability

is N). We say an encoding 1is N-correctable (i.e., its

correctability is N) if there is a procedure which, for all

sets of N or fewer changes, can take a correct instance
modified by that number of changes and recreate the correct
instance. Thus, we are interested in computing the minimum

number of changes to produce, say, an undetectable error.
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(Note that N-detectability implies K-detectability for K <
N, and similarly for correctability.) These definitions of
detectability and «correctability are related to Hamming's
definitions for binary codes [13].

Although detectability and correctability are
properties of the encoding of a data structure, it is often
convenient to refer to them as properties of the storage
structure. In general, the encoding itself will only be
significant when it specifies that more than one field at
the storage structure level is to be placed in a single

word.

3. ROBUST STORAGE STRUCTURES

A robust storage structure is one containing redundant
data which allow erroneous changes to be detected, and
possibly corrected as well. Three commonly used forms of
structural redundancy in data are: a stored count of the
number of nodes in a structure instance, identifier fields,
and additional pointers [27].

A count of the number of nodes in an instance is often
useful for purposes other than reliability. It is also one
of the most commonly-used techniques for improving the
robustness of storage structures, since it 1is a simple
technique to use and usually introduces little overhead.

An identifier field is a group of one or more words,

usually at the beginning of a node, which explicitly
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signifies the type of the node. The type of a node is
usually defined implicitly by which pointers in what types
of nodes point to it. We will assume that the type of each
node, and hence proper identifier field values, <can be
determined from pointer data; that is, we will only consider
identifier fields which provide redundant identification of
node type.

Algorithms which work with a storage structure usually
require certain pointers between nodes in order to perform
their functions. Additional pointers whose values could be
deduced from other pointers may be added to the structure.
These redundant pointers are a powerful tool in 1increasing
storage structure robustness. In addition, they may
sometimes make algorithms which work with the storage
structure simpler or more efficient. 1In passing, we point
out our assumption that such redundant pointers are
"independent". That is, when one is modified, another will
not be modified in an identical way. If a field is
duplicated, some types of faults (software bugs) will almost
certainly have 1identical effects on all copies of the
fields. However, this consideration applies only to the
effective detectability observed during system operation;
the theoretical results are not affected.

In this paper we consider storage structures which
consist of a header and a (possibly empty) set of nodes.

The header contains pointers to certain nodes of the
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instance or to parts of itself and may also contain one or
more counts and identifier fields. Each node contains data
items and structural information, which may be pointers and
node type identifier fields. (If the header «contains more
- than one part, we assume that all parts are accessible
without following intra-header pointers. This is generally
accomplished by storing the parts of the header as a
contiguous vector.)

When identifier fields are used 1in an instance, we
assume that they contain a value which appears in no other
identifier fields 1in the system. This is an aspect of the
"valid state hypothesis", which is a basic assumption used
throughout these papers. The hypothesis is that the only
pointers to nodes of an instance occur in the instance, and
that the unique identifier value(s) for the instance appear
only in its own identifier fields. Insofar as the theorems
in Part 1II are concerned, we point out that it is possible
to relax the wvalid state hypothesis, at the price of
complication of their statement and proof [25].

We present below examples of several storage structures
for 1linear 1lists and binary trees, and informally discuss
their robustness. We also give some practical
implementation considerations. Our purpose is to clarify
the terms presented above, give an intuitive motivation for
the theoretical results presented in Part 1II, and

demonstrate that these techniques can be easily applied in
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practice.

3.1 Linear Lists

The easiest way of implementing a linear list is simply
to store a pointer in each node to the next node of the
list, placing a null pointer in the 1last node. Inserting
nodes in, and deleting nodes from, instances of such a
storage structure is quite simple and efficient, but the
storage structure is not at all robust. Specifically, it is
0-detectable and O-correctable: changing one pointer to
null can reduce any list to the empty list. Such a storage
structure contains no explicit redundancy and uses only one
word of structural data in each node (the pointer field).
Inserting a node in the list requires two changes, one in
the inserted node and one in the preceding node.

A commonly-used storage structure which is more robust
adds an identifier field to each node, replaces the null
pointer in the last node by a pointer to the header of the
list, and stores a count of the number of nodes on the list.
In this "single-linked" implementation, an additional word
is added to each node of the list, and four changes are
required to insert a node: two pointers, an identifier
field, and the count. It also has the effect of making the
storage structure 1l-detectable, although it is still
O-correctable.

The l-detectability is easily seen. A change to the

count may be detected by comparing it against the number of
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nodes found by following pointers. An identifier change is
trivial to detect. A pointer change may be detected either
because the count does not agree, or because the changed
pointer now points to a foreign node, which cannot have a
valid 1identifier field wunder the valid state hypothesis.
The reader can easily devise a pair of changes which
produces a correct instance, thus proving that the storage
structure is exactly l-detectable. The O-correctability is
shown by the following example: modifying a pointer to
shorten the apparent list makes it impossible to decide
whether the count is wrong or whether some nodes have been
deleted.

The most robust of commonly-used 1list storage
structures is the double-linked list. A double-linked 1list
is a single-linked list with a pointer added to each node,
pointing to the predecessor of the node on the 1list. This
adds one more word of storage per node and increases the
number of changes for inserting a node to six: two forward
pointers, two backward pointers, an identifier field, and
the count. This storage structure 1is 2-detectable and
l-correctable, essentially because it has two independent,
disjoint sets of pointers, each of which may be used to
reconstruct the entire list. (This result is proven in Part
II.)

Finally, we may consider a novel storage structure,

which is similar to the double-linked one, but in which the
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"backward" pointers point to the second preceding node
rather than the immediately preceding node. The storage
required per node is clearly the same as for a double-linked
list, but one more change is required when inserting a node.
(Three backward pointers must be changed, rather than two.)
This storage structure, which 1is referred to as a
"modified(2) double-1linked list,"” 1is 3-detectable and
l-correctable. Figure 3.1 shows a modified(2) double-linked
list of 5 nodes. (The parameter, 2, in the name is the
distance spanned by the back pointer. A modified(3) double-
linked 1list 1is 4-detectable, but still only l-correctable.
Increasing the parameter beyond 3 has no further effect on
detectability or correctability.)

This 1last storage structure 1illustrates that the
"standard"” double-linked list implementation may not always
be the best way of using two pointers per node in a 1linear
list. If one is willing to pay a slight price in terms of
update time, it is possible to achieve greater detectability
using the modified(2) double-linked implementation.

We can summarize the robustness and the performance
costs of these four storage structures in a "cost and
effectiveness graph" (Figure 3.2).

How could these detectability and correctability
results for double linked lists be expoloited in a real
system? Could this be done at reasonable cost? Besides the

obvious costs of increased storage and update time, what
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Figure 3.2 Cost and Effectiveness Graph for Linear List Implementations

O stoerage cost (words)
O detectability
© correctability

A exeeutien time for insert (changes)

Taylor, Morgan, Black - 16 - Redundancy: Part I



Abstract

The increasing cost of computer system failure has
stimulated interest in improving software reliability. One
way to do this 1is by adding redundant structural data to
data structures. Such redundancy can be used to detect and
correct (structural) errors in 1instances of a data
structure. The intuitive approach of this paper, which
makes heavy use of examples, is complemented by the more
formal development of the companion paper, "Redundancy in

Data Structures: Some Theoretical Results".

Key Words and Phrases: Software reliability, software fault

tolerance, robust data structures, redundancy, error

detection, error correction, linear lists, binary trees.



else is required to perform the error detection and
correction?

In-1line checks may be 1introduced into normal system
code to perform error detection, and possibly correction,
during regular operation. This introduces an unvarying
amount of overhead. Alternatively, detection/correction
programs (sometimes called "audit" programs [l1]) may be run
periodically, or when trouble is suspected. The advantage
is that their frequency may be varied according to criteria
such as frequency of errors, system load, application
criticality, etc. The classical example 1is automated
telephone switching [1]. Some additional considerations
may be found in [5, 27].

In order to indicate that the cost of detecting and
correcting errors 1is not prohibitive, Figure 3.3 shows a
single error correction/double error detection procedure for
double-1inked lists. In Part 1II, we give a General
Correction Theorem, and exhibit a general correction
procedure which has a polynomial, although rather excessive
execution time. However, the procedure of Figure 3.3 has
0(n) execution time for an n-node list. The procedure scans
the 1list in the forward direction until an identifier field
error or forward/back pointer mismatch is detected. When
this occurs, a reverse scan is initiated wuntil a similar
error 1is encountered, at which point repair is attempted.

Figure 3.4 gives an example, showing the applicable
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procedure LIST-CORR(H, N)
begin
pointer H, integer N, pointer P,

end

pointer PREV-P,

J <~ 0;

PREV-P <- H;

P <- FORWARD (H);

while (P # H) do

begin '
J <-J + 1;
if (BACK(P) =

integer J;

PREV-P and ID(P)

correct) then

begin
PREV-P <- P;
P <- FORWARD (P);
end
else
begin
BACK-SCAN (H, P, PREV-P);
return;
end
end
if (BACK(H) # PREV-P or ID(H) incorrect) then
begin
BACK-SCAN(H, P, PREV-P);
return;
end
if (J # N) then
N <- J;

procedure BACK-SCAN(H, P, PREV-P)
begin
pointer H, pointer P, pointer PREV-P,

pointer Q, pointer PREV-Q;
PREV-Q <- H;
Q0 <- BACK(H);

repeat
begin
if (FORWARD(Q) = PREV-Q and ID(Q) correct) then
begin
PREV-Q <- Q;
Q <- BACK(Q);
end
else
begin
L-REPAIR (P, PREV-P, Q, PREV-Q);
return;
end
end
end
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procedure L-REPAIR (P, PREV-P, Q, PREV-Q)
begin
pointer P, pointer PREV-P, pointer Q, pointer PREV-Q;
if (P = Q and ID(P) incorrect) then
ID(P) <- correct i.d.
else
if (P = PREV-Q) then
BACK (PREV~-Q) <- PREV-P
else
if (PREV-P = Q) then
FORWARD (PREV-P) <- PREV-Q
else
"multiple error";
end

Figure 3.3 Linear list correction procedure
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Figure 3.4 Linear List Correction. L-Repair will
make the Correction Indicated by o---+
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variables when L REPAIR 1is called. The reader should be
able to convince himself that the procedure corrects any
single error to count, identifier, or pointer fields, and
detects all double errors and some multiple errors. (This
is proven in [24].) While LIST CORR is shown in the form
of an audit, it could easily be adapted to perform any
"normal" processing required during 1list traversal, thus

making it into an in-line check procedure.

3.2 Binary Trees

Binary trees are very commonly-used data structures,
but ad hoc detection and correction techniques for them are
not as well developed as for linear lists. This section
presents new techniques for achieving the same 1level of
robustness in binary trees as 1is provided by the common
techniques used for linear lists.

The usual storage structure for binary trees will be
considered, namely one in which each node of the tree
contains two pointers, one to its left son and one to its
right son. If either son does not exist, the corresponding
pointer will have a null value. Procedures for traversing
binary trees form the basis for detection and correction
procedures. Generally, an in-order traversal will be used.
In-order may be defined simply by: traverse the 1left
subtree (in in-order), "visit" the root, traverse the right
subtree (in in-order). This suggests an obvious recursive

implementation; a simple non-recursive implementation using
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a stack 1is also possible,. For more details on tree
traversal see [14, pp315-332].

Two obvious kinds of redundancy to add to a binary tree
storage structure are identifier fields and a count of the
number of nodes in the tree. As with linear lists, this
yields l-detectability and O-correctability. Without this
redundancy, the structure is 0O-detectable and O-correctable.
Performing change detection is difficult because of problems
associated with detecting the change of a pointer so that it
points to a different subtree of the same size. It appears
that all detection procedures which do not modify the tree
structure instance require O(n log n) time and O(n) working
storage, for a tree of n nodes. (These are worst case
results; better average case behaviour could be obtained.)

A simple example will illustrate the source of the
difficulty. Consider a three node tree: a root A and two
sons of A, denoted B and C. Suppose the pointer from A to C
is changed to point to B. The only difference from the
original tree is that one node, B, now appears to be in two
different locations in the tree. If modification is allowed
we may set a flag in each node visited to detect
duplication. However, if the tree may not be modified, we
must compare each node against all other nodes in order to
detect this type of change. The only effective way of
detecting duplication 1is to store all node addresses in a

structure which has 0(log n) search and insertion times,
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thus producing the results cited above. An alternative is
to re-scan the previous part of the tree structure, thus
eliminating the O0(n) storage space but increasing the
execution time to 0(n2). It is only necessary to test for
duplication at leaf nodes; however, since in a balanced tree
of n nodes there are approximately n/2 1leaves, the above
order notations are not changed.

Another kind of redundancy which is sometimes added to
binary trees to improve efficiency is a "thread 1link" [14,
pp319-320]. 1In the case of "right threading," which will be
used here, each null right link is replaced by a pointer to
the in-order successor of the node containing the thread
link. A recursive characterization is that, for a node, X,
the final in-order node in X's 1left subtree contains a
thread to X. A flag in each node is used to indicate
whether the right pointer is a normal link or a thread. We
assume that the encoding packs the right pointer and its
associated flag into one word. As shown in [24, Section
5.4]1, this implementation is l-detectable and a detection
procedure exists which, for a tree of n nodes, requires O(n)
time and space proportional to the height of the tree
(O(log n) for a balanced tree).

The threaded tree implementation is not 2-detectable,
as illustrated in Figure 3.5. The 1instance on the right
differs in the count and one link from the instance on the

left, and both are properly threaded binary trees.
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Figure 3.5 An Undetectable Pair of Changes to a Threaded Tree
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We would 1like to obtain a 2-detectable, l-correctable
storage structure for a binary tree. As mentioned above for
linear 1lists, the General Correction Theorem of Part II
requires at least two edge-disjoint paths to each node of an
instance, in order to prove that the structure is
l-correctable. Intuitively, this precludes disconnection of
one or more nodes from the instance by a single change.
This clearly implies that there be at least two pointers to
each node, a condition which does not hold for threaded
trees. We note that each node has exactly one non-thread
link pointing to it and either zero or one thread links
pointing to it. In fact, a node has a thread link pointing
to it 1iff it has a non-null left subtree. (If the left
subtree is non-null, the final in-order node in the subtree
contains a thread to the node in question.) Thus, nodes
with null left links have only one incoming edge, so an
obvious ©possibility 1is to link these nodes together, using
the left link field. A tag must be added to each node
indicating the use of the left link, and the list head must
now contain a pointer to the "first" node with a null 1left
link. The nodes could be 1linked 1in any order, but for
obvious reasons, in-order will be most convenient. (We
again assume that pointer and flag are packed into a single
word.,)

This structure will be called a chained and threaded

binary tree (CT-tree). The nodes with logically null 1left
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links, joined in in-order, will be called the chain, and the
links joining them will be called chain links. Figure 3.6
shows an example of a chained and threaded binary tree.

Figure 3.7 is a detection procedure for chained and
threaded binary trees. Its execution time is 0(n) for an
n-node tree. The routine CHECK operates as follows. Given
the header of a purported subtree, T, and a pointer CH to
the first node which should be on T's chain, CHECK sets CH
to the last in-order chain 1link in the subtree, and sets TH
to the thread 1link of the final in-order node 1in the
subtree. Calls to CHECK use the new values of CH and TH to
verify that the tree is properly formed. CHECK also counts
each node encountered and terminates if this count exceeds
N, the expected number of nodes in the tree. The enclosing
routine CHECK-CT simply uses the header to initialise the
call to CHECK, and to verify that the tree 1is properly
chained and threaded to the header.

The detection procedure 1is presented to make more
formal our definition of a chained and threaded binary tree.
However, exhibiting a detection procedure implies nothing
about the robustness of this storage structure, which we
claim is 2-detectable and l-correctable. Given the
2-detectability, and the two edge-disjoint paths to every
node (one using only chains and threads, the other using the
normal tree pointers), the General Correction Theorem states

that the structure is l-correctable.
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procedure CHECK CT(T, N);
pointer T;
integer N;
begin

/* Given a purported tree root T, expected count N, and
expected chain pointer CH, CHECK increments K by the
number of nodes in the tree, and advances CH and TH to

the outgoing chain and thread pointers. It makes
recursive calls to itself to check each of its subtrees.
* / :

procedure CHECK(T, N, K, CH, TH);
pointer T, CH, TH;
integer N, K;
begin
K <- K + 1;
if ID(T) incorrect then error_exit;
if K > N then error_exit;
if LTAG(T) = 'CHAIN' then

/* Check expected chain pointer and update CH.*/
if CH = T then CH <- LEFT(T)
else error_exit
else begin
CHECK (LEFT(T), N, K, CH, TH);

/*Verify proper threading of subtree.*/

if TH "= T then error_ exit;
end;
if RTAG(T) = 'THREAD' then

/*Advance thread pointer.*/

TH <- RIGHT(T)
else CHECK (RIGHT(T), N, K, CH, TH);
end CHECK;

integer K;
pointer CH, TH;

/*Initialise call and verify subtree chain and thread.*/

if T = null or ID(T) incorrect then error exit;
K <- 0; -

CH <~ LEFT(T);

CHECK (RIGHT(T), N, K, CH, TH);

if N"=Kor CH =T or TH "= T then error_exit;
end CHECK_CT;

Figure 3.7. CT-tree detection procedure.
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The following is an intuitive Jjustification of the
2-detectability. Any set of changes which transforms one
correct 1instance into another must either change the number
of nodes in the instance, re-arrange existing nodes, or
replace one or more nodes in the instance with foreign
nodes.

a) Change in number. Deletion clearly requires fewer
changes than insertion, as new identifier fields are
required for new nodes under the wvalid state
hypothesis. Any subtree may be deleted by changing the
count, the incoming chain pointer, and either the left
pointer to a chain or the right pointer to a thread,
for a minimum of three changes. See Figure 3.8(a).

b) Re—-arrangement. Clearly, both the normal tree
structure and the chain/thread structure must be re-
arranged for the result to be a correct CT-tree. The
case requiring the fewest changes occurs when a null
and a non-null subtree are exchanged, leaving the chain
structure intact: the o0ld thread becomes a right
pointer, the incoming pointer to the subtree becomes a
thread, and the outgoing thread of the subtree is
updated, for a minimum of three changes. Updates which
re-arrange non-null subtrees, which require changing
the chain structure, or which re-arrange interior nodes

all require a 1larger number of changes. See Figure

3.8(b).
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c) Replacement. As the valid state hypothesis requires
changing an identifier field for each replacement node,
the minimum c¢learly occurs when a single foreign node
replaces a single node of the instance. Besides the
identifier field, we must change one incoming pointer,
one incoming thread or chain, one outgoing chain or
left pointer, and one outgoing thread or right pointer.
This gives a minimum of five changes for replacing one

or more nodes.

Thus, the minimum number of changes to transform one correct
CT-tree into another is three for re-—-arrangement and change
in number, and five for replacement. Note that such changes
do not necessarily leave the system in a valid state, as
they may leave 1identifier fields and pointers in memory
external to the changed instance. However, this is
undetectable except by exhaustive memory search, which we
exclude by assumption. Since at 1least three changes are
required to transform one correct CT-tree into another, the
detectability is exactly two.

The results obtained here for binary tree storage
structures are summarized in a cost and effectiveness graph
(Figure 3.9). It should be noted that the simple storage
structure with a count is l-detectable but does not have a
linear time, read-only detection procedure, whereas all the
other detectabilities can be achieved by 1linear time

procedures.
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4, EMPIRICAL RESULTS

The preceding section assumed an "intelligent" source
of changes, that is, we calculated the minimum number of
changes to produce an uncorrectable or undetectable error.
In this section we discuss some experiments which were
performed to determine the effect of applying "random"
changes to the encoding of a data structure instance.

Although the change sources are different, the
analytical results do partially predict the results of the
experiments. For example, if a storage structure is exactly
2-detectable, we know that any randomly-selected change or
pair of changes cannot produce an undetectable error, but
that a set of three changes can. The experiments provide an
indication of the probability that a set of three changes
will produce an undetectable error.

It may be possible to calculate such probabilities
directly from the specification of a storage structure, but
at present only empirical results are available. (It should
also be noted that the effect of applying random changes
depends on various parameters which do not have to be
considered when using an "intelligent adversary" model. How
one selects "random changes" is clearly such a parameter.
Less obviously, the size of the instance may also be a

relevant parameter.)
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4,1 Methodology

The basic experimental technique used was to introduce
changes to encodings of data structure instances 1in a
pseudo-random manner and observe the behaviour of detection
and correction routines applied to the changed instances.

The experiments work with data structures that appear
to be on external storage. The most important reason for
this is that external data structures constrain a program to
perform all accesses through read and write routines,
simplifying the experiments.

The data‘structures are actually kept in main storage,

a large buffer being used to simulate a random-access file.

A set of routines called the "IOSYS Pseudo File System,"
developed in order to perform the experiments, provides
support for such simulated files, and provides various
auxiliary services such as long-term storage of simulated
files on real external storage. An important facility
provided is the "mangler" which allows pseudo-random changes
to be inserted in a simulated file.

There aré many ways of introducing erroneous changes in
a data structure instance (i.e., mangling it) in order to
test 1its robustness. Alternative methods of mangling range
from inserting random values into randomly selected

locations to making subtle changes to carefully selected
locations in the instance. If no use is made of knowledge

of the storage structure, subtle combinations of changes
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that could be caused by software containing errors will
occur with very small probability. If full knowledge of the
data structure 1is used, it is likely that the mangler will
only introduce those errors that the programmer thought of.
A full discussion of manglers is beyond the scope of this
paper.

The mangler used for these experiments is a compromise
intended to minimize the disadvantages of either extreme.
It is 1implemented as part of the write function of IOSYS.
It pseudo-randomly chooses whether or not to change the
record being written, which word to change, and by what
amount to change the word. Small increments or decrements
are used for changes rather than arbitrary replacement of a
word, since the <chosen method tends to introduce more
"subtle" changes.

For flexibility, the mangler is driven by a set of
user—-specified parameters which determine: the probability
of mangling a record, the probability density of changes
over the words of a record, and the maximum value to be used
as an increment or decrement. There are presently two
distributions available: uniform, and skewed towards the
beginning of the record (where structural information is
typically stored). The increment to be wused is chosen
uniformly from the 1integers 1in the range -max to max,
excluding zero, All parameters can be specified

individually for the separate simulated files.
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4,2 Detectability results

The purpose of the experiments was to estimate the
probability of random changes producing undetectable errors
in linear list storage structures. A routine "pretended" to
delete records from a linear list by reading and writing
those records which a delete routine would read and write.
As records were written, words in the 1list nodes were
"randomly" altered by adding or subtracting a small value.
When a specified number of changes had been made, a
detection procedure was executed to determine if the
resulting instance could be detected as in error.

Three storage structures were tested in this
experiment: the single-linked, double-1inked, and
modified(2) double-linked implementations described above.
These have detectabilities of 1, 2, and 3, respectively, as
described previously. For single-linked lists, 3000 sets
each of one up to five changes were applied. For exactly
two changes, five pairs of changes produced undetectable
errors; no other number of changes produced undetectable
errors. For both double-linked 1lists and modified(2)
double-linked lists, 3000 sets of one to twelve changes were
applied and no undetectable errors occurred.

Probably the most surprising aspect of these results is
that single-linked 1lists seem more resistant to triples or
quadruples of changes than to pairs of changes. It 1is

hypothesized that this results from the tendency of sets of
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more than two changes to include destruction of an
identifier field in addition to an otherwise wundetectable

set of changes.

4.3 Correctability results

In order to study correctability, two additional

concepts are needed. The first is called the accessible set

of a data structure instance. It is the set of all nodes
which can be accessed by following a sequence of pointers
from the header of the structure. For a correct instance
which does not contain pointers to other instances, the
accessible set 1is simply the set of nodes which are
(intuitively) "part of" the structure. We define the

correctability radius to be one less than the minimum number

of changes which can cause any node to become inaccessible.
No attempt was made to correct the instances found to
be in error, but all the changed instances were checked to
see 1f there was still a path to each node of the unchanged
instance, which is a prerequisite for correction. We are
particularly interested in determining how frequently
disconnections occur once the correctability radius is
exceeded. (In all the examples of Section 3, the
correctability radius is equal to the correctability.) The
following table shows the probabilities of disconnecting an

instance (destroying all paths to a node):
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Number
of
Changes

1

Single-linked

.424
(.406, .442)

.675
(.658, .692)

.841
(.828, .854)

.942
(.933, .950)

.978
(.972, .983)

Double-1inked

0.00
(0.00, .001)

.143
(.131, .156)

.332
(.315, .349)

.510
(.492, .528)

.655
(.638, .672)

Modified(2)

Double-1inked

0.00
(0.00, .001)

.008
(.006, .012)

.020
(.015, .025)

. 044
(.038, .052)

.079
(.070, .090)

(The parenthesized figures are 95% confidence intervals.)

We

structures

correctability radius (which is 0 for single-linked

and 1

radius is exceeded we immediately

number

modified(2) double-linked

can observe

for the first

two

storage

there is a direct practical significance for the

double-1linked

disconnections,

lists). If

precluding

implementation

encounter

correction.

the correctability

significant

experiences

some disconnections as soon as the correctability radius is

exceeded, but there are not nearly as

many. Another

more robust storage structure, not described here, was also

tested.

It has a correctability radius of four, but in

experiment no disconnections were observed for sets of fewer

than fourteen changes,
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changes applied, the number of disconnections was very
small, not exceeding seven disconnections in 3000 trials in

any of the test runs.

5. CONCLUSIONS

In the first of these two papers, we have introduced
the reader to concepts of robust data structures, and have
given an informal analysis of the detectability and
correctability of various implementations of 1linear 1lists
and binary trees. Empirical results indicate that the
effective detectability of a storage structure can be higher
than that which is analytically shown to be possible.

We have seen that commonly-used techniques, in the case
of 1linear 1lists, can be quite effective. However, the
modified(2) double-linked implementation suggests that the
commonly—-used techniques may not necessarily be the best way
of exploiting redundancy.

For binary trees, the authors are aware of no commonly-
used storage structures which are 1l-correctable. The
chained and threaded implementation described here 1is
l-correctable, uses no additional storage (assuming space is
available for tag bits), and can still be updated in time
proportional to the height of the tree.

There are two potential problems with highly redundant
structures which we have not discussed. One is simply that

the increased complexity of the update routines may make
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programming errors more likely. The other 1is the
propagation of erroneous changes by correct update routines.
It appears that in many highly redundant structures the rate
of error ©propagation is directly proportional to the
detectability.

We have attempted to give an informal description of
our approach to improving data structure robustness,
including definitions and examples. While the examples were
concerned only with two simple data structures, we present
more generally applicable formal results in Part II. The
second paper also extends the basic framework to a
restricted class of "compound" data structures, and
discusses some of the design issues related to robust data

structure synthesis.
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