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1. Introduction

The field of programming has undergone a fruitful period of
systematization in the last ten years. It is now generally accepted that
specification is an integral part of programming. The specification of the
data over which programs operate is a central problem in programming. At
the present, the problem of data specification deserves special attention
because it has been recognized that data abstraction is a powerful mechanism
to deal with the complexity of large programs [20]. The formalization of
data structures and data types can lead both to the establishment of new
theories of programming (e.g., [26] and to the development of powerful
programming methodologies.

There are many ways of looking at the data aspects of a programming
problem under consideration. These different ways of looking at the same
"reality' suggest the use of different formal methods to describe the data
phenomena under observation. (They also suggest different styles of
programming.) A methodological problem arises in connection with this
fact. The formal specification methods vary in terms of the techniques they
use (e.g. different mathematical tools) and in terms of the amount of
detail they want to model, that is, their level of abstraction. The former
variation results in what we will call different views of the same data
reality. The latter variation gives rise to what we will term the level of
abstraction of the description. A certain amount of confusion exists today
in the literature when the data aspects of programming methodologies and
programming languages are compared. The same thing happens when the 'power"
of data specification methods is discussed by different authors. These

confusions often arise because of the lack of distinctionbetween these two



criteria for analyzing data specification methods. These problems served
as motivation for the present paper.

The need to provide a systematic classification of the existing
specification methods was first realized by Liskov and Zilles [21,22]. 1In
their work some specification methods are classified according to the
different ways in which the datauniverses under description are being
observed. In the first version of their paper [21] an attempt was made to
classify the methods according to their degrees of abstraction. (This
criterion was dropped in the second version [22]). We believe that the

present work can contribute further to this effort of systematization.

We will resurrect the concept of '"level of abstraction' and, together
with the concept of '"view'", we will provide two (orthogonal) measures

by which to classify data specification methods. We will show that,
according to our classification approach, methods which were said

to have different characteristics in [22] below in fact to the same

class of methods. Our different classes of methods, when compared
uniformly (at the same level of abstraction), describe different but
compatible views of the same data objects. This compatibility can be
formally proven [28}. Data, in the present work, will be considered a set
of symbols with certain common physical and logical attributes that belong
to a certain language. A set of (elementary) data plus the operations and
relations defined on them constitute a (primitive) data type. A data
structure is obtained from a set of objects belonging to a (primitive)
data type by the introduction of a relation between them. This relation is
usually called the accessibility relation. Different classes of data

structures are defined by imposing restrictions on the definition of the



accessibility relation. 1If we define operations and relations over a set
of data structures then we have defined a data type. Of course, these data
types can in turn be used as domains to get new kinds of déta structures,
etc. The above definitions are adequate as background information for the
present work. A more formalized version can be found in [28].

We start the paper by illustrating through examples the role of
levels of data abstraction in formal specification. We then propose a classi-
fication for the data specification methods. We emphasize the point that
the different and complimentary views of the same data reality can be dis-
tinguished uniformly by using the different classes of methods at the same
level of abstraction. We apply different specification methods to the
data structure binary tree of integers to illustrate the criterion used in
the classification. At the end we present a concise survey of the literature
on formal specification of data structures and data types to indicate how the
rroposed classification can help the assessment of work in the area. In the

conclusions we point out directions for further research.



2. Levels of Data Abstraction

In this section we will try to illustrate through an example the
role of the concept of levels of abstraction in the specification of data
structures and data types. The concept of abstraction has at least two
interrelated meanings. In fact, abstraction can be thought of as an
intellectual "mechanism" which allows us to express the relevant facts
(eliminating the irrelevant details) about the universe which is the object
of our studies. We express these facts in accordance with some criteria
or objective. Abstraction is also a process of generalization based on
common factors which can be observed in different phenomena.

The second meaning attributed to abstraction does in fact presupposes
the first. That is, previous to the process of generalization (verification
of common factors) there exists the process of extraction of relevant
information about each particular phenomenon (in accordance with a given
criterion). The relevance of a given factor is attributed by the final
objectives of whomever is conducting the studies.

Let us assume, as an example, that we are attempting to describe
data structures focusing exclusively on the characteristics of access~
ibility of the components of each particular structure. By using this
criterion, it is possible to say for every structure that each of its
components is accessible from another component if there exists a
connection between them (i.e., if there is a path that connects them).
Note that by zooming in on the accessibility characteristics of the data
structures, we overlooked aspects such as the constituent data types of
the structure and the common characteristics of the class of structures

under investigation (tree, string, ring etc).



Once we have specified the characteristic of accessibility, it is
possible to obtain general properties for the class of all such data
structures. For example, it may be stated that for every data structure
there must exist (at least) an initial component from which all its
components are accessible. We will also be interested in the properties of
the operations and tests (and how these interact with the accessibility
relation).

As the example illustrates, the final product of the process of
abstraction is a formalized description which will provide a better under-
standing of the reality under study and which will allow us to infer new facts
from the facts we already knaw.

Even when we focus on the same characteristics of the universe which
is the object of our study we may use different levels of abstraction to
express what we consider to be the relevant facts about thisuniverse. In
other words, the objective of our study will dictate which details are
relevant and which are not.

We are now going to illustrate this fact through an example.

The example consists of a comparison between two descriptions of the class of
data structures usually called linear list. The approach we take will be

an operational one. That is we intend to define abstract machines for
manipulating these structures. In both examples, we assume the existence of
some previously given abstract machines to manipulate "simpler' data
structures.

Let us suppose that for the first example, we haye a string mani-

pulation machine with the following operations:



(i) a binary operation x.y to concatenate strings;
(ii) a binary operation value to determine the value
from I' at position n in string x;
(iii) the empty string ¢;

(iv) the test empty to test whether a given string is «.

We can define an abstract machine for linear lists over the values
I' (the usual idea of singly or doubly linked linear structures containing
values from I' at each point in the 1list). The data structures of linear
lists are just pairs of the strings of the above machine and a positive
integer value. This value is meant to indicate some position in the string.
We can define the operations and tests of this new machine in terms of the

operations of the string machine as follows:

(1) dinsert (a,<f,n> = <"a":%,n+1> where a ¢ I' and "a" is
the unit string formed from the value a;
(ii) front k¢,n>) = value (1,%);
(iii) next (<&,n>) = if value (n+l,8) = error
then error

else <f,nt+1>

(iv) previous (<&,n>) if n=1 then error
else <¢,n-1>;
(v) 1linempty (<&,n>) = empty ().

According to Guha and Yeh [13] a linear list structure L over an

address space A is a 6-tuple L = (N,I',I,M,Z,6,E), in which



(1) N c A;
(ii) T is a finite set of information items containing
A the null item of information;
(iii) ¥ < T is a data set;
(iv) M is a subset of the set of nodes N x T such
that for every two nodes, (nl,al) and (n2,a2)

in M, n.=n, implies a for every n € N there

1 72

exists a node (n,a) in M;

1222

(v) Z is a finite ordered set of connecting labels;

(vi) 6 is a partial function, called the connection
function, 6: M x Z - Nj;

(vii) E c N is a finite set of entry points with the

following additional characteristics, 1 < #E < 2, 1 < #Z < 2.

There exists a linear order ml,mz,...,mk over the nodes of M such

that
(a) my is an entry point and is called the front node;
(b) m  is the final node and also an entry node if #E=2.
If Z = {Zl}, then ezl(mi) =m g for 1 < i £ k and the
value of © (mk) is either e or m,, where © is a function 6,: M > M
21 1 zj J

and e is the empty node.

: -1

If Z = {zl,zz}, then 6 =6 . For l<i<k, m eNxzZif
2 21 ,

e Nx (I'-2), my is called the list head.

The latter characterization of linear list is proposed at a lower

™

level of abstraction, compared to the first one. To achieve different



levels of abstraction the different authors resort to different methodologies.
It must be noted also that the objectives of the definitions differ

slightly. In fact, the second approach uses the term linear list to refer

tc structures usually called circular lists (ez(mk) = ml), singly or doubly
linked lists (Z = {zl,zz}) and circular doubly linked lists. We can remove
the circularity by requiring that #E=1 and thus conform to the above
definition. We can require the existence of double links by requiring

zZ = {zl,zz}. We can define the linear list operation insert on this machine
as a tranformation from one structure L, = (N,F,Z,Ml,z,él,El) to another

1

L2 = (N23F,23M2’Z,529E2) .

(i) insert (a,Ll) = L2 where

(a) N2 N1 U {nz} and nzéNl;

(b) M, =M U (nz,a);

() 6, =26, u {(((n,,a),z2 )y )y (((n,,a),z ),c)}
where E1 = {nl};

(d) E2 = {nz}.

As for the other operations:

(ii) front (Ll) = a where (nl,a)e: M and E1 = {nl}.

(iii) next (L;,(n,a)) = §,((n,a),2,);

(iv) previous (Ll,(n,a)) = 61((n,a),z )s

(v) linempty (Ll) = if M = ¢ then true else false.




We note that the level of abstraction in the two definitions is a consequence
of the complexity (or degree of detail) in the definition of the underlying
machine. It is clearly easier to think in terms of strings of symbols than
in terms of storage locations, contents of locations, and pointers.

We have ignored in the above characterizations of linear lists the
definition of the accessibility relation. 1In the first case, the operations
front, next and previous can clearly be used to define this relation whereas
in the latter case, a more direct (but more complicated) definition can be
defined in terms of 6, the connection function.

To emphasize the issue of levels of abstraction, we will describe

the "linear list" given intuitively in figure 1, using both formalizations

@-——‘ a \ zl*, b \ zl: c \-—-il-m d L-z\l

Figure 1
The "name" of the list in figure 1 as a structure of the abstract

machine defined in terms of strings is <abed,1>. (Or, it could be <abed,k> for
any k > 0.)
The '"description" of the list in figure 1 using the style proposed

in [13] reads as follows

{1,3,5,7}, T = {a,b,c,d,A}, © = {a,b,c,d}

=
I

Z =.{Zl,22}, E =v{l}, M =‘{(1,3),(B’b)9(5>C)9(7’d)}



and

8((1,a),2,) =

6((l,a),zz) =

6((3,b),zl)

§((3,b),z,) =

6((5,C),zl) =7
6((5,C),zz) =3
§((7,d),2z;) = e

5((7,8),2,) = 5

10.
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3. Formal Specification Methods

The methods for the specification of data objects may be classified
into two groups: dynamic (explicit) and static (implicit) methods. The
dynamic methods are those which describe classes of objects by considering
essentially how these objects get transformed within the same class. The
static methods describe the objects and operations of a certain class
implicitly without concern about how an object gets tranformed into another.
The dynamic methods can be further subdivided‘into operational and generative
methods. The static methods can also be subdivided into intentional and
extentional methods.

If all methods above are used to describe the same reality, a better
understanding of the object under study can be achieved. In this sense the
above methods are complementary to each other [28].

To 1llustrate the above classification of methods we will character-
ize intensionally, extensionally, operationally and generatively the data
type binary tree of integers.

We will use a first order theory to provide the intentional
description. For the operational description we will use a set of algorithms
which operate over the data structure binary tree of integers. The
generative description makes use of grammars both to assign names to the
trees that constitute the data type and to transform objects of the type.
Finally, we use graphs to provide an extensional characterization of

binary trees.
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3.1 An Intentional Specification

The first order language L to be used for the axiomatic description
of the type binary tree, contains the following non-logical symbols
L = {A,c,e,d,k,A,t,a,s} U {N}

where

(1) A,) are symbols for constants (the empty tree and the null atom);
(ii) < is a binary predicate (subtree);
(1ii) c¢ is a ternary functional symbol (construct);
(iv) e,d,k are unary functional symbols (extract left subtree,
extract right subtree and visit the root);
(v) t is a unary predicate (tree);
(vi) a is a unary predicate (atom);

(vii) N is the set of natural numbers.

The axioms for the intensional characterization of binary trees of integers

can be expressed as follows:

1. a(A) A t(A); 1la. a(n) for all n > 0y
2. Ux(t(x) » x # A > x £ A);
3. VxVyVz (t(x) A t(y) A t(z) » (x<y+>y<z>x<2));
4. Vx(t(x) - x < x)3;
5. Vx¥yVz (a(z) A t(x) A t(y) > x < c(x,2,y) Ay £ c(x,2,¥));
6. VxVyVz (a(z) A t(x) At(y) Ax# A Ay #AA

z# ) > e(c(x,z,y)) = x A d(e(x,2,y)) =¥

A k(c(x,2z,y)) = 2);

7. (e(h) = A Ad(A) =LA A k() = 2).
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The meaning of the axioms can be explained as follows:

1. X is an atom and A is a tree; la. every natural number is an atom;

2., 1if x is a tree and x is not A then x is not a subtree of A;

3. 1if x is a subtree of y and y is a subtree of z, then x is a
subtree of z;

4, x is a subtree of itself;

5. 1if z is an atom and x, y are trees, then x and y are subtrees
of c(x,z,y);

6. if x and y are non-empty trees and z is a non-empty atom, ,
then x and y are the left and right subtrees of c(x,z,y),
respectively and z is the root of c(x,z,y);

7. the left and right subtrees of A are A and the root of A has

atom A.

3.2 An QOperational Specification

We will consider the following operations for the description of
the type binary tree of integers: ¢ (construct a tree), e (extract left
subtree), d (extract right subtree) and k (visit the root). We include the
relation < (is a subtree of) as part of the specification. The semantics
of the operations and of the relation will be given through algorithms
expressed in an Algol-like language. These algorithms take as input strings
of symbols which correspond to expressionsformed from the above operations
and the < relation followed by the appropriate arguments. The arguments
are canonical names. A binary tree name is called a canonical name if the
only operation symbol that appears in the name is the c¢ symbol for "construct

a binary tree'.
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Example:

_C_(E(A,ZF,A) ,5,2(/\,9,/\)) .

The operation c acts over three arguments: the first and the third
are binary trees and the second is an integer. The operations e, d and k
have a single argument: a binary tree. The first two operations produce
binary trees while the third returns an integer. The relation < has two
binary trees as arguments and returns either true or false.

We assume the availability of the primitive functions Argl, Arg2
and Arg3 in the language used to express the algorithm. They extract the
first, second and third arguments respectively (if they exist) when an
expression Arg in terms of the above symbols is given.

In what follows we present the algorithms that specify the semantics

of the type binary tree of integers.

begin read (arg); operation « lst symbol of Arg;
case operation of
'c': (connects to the left EE.(ArgZO&rg)) with
tree (Argl(Arg)) and to the right with

tree (ArgB(Arg)));

'e': (if Arg = A then (generate null tree)
else tree (Argl(Arg)));
'd': (if Arg = A then (generate null tree)

else tree (Arg3(Arg)));
'k': (return Argz(Arg));

'<': rel (Arg)

end;



15.

rel (Arg) begin

if Arg (Arg) = A then return (true);

if Arg; (Arg) # A A Arg, (Arg) = A then

return (false);

if Arg, (Argl(Arg)) # Arg, (Argz(Ar'g)) then
return (rel(Arg, (Arg),Arg, (Arg,(Arg)))
v rel(Arg, (Arg),Arg, (Arg, (Arg))));
if Arg, (Arg,(Arg)) = Arg, (Arg,(Arg)) then
return (rel(Arg, (Arg, (Arg)),Arg, (Arg, (Arg)))
A ge_l(Arg3(Arg1 (Arg)),Arg3(Arg2(Arg))))

end;

tree (Arg) begin
if Arg = A then return (null tree)

else return (tree with

at (ArgZ(Arg)) connected to the left
with tree (Arg,(Arg)) and to the right with
tree (Arg,(Arg)))
end;
at (Arg) begin generates a node whose content = Arg;

return end.
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3.3 A Generation Specification

We will provide a grammar whose alphabet of terminal symbols is
given by

{_C_’E9__d_s---,A9( ] )3 s } U"N',

where 'N' is the alphabet which denotes all the non-negative integers.
From 'N' we will get the names of integers to ''label' nodes of all binary

trees which constitute the corresponding data type.

G, = <N,T,P,s>

where:

(1) T = {c,e,d,A,(, ), , } u'N";

(ii) N = {s}.
(iii) P:
s > A
| ¢ (s,"'N'",s)
e ()
| d (s)

With the above grammar we can, for instance, generate the following

strings of symbols:

s » c(s,"N",8) > c(h,4,8) » c(h,4,c(s,'N",8))

> e(h,b,c(h,5,0));

s » c(s,"N",8) ~ c(e(s),'N',s) -

clee(s, 'N',8)),'N",8) > c(elc(s, 'N',8)),"'N',c(s,'N',s))

3 cle(e(d,3,0)), 4 ,c(h,5,0)).
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The above two names denote the same structure, which can be represented

graphically as in figure 2:

N

I \
5
- 1
4 gz

Figure 2

To fix the subset of canonical names in binary trees, we use the
grammar G2:
G, = <N,T,P,s>

2
where:
(1) T={Ac,( ), , }u'N;
(ii) N = {s};
(iii) P:

s>A | c (s,'"N'",s).

To transform a non-canonical name (strings in which the symbols
eord appear) into a corresponding canonical name (equivalent under the

chosen interpretation) we provide the following sets of transformations.

(Note X is the empty string.)



e transformations:

eh > AH F X » XF n>0
n n

H) > A F)~>)F _; w0

e( ~ e )FO > )GO

ec ~ E GX~>G n=0
n n

Foo - cF, Gn) - Gn—l n=0

FOA +-AG1 G—l > A

with X = {A,c,'N', , };

d transformations:

dA + AH I(>1,, =0
H) + A I)~>1I _, n0
d( »~ d Lz > L
dc =~ D W - WJO
D( ~ I0 JnX > XJn n=0
LX~> T, n>0 Jn( > (Jn+l nz0
I,Y ~ I, J) ) 4 w0
Ip L Jg) > I
I A
where:

X = {A,c,'"N", ,}

Y = {A,c,'N'}

z={'N", ,}

W= {c,A}
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Operations on this type are defined in terms of the parse trees of
grammar G2. Thus, for example, we can construct the parse tree corresponding
to the tree c(x,n,y) from the parse trees '1‘x and Ty of x and vy,

respectively, according to the diagram

/S\
. 1™
éy_\_
Similarly, we can define the operations e and d as extracting the second and
fourth subtrees, respectively, of a tree of the above form. The relation <

can be defined by: x < y iff the derivation tree of x is a subtree of the

derivation tree of y.

3.4 An Extensional Specification

The specific extensional characterization to be presented in this
section makes use of graphs a restriction of which is used to model binary

trees. The graphs are labeled directed graphs, defined by the 6-~tuple

(N,NL’EL’\)’(S’G‘)

where:
(i) N is a non-empty finite set denoted by positive
integers;
(ii) NL is a non-empty finite set of node labels;

(iii) EL is a finite set of edge labels;
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(iv) v is a total function which assigns a label to
each node of a graph
v: N - NL;
(v) &8 is a total function which defines by adjacency
the structure of the graph
§: N x EL » N u {)};
(vi) o is a node, o ¢ N, such that for every n ¢ N there
exists a sequence of nodes (nl,...,nk) with n, =a
and n, *n such that for 1 < i < k there exist edge

k

labels e; € EL such that G(ni,ei) =0

The concept of connectivity between nodes is defined through the

predicate k as follows:

k(nl,nz) et S(nl’el) =mn, Vv G(nl,ez) =mn, v

3n'(6(n1,el) n' A k(n',nz)) v

En'(é(nl,ez) n' A k(n',nz)))

with the following additional relations to define binary tree structures:

(a) Vn, Vn, (-n((kil(nl,nz) v kil o k(ng,n)) A

1 1
(kel(nl,nz) v ke2 o k(nl,nz)))-

(i.e., a node is not both a left and right descendent of another node);
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() Vn (k- (a,m) v k' 0 k(a,n)) A (kK- (a,n) v k- 0 k(%,n)))).
€1 €1 € €

(i.e., o has no in-edges);

(¢) VYn (=k(n,n))
(i.e., no cycles)
where ke (ke ) means the restriction imposed to connectivity by allowing
1 72
only edge labels el(ez) in the definition of k. The notation kn(nl,nz)
expresses the fact that a path of length n is required to connect ny to n,

(i.e., a path with n-1 edges). The operator "s'" for the composition of

predicates is defined by
k o k'(nl,nz) « dn' (k(nl,n') A k'(n',nz)).

We also restrict the set of edge labels EL to the set {el,ez}. We denote
by t(x) the predicate defined by a, b, and c above on a given graph. Thus
the graph x is a tree if it satisfies a, b and c.

We now define the operations ¢, d, e and k and the test <
implicitly in terms of the above structures. The axioms we need are as
follows:

1. Vx(t(x) > x < x);

2. VxVyVz(t(x) A t(y) A t(z) ~

(x<y-y<z~>xc<z);
3. VxVyVz(z € NL A t(x) A t(y) »>
x € e(x,z,y) Ay < e(x,2,¥))3;
4. YxVy¥z(z € NL A t(x) A t(y) » e(c(x,2,y)) = x A

d(C(X’Z’Y)) =y A k(C(X,Z,}’)) = z),
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Note that the above definition of binary trees does not allow the empty tree.

This is because we required that N (the set of nodes of a graph) be non-

empty. If we wanted to include the empty tree, we would have to allow N to

be empty; i.e., modify (vi) in the definition of a graph by adding the proviso
'

"If N is non-empty, then ...'". We would also have to add axioms to the above

to express the properties of the empty tree.
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4, Classification of Formal Specification Methods

We have grouped the methods for the aspecification of the universe
of study called "data structures and data types' in four groups which we
called respectively:

(i) intentional methods,
(ii) extensional methods,
(iii) operational methods,

(iv) generative methods.

The intensional methods are theories described in first order (or
higher) languages (or in restrictions of these languages) that describe the int-
rinsic characteristics of the objects under study and the relations between them.

The extensional methods include the description of structures (in
the sense of the theory of models) over a given domain in such a way that
these structures are capable of modelling the data reality under study.

Such description can be given in languages which are not totally formalized
as happens with the use of tables, graphs and other descriptions that make
use of metalanguages which are reinforced by the use of logic and/or other

mathematical tools.

The operational methods include formalizations in which the
objects under study are described through the speecifications of the
transformations that can be applied to representations of these objects by
virtual machines that operate on these representations.

We call generative methods the formalizations that describe the
transformations of the objects under study through the use of re-writing

rules given for the symbolic representation of these objects (i.e. grammars).
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The specification methods that belong to each of the above groups
differ from each other in terms of the degree of abstraction provided by a
particular formalization. The higher the degree of abstraction the greater
the ability to describe a larger number of classes of objects. The power of
the method to describe the characteristics of each class of objects is pro-
portionally decreased.

In figure 3 we summarize what was said above:
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Intentional Methods Operational Methods

Static Dynamic
(implicit) (explicit)
Methods Methods

Degree of
Abstraction

Extensional Methods Generative Methods

Figure 3
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5. Current Work on Data Specification Methods

An important application of the classification proposed for the
data specification methods is to use it as an aid for the understanding and
evaluation of the current work on data specification.

Liskov and Zilles [22] classified different data specification
methods in five categories:

(i) Use of fixed discpline (fixed domain of formal objects).

(ii) VUse of an arbitrary descipline.

(iii) Use of a state machine model.

(iv) TUse of axiomatic descriptioms.

(v) Use of algebraic definitions.

In an earlier version of their paper [21] a comment was made that
the first two categories make use of abstract models while the other three
use implicit definitions. According to our classification the methods (i)
and (dii) constitute extensional characterizations of data, (iii) is an
operational specification and (iv) and (v) are intentional specification
methods.

In what follows we present a concise survey of the literature on
data specfication by trying to label different research efforts by using
our proposed classification.

The Vienna Definition Language [30] popularized the operational
semantics approach originally proposed by McCarthy [31] for the definition
of LISP. The more recent work by Parnas [32] and Robinson [33] are very
representative examples of operational semantics. Robinson [34] proposes
a proof method based on the use of operational specification of data at

different levels of abstraction.
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Fleck [ 7] provides a generative description of different classes of
data structures. He establishes a correspondence between the data structures
and particular grammars., More recently Paul [35] proposes a semantics for
data structures 1n which both types and objects are based on certain right
linear grammars. Jackson [36] proposed a programming methodology based on
the application of the generative specification approach to data types.
Cowan et al developed this idea a little further [37,38].

The work by Gotlieb and Furtado [12] is an interesting example of
the combined use of the operational and generative approaches to data
specification. It uses graph grammars to describe both which elements
belong to each class of data structures and the transformations that can be
applied to the elements.

Lots of efforts have been reported in the literature on the use
of extensional methods for data specfication. Back in 1971, Earley [ 5]
used graphs as models for data structures. He blended the extensional
specification with the operational approach to describe the transformations
between elements of the same type, In a later paper Earley [ 6 ] uses the
pure extensional approach by using the relational model suggested by
Codd [39] for the specification of data structures. The work by Oppen and
Cook [ 4] also proposes an extensional description of data structures by
using graphs as models for the different classes of structures. Similarly,
the work described in [13], [ 91, [24] and [25] use the extensional
approach. Dana Scott [26] models data types by using the mathematical
structure of lattices. This approach provides an example of the use of an

extensional method at a high level of abstraction. Other examples of the
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extensional approach are the works by Carvalho et al [ 1,2 ] in which data
structures are specified through a general relational model [40] and through
the application of the notion of minimal models.

The work developed by Hoare [15] and [16] uses an intentional
specification method. It resorts to first order languages to describe the
characteristics of data types and data structures. Clark and Tarlund [ 3]
develop a data theory expressed in.a first order language and use it for the
characterization of data structures. Standish [27] also resorts to logic
to describe the axioms for classes of data structures (based on the VDL
objects [30]). Lucena, Pequeno and Veloso [41,42,28] specify data types by
using ideas based on the theory of definition and the notion of inter-
pretation between theories from mathematical logic.

The work by Goguen et al [10], [11] etc. make use of intensional
methods for the specification of data types. The characteristics of each
type is established through the use equational algebras. Along the same
approach, it is worth referencing the work reported in [14], [20], [21],
[19], [23], [18], [29], [43] and [17]. 1In some of the above work the
algebraic axiomatization is associated with interpretations in terms of
concrete algebras. In these cases we have a combined use of intentional

and extensional methods.
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6. Conclusions

We tried to illustrate in the previous section the fact that our
proposal for the classification of data gpecification methods helps to
provide a more clear understanding of the current literature. This is true
to the extent that it helps to determine the role of a particular contri-
bution in the area.

Different types of methods can and in some cases should be applied
to the definition of a particular data abstraction. If we express our view
of a given data object through different specification methods we can explore
our abstraction better by using different analytical tools or gain some
additional insight about the object such as, for instance, discovering the
best way to implement it. To illustrate this last example, suppose that by
moving from an intentional specification (say using predicate calculus) to
a generative specification we are able to find a direct SNOBOL implementation
for a data manipulation problem. On the other hand, it 1s probably easier to
prove properties of the program using the intensional view since this view
eliminates many of the implementation details which would just clutter up the
proof.

We conjecture that some further work based on our proposed classi-
fication for data specification methods will find applications in some
interesting problem areas defined by Ashcroft and Wadge [44] and Backus [45].

In [44] the authors express their interest in determining for
what purpose a specification for programming language semantics is used.

When a specifciation method is used to describe, model or classify a given
entity, it is said to be used in the descriptive sense. When the intention

of its utilization is geared to the planning of a new object (i.e. language)
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it is said to be used in the prescriptive sense. The authors claim that
the problem with semantics is that it is still in the immature, descriptive
mode and a move to the prescriptive mode is well overdue. The method that
the authors themselves adopt is what we would call the extensional method.
(The language Lucid and its programs are defined implicitly in terms of a
type consisting of infinite sequences of data objects.) Work based on our
classification can help determine which specification methods are more ade-
quate to support the descriptive approach (operational and generative?) and
the prescriptive approach (intentional and extensional?) to the semantics
of data.

Backus [45] states that both the extensional methods (he refers to
[26]) and the intentional methods (he calls them axiomatic methods) are
not able to eliminate the clumsy properties (assignment, etc.) of the basic
von Neumann style. We again refer to Ashcroft and Wadge [44] to disprove
this statement since assignment is not in fact part of Lucid and the
"natural’ implementation for the language is a data flow implementation.
The question in this case is how high should the level of abstraction of a
specification method be to allow it to be used in the prescriptive mode
(that is, without any implicit reference to the vonNeumann design). The
problem exists, of course, when it is necessary to capture in the
specification all the details about data that characterize the real life
applications and the existence of the vonNeumann machine may be part of

that reality.
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