IMPLICIT DATA STRUCTURES
FOR FAST SEARCH AND UPDATE*

J. Ian Munro
and
Hendra Suwanda

Research Report =~ (€S-79-31

Computer Science Dept.
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1

Abstract

We consider representations of data structures in
which the relative ordering of the values stored is implicit
in the pattern in which the elements are retained, rather
than explieit in pointers. Several implicit schemes for
storing data are introduced to permit efficient implementa-

tion of the instructions insert, delete and search. o(N)

basic operations are shown to be necessary and sufficient,
in the worst case, to perform these 1instructions provided
that the data elements are kept in some fixed partial order.
We demonstrate, however, that the upper bound can be reduced
to O(N1/3 log N) if arrangements other than fixed partial

orders are used.

¥ This work was supported by the National Science and
Engineering Research Council of Canada under grant A8237.

1. Introduction

Pointers are often wused to indicate partial
orderings among the keys in a data structure. While their
use is often crucial to the flexibility and efficiency of
algorithms, their explicit representation often contributes
heavily to the space requirement. In this paper our in-
terest 1is 1in structures (and algorithms acting on them) in
which structural information is implicit in the way data are
stored, rather than explicit in pointers. Thus, only a
simple array is needed for the data.

The <classic example of such an implicit data
structure is the heap [7]. A heap, containing N elements
from some totally ordered set, is stored as a one dimen-
sional array; A[1::N]. A partial ordef on the elements of
the array is maintained so that A[i] € A[2i] and A[i] (
Al[2i+1] (see Figure 1). This implicit representation of a
tree permits the minimum element to be found immediately and
a new element to be inserted in 0(log N) steps. Similarly
an element 1in a specified position may be deleted in 0(log
N) steps. Furthermore, the structure has the delightful
dynamic property that no wholesale (global) restructuring is
required as the number of elements being stored changes.
Unfortunately, a heap 1s a very bad representation if
searches for arbitrary elements are to be performed; indeed,

these operations require ©(N) comparisons.

A Heap Viewed as an Implicit Structure

Figure 1:

Another example of an implicit structure is a
sorted list. We can view a sorted list as being constructed
by storing the median of the elements in the middle of the
array, partitioning the elements into two groups (those
smaller and those larger than the median) and repeating the
same process with the smaller elements in the left part of
the array and the larger ones on the right. The implicit
information in this array is a binary tree corresponding to
the process of the binary search (see Figure 2). In con-
trast to the heap, searching an arbitrary element can bDe
done in 0(log N) steps. But an insertion or a deletion may
need 8(N) steps (moves) to restructure the array.

Our major goal in this paper is to develop pointer
free data structures under which the basic operations of

insert, delete and search can be performed reasonably ef-

ficiently.

A Sorted List Viewed as an Implicit Structure for

Performing Binary Search

Figure 2:

2. The Model of Computation

Our model is a (potentially infinite) one dimen-
sional array in which data are stored contiguously even
after deletions have been made. We will draw no formal
distinction between a pointer and an integer (index) in the
range [O,N]. A data structure is then implicit, if only a
constant number of such integers need to be retained
(O(log N) bits). Most, though not all, of our attention
will deal with structures in which N, the current number of
elements in the array (structure), is the only such value
required. We will also suggest two structures which might
be described as "semi-implicit", in that a variable, but
o(N), number of pointers (indices) 1is kept. Our basic
operations on data elements are making comparisons between
two elements (with three possible outcomes <, = and >) and
swapping pairs of elements. Arithmetics are allowed only
for manipulating the indices.

Our measure of complexity is the maximum number of
comparisons and swaps required to perform the operations on
the data structure. This worst-case analysis is in contrast
with a closely related problem considered by Bentley et al
[1]. They demonstrated that O(N log2 N) comparisons and
swaps are sufficient to perform any sequence of N insertions
and searches whén no explicit pointers are kept. That 1is,
in a very strong sense, an average of O(log2 N) steps are

sufficient to perform an insertion or a search on a list of

N elements. They also show that this bound is within a con-
stant factor of being optimal for their problem, provided
the only reordering used is the merging of pairs of sorted
sequences of elements, and that the cost of performing such
a merge is equal to the sum of the lengths of the sequences.
A method of deleting elements is also demonstrated, but this
is at the cost of an extra bit of storage per data item and

a small increase in their run-time.

3. An Implicit Structure Based on a Partial Ordering

The ordering scheme presented by Bentley et al is,
like the heap and sorted list, a fixed partial order (for
each N) imposed on the locations of the array. The elements
occupying the locations must be consistent with the partial
order. It is not hard to see that the more restrictive the
partial order is, the easier it will be to perform searches,
but the harder it will be to make changes to the structure
(because of the many relations that must be maintained).
The heap and the sorted list are two rather extreme examples
demonstrating the imbalance between the cost for searching
and the cost for modification. In this section we present

an ordering scheme which balances these costs.

3.1 The Biparental Heap

As we have noted, the heap is a very poor struc-
ture upon which to perform searches for random elements.
One interpretation of the reason for this difficulty is that
as a result of each internal node having two sons, there are
too many (n/2) incomparable elements in the system. The
other extreme, each element having only one son, is a sorted
list and so is difficult to update. Qur first compromise
between costs of searching and updating 1is to create a
structure with the same father-son relationship as a heap,
and with most nodes having two sons. The difference is in

that in general each node will have two parents.

-6 -

To form this structure the array is partitioned
into roughly V2N blocks: The ith block consists of the i
elements stored from position (i(i-1)/2 + 1) through posi-
tion i(i+1)/2. This enables us to increase or decrease the
size of the entire structure while changing the number of
elements in only one block. Indeed this and similar
blocking methods are wused in all of the structures we
present. The ordering imposed on this structure is that the
kth element of the jth block is less than (or equal to if a
multiset is to be stored) both the kth and the k+1st ele-
ments of +the block j+1. This ordering is illustrated in
Figure 3. The numbers in the figure denote the 1indices of
the array and an arrow may be viewed either as a pointer or
as a < relation. The structure is then analogous to a heap;
however, an element in our structure will typically have two
parents, and so the height of the structure is about V2N.

Taking a slightly different point of view, one can
interpret this structure as an upper triangular of a matrix
(or grid) in which locations 1, 2, 4, 7 ... form the first
column and 1, 3, 6, 10 ... the first row. Furthermore, each
row and each column are maintained in sorted order. Under
this interpretation, the element in position (i,j) of the
triangular grid is actually stored in location P(i,j) =
1/2((i+j-2)2 +i+3j-2) of the array. We are, in fact, simply
using the well-known diagonal pairing function. In the in-

terest of brevity we will present several of our algorithms

L)
LI R N X
- ovur ewen o o

////”\\\\////’\\\\////”{<S; 2N

Figure 3: Biparental Heap

in terms of moving along rows and columns. Note that these
manipulations can easily be performed on the structure
without the awkward repeated computation of the inverses of
P(i,j), and in general without the -explicit evaluation of
P(i,j) at each node visited. This structure is easily
created by sorting the entire list. It is shown in [6] that
(N/2) log N comparisons are necessary for its creation, and
so O(N log N) are necessary and sufficient. We now describe
methods for performing a few basic operations on this struc-
ture.
1. Finding the minimum:
This element is in the first location.
2. Finding the maximum:
The maximum is in one of the last v2N locations.
3. Insertion:
Insertion is performed in a manner analogous to 1inser-
tion 1into a heap. A new element is inserted into loca-
tion (N+1) of the array. If this element 1is smaller
than either of its parents, it is interchanged with the
larger parent. This sifting-up process is continued un-
‘til the element is in a position such that it is larger
than both of its parents. Since the height of the
structure 1s roughly 'V@ﬁ, one sees that at most 2v2N
comparisons and V2N swaps are performed. Furthermore,
we note that if we are to insert a new element into the

structure which is smaller than all elements currently

stored, then every element on some "parent-offspring"
path from location 1 to one of the 1last V2N 1locations
must be moved. This condition holds regardless of the
insertion scheme employed. Hence the scheme outlined
minimizes the maximum number of moves performed in
making an insertion into a biparental heap.

Deletion:

Once we have determined the location of the element to
be removed, simply move the element in position N of the
array to that location. This element then filters up or
down 1in essentially the manner wused for insertions.
Thus, the cost for a deletion 1is at most 2v2N com-
parisons and V2N swaps.

Search:

For this operation, it is convenient to view the struc-
ture as an "upper-left" triangular matrix (see Figure
by. We start searching for an element, say x, at the
top right corner of the matrix. After comparing x with
the element wunder consideration, we will do one of the

following depending upon the outcome of the comparison.

(i) If the element is too large, move left one

position along the row.

The Search Path

Figure 4: A Search Path through a Biparental Heap

- e - - -
-—eem em - -
- e am = =

X+€ whe xXte »te xte

Figure 5: Diagonal and Superdiagonal Containing Elements
Near x.

-9 -

(ii) If the element 1is too small, either move
down one position along the column or if this 1is
not possible (because we are on the diagonal) then

move left and down one position each.

(iii) If the element is equal to x, stop

searching.

Repeating the above process, the search path will
eventually terminate successfully or meet with the left side
of the triangle and be unable to move. The latter condition
indicates an unsuccessful search. Thus, the cost for a

search is at most 2+2N-1 comparisons.

The following lemma shows that, in fact, this 1is

the best we can do on this structure for a search.

2V2N-1 comparisons are necessary to search for an

element in a biparental heap.

Proof:

Consider the diagonal and super-diagonal of the
structure (Figure 5). Suppose the diagonal contains the
largest elements 1in the structure and the super-diagonal
contains elements smaller than those on diagonal but 1larger
than any others in the rest of the system. Note that no
other information about the relative values of the elements

need be known. Suppose, then, that we are to search for an

- 10 -

element known to be smaller than all (except perhaps one) of
the elements on the diagonal, but larger than all (except
perhaps one) on the superdiagonal. There is no choice but

to inspect all elements in both of these blocks. O
In summary, we have demonstrated the following:

Theorem 3.1.2:

Storing N data elements in an array of length N as
a biparental heap and retaining no additional information
other than the value N, it is possible to maintain a data
structure under which insertions and deletions can be per-
formed in 2V2N comparisons and V2N swaps, and searches in

2V2N-1 comparisons.

- 11 =

4, Lower Bounds

Snyder [5] has shown that if the representation of
a data structure on N elements is "unique", then at least

one of the operations insert , delete or search requires

QG/N) comparisons or "changes". Snyder's model, however,
differs somewhat from ours in that he assumes the use of ex-
plicit pointers in his representation. This implies, for
example, that if the maximum element in a sorted list is to
be replaced by one smaller than any of the elements in the
list, only two pointer changes have to be made to return to
the original form. Under an implicit ordering, every ele-
ment would have to be moved to preserve this property. In
this sense, Snyder's 1lower bound can be construed as
somewhat stronger than necessary for our purposes. On the
other hand, he assﬁmes the structure is effectively stored
as a tree of bounded degree, and in that sense his 1lower
bounds are too weak. We can, however, demonstrate the same
lower bound as Snyder's Q&/N), for the class of implicit
data structures which are based solely on storing the data
in some fixed partial order. This result is, then, related
to but incomparable with Snyder's. Observe that the struc-
tures discussed in the preceding sections are based on a
fixed partial order.

For simplicity let us assume that we are to per-
form the basic operations of search and change (i.e., dele-

tion follows by an insertion) on our structure. We 1insist

- 12 -

on pairing a deletion with an insertion only to eliminate

the problem of the structure changing its size.

Theorem 4.1:

If the only information retained about an implicit
data structure, other than N, the number of elements it con-
tains, 1is a fixed partial order on the locations of the ar-
ray. Then, the product of the maximum number of comparisons
necessary to search for an element and the number of loca-
tions from which data must be moved (swaps) to perform a

change is at least N.

Proof:

Consider the directed acyclic graph whose nodes
correspond to the locations in a structure, and edges cor-
respond to orderings between elements in our locations as
specified by the partial order wunderlying the storage
scheme. Let S be the largest independent set in this graph.
It is quite possible that the elements stored in the 1loca-
tions corresponding to S are of consecutive ranks among the
elements stored in the structure. Hence 1in searching for
any of these elements, no comparisons with any elements out-
side S can remove from consideration any in S. Therefore,
the number of elements in S is a lower bound and the number
of comparisons necessary to perform a search on the struc-
ture. Now suppose the elements of the longest chain, C, are

as small relative to the other elements in the structure as

- 13 =

is consistent with the partial order. This implies that if
there are k elements which must be smaller than a given ele-
ment in the chain, then the particular element is the k+1st
smallest in the structure. Now suppose we are to replace
the smallest element in C (which is the smallest element in
the structure) with one greater than the largest element 1in
C. This implies that each element in the chain is in a
position which requires it to have more elements which
precede it be in specific locations than there are to be
elements preceding it in the entire structure. Hence, every
element on the given chain must be moved (including the
removing of the minimum element). The theorem now follows
since the product of the length of the longest chain and the
size of the largest independent set must be at least N (sge

for example, [31]). 0

Corollary 4.2
O&/N) swaps or comparisons are necessary and suf-

ficient to perform the operations insert , delete and search

on an implicit data structure in which the only information
about the structure 1is a fixed partial order on the array

locations and the size of the structure.

Broof:

Follows from Theorems 4.1 and 3.1.2. 0

- 14 -

A related result on lower bound has been obtained
by Borodin et al [2]. Let P(N) be the number of comparisons
necessary to build a partial order, such that a search can

be performed in at most S(N) comparisons. They show

Lemma 4.3:

P(N) + N log(S(N)) » (1 + o(1)) N log N

Since P(N) .is basically N log N minus the
logarithm (base 2) of the number of total orders consistent
with the partial order on N elements (#(N)), we have a rela-
tion between this number and the search cost. Combining
this lemma and our theorem, and letting DI(N) denote the
number of moves required to make an insert/delete pair on a

structure containing N elements, we obtain:

Corollary 4.4
2N 1og(S(N)) + N log(DI(N)) - log(#(N)) > (1+0(1)) N log N.

Proof:
By Theorem 4.1, we get S(N) ¥ DI(N) > N, or
log(S(N)) + 1log(DI(N)) > log N. The corollary now follows

from lemma 4.3. ‘ o

It 1is perhaps worth noting that the triangular
grid (a 2-dimensional grid) gives the best balance we can
get between the cost for searching and the cost for inser-
tion/deletion. By going to a one dimensional grid, which is

a sorted 1list, insertion and deletion will become more ex-

- 15 -

pensive and searching will become cheaper. Going to three
or more dimensions reduces the cost of modification at the

expense of retrieval cost.

- 16 -

5. 0On Structures Not Using a Fixed Partial Order

In this section, we present several implicit (and
"nearly implicit") structures wunder which the product of
search time and insert (or delete) time is less than N. The
main trick employed is to store blocks of elements in an ar-

bitrary cyclic shift of sorted order.

5.1 A Simple Structure

Again the array 1is partitioned into blocks such
that the ith block contains i elements. The order main-
tained is much more stringent than that of the biparental

heap. We insist that

(i) all elements in block i be less than or equal

to all elements in block i+1;

(ii) the elements in each block be stored in a

cyclic shift of increasing order.

By condition (ii) we mean that for some r (< i), the r
largest elements of block i are stored, in increasing order,
in the first r locations of the block. The (i-r) smallest
elements are stored (in increasing order) in the last (i-r)

location of the block. An example is shown in Figure 6.

We now describe methods for performing basic

operations on such structures:

{
1 3 2 6 4 5 9 10 7 8 o o o o
1 2 3 4. 5 6 7 8 9 10
< ~ ¥Y2N Blocks >
Figure 6: Each Block Stored in a Cyclic Shift of Increasing Order
F M L F M L
L . h | l l | I 1
[!] 1 I | Tyt 1
min min
Figure 7:

Finding the Minimum in a Cyclicly Shifted Sorted List

- 17 -

Finding the minimum:

Again this element is in first array location.

Before discussing other searches we must describe
a technique for finding the minimum of a block which is
in cyclicly sorted order. The method 1is a modified
binary search. Figure 7 illustrates the problem of

determining the minimum value in the interval [F,L].
The search procedure is described below:

If [F,L] contains only two elements, the minimum

is found by a simple comparison. Otherwise,

M := [(F+L)/2]

if element(M) < element(L) then min is in [F,M];

apply the procedure recursively.

if element(M) > element(L) then min is in [M,LI];

apply the procedure recursively.

It can be shown that this process requires at most

[log(i=-1)1+1 comparisons if i is the size of the block.

Finding the maximum:

The maximum is in one of +the 1locations in the 1last
block. By using the modified binary search, we can find
the minimum element of that block; the maximum is in the

immediately preceding location (or in location N, if the

- 18 -

block maximum is 1in the first location in the block).

Hence only [log&/2ZN-T)1+1 comparisons are required.

3. Search:
Our basic approach is to perform a simple binary search
until it is determined that the desired element lies 1in
one of two consecutive blocks. Next a modified binary
search is performed to determine the minimum element in
the larger block. Based on this outcome of a comparison

between this minimum and the desired element, we either

(i) perform a (cyclicly shifted) binary search on

the larger of the two candidate blocks.

or (ii) determine the position of the minimum element
in the smaller block, and perform a binary search

on that block.

Lemma 5.1.1

In the worst case, searching requires at most

2 log N + 0(1) comparisons.

Proof:

Let k and k+1 be the sizes of the two consecutive
blocks. The number of comparisons in finding these two
blocks is at most (log N - log k). Locating the minimum
value in the 1larger block requires at most log k - 1 com-

parisons. Completing the search requires at most

- 19 -

log k + 1 + log k comparisons. Thus, the entire process

costs at most log N + 2 log k + 2 comparisons. This again

is bounded by 2 log N + 3 comparisons.)

4,

Insertion:

Using the basic strategy suggested for performing a
search, the block into which a new element should be in-
serted can be found in log N + O0(1) comparisons. A
further +2N (at most) moves suffice to insert the new
element into its proper position, remove the block max-
imum and shift the elements which lie between the new
element and the former location of the Dblock maximum.
At this point, we see that for each block larger than
the one in which the insertion was made, we must perform
the operation of inserting a "new" minimum element and
removing the old maximum. Fortunately, the new minimum
can simply take the place of the o0ld maximum and no
further shifting (within blocks) 1is necessary. This
transformation can be performed on a block of i elements
in log i + 0(1) comparisons and one swap. Thus, the en-
tire task can be accomplished in about VN/2 log N +

04/N) comparisons and 064/N) moves.

Deletion:
Deletions are performed in essentially the same way as

that outlined for insertions.

- 20 -

Summarizing the above results and observing that
once the structure is formed, only O0&/N log N) comparisons

are necessary to complete a sort of the list, we have shown:

Theorem 5.1.2

Storing N data elements in an array of 1length N,
and retaining no information other than the data and the
value of N, it is possible to perform searches in 2 log N
comparisons and insertions and deletions in/N/2 log N +
04/2N) comparisons and swaps. N log N - O(N) comparisons

are necessary and sufficient to create this structure.

At this point, it is natural to ask whether or not
we can simultaneously achieve the 0(log N) search time of
the rotated sort structure and the O0G&/N) modification cost
of the triangular grid. In the next section we show that

this is possible with o(N) additional storage.

5.2 Improving Insertion Time with Extra Storage

5.2.1 With+/2N Pointers

Observe that the 6(4/N log N) behaviour of the
above technique is due to the search, in each block, for the
(local) maximum. By retaining a pointer to the maximum of

each block, the insertion and deletion times are reduced to

0a/N).

- 21 -

5.2.2 Batching the Updates with a Small Auxiliary Map

Another approach 1is to "batch" insertions and
deletions. This can be accomplished with log N extra loca-
tions to store the pointers (indices) to the array and a bit
to indicate whether insertion or deletion is to be per-
formed. A total of 0(log2 N) bits are required for this
modification map, furthermore, it is possible that log N ex-
tra locations in the array are used for elements which have

already been deleted. We now describe the basic operations.

1. Deletion:
Put a pointer (in the modification map) to the key to be

deleted.

2. Insertion:
Search the map to see if the "new" element is actually
in the array but to be deleted. If this is the case, we
just remove the corresponding entry in the map. Other-
wise, we put the key in the location N+1 (and increment
N at the same time) and keep a new pointer to this loca-

tion in the modification map.

3. Search:
We search the map first, if there is an entry pointing
to the desired element in the array, the answer will
depend on the extra bit denoting a deletion or an inser-
tion. Otherwise, we search on the structure by using

methods described in the previous section.

- 22 -

When the map is full, we sort the newly inserted and deleted
keys and then, the changes are made in a single pass. This
restructuring will require OWN log N) operations, and so
can be "time-shared" with the next log N insert/delete com-
mands.

At this point, one is also inclined to ask whether
of not both the search and modification costs may reduce to
below 6(WN). The answer is in fact positive. This can be
achieved by combining the ideas of a biparental heap and the

rotated sorted list as described below.

5.3 A Biparental Heap with Rotated Sorted Lists

In this section we will present a structure on N
elements which allows us to perform a search, a deletion or
an insertion 1in O(N1/3log N) comparisons and swaps. Again
the array is partitioned into blocks. The ith block is
stored from 1location (i-1)i(2i-1)/6 + 1 through location
i(i+1)(2i+1)/6, and is divided into i consecutive subblocks
containing i elements each. The subblocks correspond to the
elements (nodes) of the biparental heap. Note that the
height of the structure is about (3N)1/3, which is equal to
the number of blocks. The ordering imposed on this struc-
ture is that of a biparental heap whose elements are rotated

lists. More precisely,

(i) the elements in each subblock are stored in a

cyclic shift of increasing order.

- 23 -

(ii) all the elements of the kEP subblock of the
jth plock are less then all elements of the kth

and k+15t subblocks of block j+1.

As in the case of the biparental heap, we note that moving
along rows and columns from subblock to subblock can be done
easily without computing the pairing function and its in-
verses, provided three or four parameter are kept. qu we

describe how to perform the operations:

1. Finding the minimum:

Again this element is in position 1.

2. Finding the maximum:
The maximum is in one of the 1last (3N)1/3 subblocks.
The maximum element in a subblock can be found in
(log N)/3 + 0(1) comparisons, and so the maximum ele-
ments in the entire structure can be found in

(N/9)1/3 10og N + 0(N1/3) comparisons.

3. Insertion:
By combining methods for the grid and the rotated lists,
we insert the new element into the N+15t position of the
array, which is part of a subblock. Since the subblock
is cyeclicly sorted, about 2/3 log N comparisons and
(3N)1/3 swaps are required in the worst case to insert
the new element into the subblock. As in the biparental
heap, if the new element is smaller than either of the

maximum elements of its parents, it is interchanged with

- 24 -

the 1larger one. This process continues (as in the
biparental heap) until the imposed ordering is restored.
Since the height of the structure is about (3N)1/3,

0(N1/3 1og N) comparisons and swaps are in fact used.

Deletion:

Similar to insertion.

Search:

Basically searches are performed in the same manner as
described for the biparental heap. The key differences
are that a comparison with a single element in the grid
is replaced by a (modified) binary search to find the
minimum (and hence the maximum) of a subblock, and so
the decision to move left along the row or down along
the column will need more comparisons. Again, we start
searching for an element, say x, at the top right corner
subblock of the matrix. After finding the minimum and
maximum of the subblock under consideration, we will do

the following:

(i) If x 1is less than the minimum element, move

left one subblock along the row.

(ii) If x is larger than the maximum element, move
down one subblock along the column, if this cannot
be done (on diagonal) then move left and down one

subblock each.

- 25 -

(iii) If x is in the range of this subblock, then
do a binary search to find x. If successful, then
stop searching; otherwise, move left and down one

subblock each.

This process is repeated until either x 1is found
or the required move cannot be made. In this manner a

search can be performed in O(N1/3 log N) comparisons.
Hence we have

Theorem 5.3.1

Storing N data elements in the first N locations
of an array and retaining, in addition to data, only the
current value of N, it is possible to perform each of the
operations 1insert, delete and search in o(N1/3 1og N) com-

parisons and swaps.

We note that the easiest way to initialise the
structure 1is to sort the N elements of the array. The cost
of doing so is within a (small) constant factor of that of

optimal method.

- 26 -

6. Conclusion

We have drawn attention to implicit data struc-
tures as a class of representations worthy of study. A new
applicafion of this <class has been demonstrated by using
them to maintain structures in which insertions, deletions
and searches can be performed reasonably efficiently. Table
I summarizes the behaviour of algorithms acting on the im-

plicit structures we have proposed.

Table 1:

Structure Search
Biparental heap 6 (VN)
Rotated list 8 (log N)
Rotated list with

block pointers 9 (log N)
Rotated list with

auxiliary table 8 (log N)
Combination of Biparental 1/3

heap and rotated list oN log N)

Insert/Delete

Extra Storage

6 (VN)

0(/N log N)

0(¥N)

o(VN)

1/3

o Log N)

log N bits

log N bits

0(/N log N) bits

0(log’N) bits

0(log N) bits

Costs of the Implicit Structures Discussed

7.

(11

(2]

[3]

[4]

(5]

(61

£71

- 27 -

References

Bentley, J.L., D. Detig, L.Guibas, J. Saxe, "An Op-
timal Data Structure for Minimal Storage Dynamic

Member Searching", unpublished manuscript.

Borodin, A.B., L.J. Guibas, N.A. Lynch, A.C. Yao,
"Efficient Searching via Partial Ordering", un-

published manuscript, (April 1979).

Bondy, J.A., U.S.R. Murty, Graph Theory with Ap-

plications , American Elsevier Publishing . Co.,

1976.

Knuth, D.E., The Art of Computer Programming , Vol.

III, Sorting and Searching, Addison Wesley, 1973.

Snyder, L., "On Uniquely Representable Data Struc-
tures", Proc. 18th IEEE Symposium on FOCS (1977),

pp. 142-146.

Suwanda, H., Ph.D. Thesis , Dept. of Computer

Science, University of Waterloo (in preparation).

Williams, J.W.J., "Algorithm 232: Heapsort", CACM

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

