OPTIMUM REORGANIZATION POINTS
FOR ARBITRARY DATABASE COSTS*

Raul J. Ramirez
Frank Wm. Tompa
J. TIan Munro

Research Report CS-79-29

Department of Computer Science
University of Waterloo
Waterloo, Ontario
N2L 3G1
Canada

¥ The research reported in this paper was supported

the

Natural

in

part

by

Sciences and Engineering Research Council of Canada
under grants A8237 and A9292 and by the University of Waterloo.

ABSTRACT

The performance deterioration caused by updates to
databases or data structures can be overcome by reorganizing
the structure from time to time. In previous work, optimal
reorganization intervals were determined for 1linearly
increasing deterioration costs and linearly growing reorgan-
ization costs. To date only heuristics have been available
for non-linear costs, and no work has been published on
optimal solutions.

This paper extends previous results by identifying the
reorganization points problem as a shortest route problem
and by providing a dynamic programming algorithm to find
optimal reorganization points when reorganization and
deterioration costs are arbitrary. It 1is shown that our
method uses O(T¥¥2) basic operations and ©(T) space, where T

represents the databases lifetime. Furthermore, we note
that no algorithm can solve this problem in significantly
less time or space. Examples involving linear and non-

linear costs are presented and discussed. Finally, the
algorithm is modified to find the optimal sequence of reor-
ganizations to be applied in situations where partial reor-
ganizations are possible.

Keywords and phrases: reorganization, data structure, data-
base, file organization, shortest route, dynamic
programming, recursive optimization, information
retrieval,

CR categories: 3.73, 4.33, 4.34, 5.42

1. The problem.

When a database is created, its contents are typically
organized in a manner convenient for efficient processing of
queries and updates. As updates are made, however, it is
quite often (indeed usually) the case that the performance
of the system degrades to a point at which reorganization is
required or at least justified. For example, if the infor-
mation is stored in a large sorted table, and a few new
items are to be added, it may be convenient to enter the new
data in an unordered auxiliary 1list temporarily, since
insertion into the primary table would force the movement of
many elements in the system. Direct insertion into the pri-
mary table would not only be expensive, but is very likely
to be completely prohibitive for an online system. Using an
auxiliary 1list to <collect a reasonable number of updates
which can be merged into the primary table at some con-
venient time 1is a very attractive approach. An important

question is, of course, "when should this merging occur?"

Although this example will be investigated further 1in
subsequent sections, the main thrust of this paper is to
consider the more general problem of deciding when an arbi-
trary structure should be reorganized. Consider the Ease,
then, in which the demands to be made on a database are rea-
sonably predictable, at least for some fixed period of time.
This predictability does not preclude situations in which

the volume of data stored and the number of queries and

updates vary widely in time. Such time-varying but predict-
able situations exist in practice, for example, in keeping
track of the inventory of a holiday supplies shop or main-
taining student records for an academic institution. As a
consequence of the predictability, the cost of reorganizing
a structure at any given point, as well as the cost of using
it if it has been reorganized and if 1t has not, <can be
determined. The problem is, then, to determine the reorgan-

ization points so as to minimize the total cost of the

operation. This total cost includes the operating cost of

using the system (and thus implicitly the deterioration cost

incurred by not restructuring) as well as the reorganization

cost. Figure 1 illustrates some of these and related con-

cepts.

Several specific cases of this problem have been inves-
tigated previously. Shneiderman presented a closed form
solution for linearly increasing deterioration and reorgani-
zation costs assuming reorganization occufred at equidistant
time intervals [3]. However, when the reorganization cost
is not constant, the optimal intervals will not be equidis-
tant. With this in mind, Tuel dropped the eQuidistant
assumption and gave a closed form solution for arbitrary
linear costs [4]. The example of a sorted table with an
auxiliary wunordered list, however, does not fit this linear
criterion. Indeed, many "updating systems"™ are sub-linear
in their deterioration cost. Unfortunately, when the reor-

ganization or the deterioration costs are non-linear, no

SOD UOTIBIOTADIDP /

|||||||||||| Ii

deterioration

7

....... R Rkt

1500 TBAJID]UT

tl

1509 Suririadp

t2

Time periods

Figure 1 Linear deterioration cost.

closed form solution is known for most cases. Yao, et al.
[5] have presented a heuristic that is near optimal for con-
stant reorganization cost and have claimed it to be "supe-

rior" for increasing reorganization costs.

This paper presents an algorithmic solution to the
problem for arbitrary reorganization and deterioration
costs. The basic concern is a database whose performance
degrades with the number of updates and for which there is
associated a reorganization cost. The problem is to deter-
mine when to reorganize it to minimize the expected overall

cost. It is assumed that the remaining lifetime of the data-

base (i.e. the amount of time wuntil the database is no
longer used, measured in hours, days, months, etc.) is T
time periods (not neéessarily of equal length) and that if
the database is to be reorganized, the process will take
place discretely at the beginning of a time period.
Enumeration of all possible sets of reorganization points
requires the computation of 2¥*¥T costs, since at each period
the decision whether or not to reorganize can be made
independently. Such a computation is, of course, infeasible

for T greater than 20 or 30.

The problem of determining optimal reorganization
points for a database can be identified with the problem of
finding the shortest route in an acyclical network (i.e.
finding the route of minimal cost from source to sink).

Consider a grid of vertices at the non-negative integral

points in a portion of the plane (Figure 2). The x and y
coordinates of each vertex denote respectively the time and

the database deterioration deterioration, that 1is, the

number of periods since the last reorganization. The source
of the network 1is vertex (x0,y0), where x0 is the time at
which the study begins (perhaps when the database 1is
formed), and y0 1is the time since the last reorganization
(y0 may well be 0). The decision not to reorganize the
structure in condition (x,y) 1is denoted by an edge from
(x,y) to vertex (x+1,y+1). The weight of this edge is the
operational cost of running a system from time x to x+1
starting with deterioration y. The decision to reorganize
corresponds to an edge from (x,y) to (x+1,1), with weight
equal to the sum of the reorganization cost of a database of
deterioration y in period x and the operating cost of a
newly reorganized database in period x. If T is the data-
base 1lifetime, then every vertex with x-coordinate x04T is
connected by a zero-valued edge to the sink vertex
(x0+T+1,0). As can be seen from the above description, the
network is acyclic (i.e., no cycles are formed since time
always moves to the right), and the solution is represented
by the minimal cost route from vertex (x0,y0) to vertex

(x0+T+1,0).

Section 2 contains a dynamic programming formulation of
the solution for this shortest route problem and a discus-
sion of its optimality. In Section 3 the algorithm is

applied to a non-linear example. Section 4 contains proofs

Deterioration

xd+l

x0+2 x0+3 <0+, XO+TF1

Time periods

Optimal path
No reorganization = time and deterioration increase by 1
Reorganization =) time increases by 1, deterioration become 1

Fictitious =) cost O

Figure 2 Time vs Deterioration

of the optimality of the time and space required for this
algorithm, and Section 5 extends all the results to applica-
tions in which at the beginning of each period the database
can be partially reorganized to any of several levels at
various costs. The appendix contains PASCAL code for the

algorithms discussed.

2. An Efficient Solution.

Dynamic programming is a mathematical technique used to
make a sequence of interrelated decisions that maximizes (or
minimizes) some function [1, 2]. Dynamic programming 1is
also called recursive optimization because of the conveni-
ence of viewing the optimization process 1in a recursive
manner. The database reorganization problem can be

expressed in terms of dynamic programming as follows:

Let d(x,y) denote the operating cost from period x to
period x+1 of a database with deterioration y
at the beginning of the period,

r(x,y) denote the reorganization cost at the begin-
ning of period x of a database of deteriora-
tion vy,

and F(x,y) denote the minimum cost to get to the state
in which the database has deterioration y at
the beginning of period x, given that the
process began period x0 with a database whose

deterioration was yO.

Note that no assumptions (e.g. continuity, monotoni-
city, or even non-negativity) have been made for the above
functions r(x,y) and d(x,y). In fact, the functions may be
represented by arbitrary tables of discrete values (not
necessarily equidistant in time) computed or estimated by
monitoring, simulating, or analyzing the database under con-

sideration.

At the beginning of each period there is the option to
reorganize the database, and so, at the end of the period
the deterioration of the database could be 1 or it could be
one more than at the beginning. From Figure 2 it is apparent
that the minimal cost expended from time x0 until some later
time x 1is the minimal cost to reach period x-1 with
deterioration y-1 plus either the reorganization cost plus
the operating cost for the newly reorganized structure, or
the operating cost in period x-1 of a database of deteriora-

tion y-1.

This leads to the following recurrence relation for F:

F(x, 1) = min { F(x-1, y=-1) + r(x-1, y=-1) + d(x-1, 0) }
over all choices of y = 2, 3, .. x-1 and yO+x-1
and
F(x, y) = F(x=-1, y=1) + d(x=1, y=1)
for y = 2, 3, .. x=-1 and yO+x-1
The boundary condition is:

F(x0, y0) = 0

It is relatively straightforward to write a program to
determine F(x0+T+1, 0) = min F(x0+T, y) over all choices of
y=1,2, .. T and yO+T: simply wuse the above recursion to
determine the optimal cost for each time step and state of
deterioration based on the optimal cost up to the previous
time step. Note that the wvalue of F(x, y) need not be
retained after F(x+1, y+1) and F(x+1, 1) have been computed.

Hence at most T storage locations are required to retain

- 10 -

these values. In fact, each arc in the network is inspected
and used in some arithmetic computation once only, and thus
if the values of r(x, y) and d(x, y) can be computed, only
©(T) storage 1locations aré needed to maintain the costs.
Furthermore, since each arc 1is inspected only once, it
immediately follows that ©6(T¥¥2) basic operations are per-
formed. Note as well that the above recursion produces the
shortest route from the source vertex (x0, y0) to every

other vertex in the network.

However, the real problem is not to discover the cost
of the optimal reorganization scheme, but rather to deter-

mine the reorganization points that lead to that cost.

Taking a closer look at Figure 2, it is realized that
the only vertices that must store information regarding the
optimal path are those with y-coordinate 1. The only way to
reach the vertex (x, y) for y#1 is through vertex (x-1, y-
1), and so there is no need to store this information while
determining the optimal path. With this observation in
mind, and since there are only T vertices with y-coordinate
1, it follows that, if the values of r(x,y) and d(x,y) can
be computed, only 6(T) units of storage are required to
determine the optimal reorganization scheme as well as its
cost. (The appendix contains an implementation of this

implied algorithm written in PASCAL.)

3. A Non-linear Application.

This seétion deals with the reorganization of a data-
base whose deterioration and reorganization costs are non-
linear. In particular the application's deterioration cost
is logarithmic (i.e. sub-linear), and the reorganization

cost is super-linear.

Recall the example in Section 1 in which one of the
data structure maintained by the database under considera-
tion is an ordered table (i.e. a set of consecutive 1loca-
tions each containing one element, the elements to be kept
in sorted order). Using binary search, the number of com-
parisons required to access a randomly designated element is
essentially log(n) , where n is the number of elements in
the structure. Inserting a new element into the structure
requires that a hole be created by shifting some elements
down one position and then making the insertion into the
newly vacated c¢ell. Since this operation is expensive, it
may be decided to keep the elements to be inserted 1in an
unordered secondary list. If an element is not found in the
primary table, the search continues with a sequential scan
of the secondary list. Since, when looking for a randomly
selected element, the primary table will always be searched
and the secondary list will be searched in proportion to its
relative size, the cost of accessing a particular element is

©(log(n-k) + k*k/n) where n is the total number of elements

. ‘I Logarithms are taken to base 2.

- 12 =

in both structures and k is the number of elements 1in the
secondary 1list. 1In fact, for this example, the access cost
used will be log(n-k+1)=-1 + (1+k/2)¥(k/n), the expected

number of comparisons required.

If there are no deletions, the structure will grow.
From time to time the elements in the secondary list may be
merged with the ones in the ordered table (i.ef the struc-
ture will be reorganized) at a cost of o(k¥log(k) + n)
operations: the k¥log(k) term accounts for the average time
required to sort k elements (e.g. using Quicksort), and 6(n)

operations are used in merging the two sorted lists.

In summary, assuming that there are a total of n ele-
ments, (n-k) in the ordered structure and k in the secondary

structure, the following costs apply:

access cost: log(n-k+1)-1 + (1+k/2) * (k/n)
insertion cost: 1 (%%)

reorganization cost: C1 ¥ (k¥log(k) + n)

where the parameter C1 is introduced solely to 1illustrate

the effects of various related costs.

A structure that is continuously reorganized has an
access cost of 1log(n+1) operations. Using these formulae
and assuming that the primary table initially has 1000 ele-
ments and the secondary list is empty, that there are 5000
accesses and 100 insertions uniformly distributed in each

interval, and that the 1lifetime (T) is 50 periods, the

- 13 -

following results may be obtained from the algorithm

presented in Section 2:

C1 optimal reorganization optimal cost
points (in 10000's)
1 3,5,7,10,13,16,19,22,25
28,31,34,37,40,43,46 272
10 4,8,13,18,23,29, 35, 41 335
20 5,10,16,22,29,37 391
50 6,13,22,31 531
100 7,15,25 712
500 no reorganization 1225
Table 1.

In previous work, optimal reorganization points were
determined for linear costs only. Thus one might be tempted
to compute those points by approximating the costs by func-
tions that are 1linear in k. A reasonable linear model of
the behaviour of the system, derived by examining the

optimal solution, is:

access cost: 10og(3500-K(C1)+1)=-1 + (1+k/2)¥(K(C1)/3500)
insertion cost: 1

reorganization cost: C1 * (k*1log(K(C1)) + 3500)

where 3500 is the average value of n and K(C1) is the aver-
age number of probes for searching the secondary list when

reorganization occurs under the optimal scheme.

The following results may be obtained under this linear

model:

- 14 -

C1 K(C1) reorganization actual cost ratio to
points (in 10000's) optimal
1 147 1,2,3..49 281 1.033
10 278 2,4,6..48 383 1.143
20 357 3,5,7. .47 495 1.266
50 50 3,6,9..45 704 1.326
100 625 4,8,12..44 1020 1.433
500 2500 5,10,1 4 18,22
26,30,34 38 42 3795 3.098
Table 2.
The column labeled "actual cost" indicates the cost

charged according to the formulae in (*¥¥) and using the
reorganization points suggested by this approximate solu-
tion. Comparing these results with the ones in Table 1, it
is seen that, even when knowledge of the optimal solution is
used to derive the approximations, results based on assump-
tions of linear costs can give solutions which differ sub-
stantially from the optimal. Therefore the algorithm that
permits the removal of all assumptions regarding the costs

is a more desirable tool for database administration.

- 15 -
4. Lower bounds.

In Section 2 it was demonstrated that the optimal reor-
ganization scheme can be determined in time quadratic in the
number of potential reorganization points and space 1linear
in this parameter. Of course, it is of interest to find
whether or not a better algorithm exists. It will Dbe
assumed throughout this Section that r(x,y) and d(x,y) are
computable rather than stored in tables of discrete values;
otherwise it 1is obvious that ©(T¥¥2) space is required
merely to store the algorithm's input. That the space bound
cannot be appreciably improved follows from the fact that
the output (number of reorganization points used) may be of

length 6(T)!.

Intuitively, the quadratic time bound seems optimal as
well, since there are 6(T¥¥2) potential situations for reor-
ganization. The following theorem and its proof formalize

this notion.

Theorem : O(T¥*¥2) operations and ©(T) storage locations are
necessary and sufficient to determine the optimal reor-
ganization points even if the operation costs and the
reorganization costs are known to be monotonically

increasing as functions in the deterioration.

Proof: The space bounds and the sufficiency of the time

'!A more intricate argument shows that even ignoring the
Space required to store the results, this bound still
applies.

- 16 -

bound follow from the algorithm presented and the
observations above. To show that ©(T¥¥2) basic opera-
tions are necessary, it suffices to exhibit a case 1in
which it 1is more or less irrelevant which reorganiza-
tions are done, as long as a reorganization is per-
formed at the particular time that allows the applica-
tion to incur a "cheap" operation cost at a specific,
but unknown node. That is, the shortest route must go
through some unknown point (x, y) and any path through
that point has the same cost. Since there are 0(T¥¥2)
potential "cheap" edges, finding the c¢rucial one
requires that all edges be inspected. A scheme which
is not strictly monotonic is outlined first. It 1is

then modified slightly to achieve monotonicity.

Consider an application for which the operation
costs at each time step other than the last and each
reorganization cost is 2. At the last time step the
reorganization costs are also 2, but the simple opera-
tion costs are very large and all equal. Now alter an
arbitrary operation cost of weight 2 to 1. Hence the
optimal reorganization scheme must take advantage of
this reduced cost; anything else which 1is done is
irrelevant, proving the ©(T¥¥2) lower bound without the

monotonicity assumption.

The weights can be arranged to be monotonically

increasing functions of y by setting the operating

- 17 =

costs to be d(x, y)=y, the reorganization costs for a
database of deterioration 1 to be r(x, 1)=2x and all
other reorganization costs to be ri(x, y)=2xy-
(3/2)y*¥*¥2-y/2. Reducing one arbitrary operating cost by
1/2 results in a system that establishes the O(T¥¥2)

lower bound.

Repeated application of this proof technique also leads

to a bound on the time required to determine near optimal

solutions.

Corollary : O(T¥¥2/k) Dbasic operations are necessary to
determine a reorganization schedule which is within a
factor of (1+1/k) of the optimal. This 1lower bound
holds even 1if the operation and reorganization costs
are monotonically increasing as functions of the the

deterioration.

- 18 -

5. Partial Reorganization.

For some applications it is possible to have more than
the simple choice of reorganizing or not at each stage. For
example, there may be the option of several partial reorgan-
ization algorithms each transforming the database to a dif-
ferent level of operation cost as well as having different
reorganization cost. It is now necessary to know not only
when to reorganize the database but also which reorganiza-
tion algorithm to wuse, in order to minimize the overall

cost.

An extreme case is that in which it 1s possible ¢to
reorganize the database of deterioration y to a level
equivalent to that of any deterioration represented by an
integer in the range 0 to y. Of course the reorganization
and operating costs are again assumed to be arbitrary. A
simple modification of the previously discussed algorithm to
evaluate the O(T) reorganization alternatives at each step
will take ©(T¥¥3) operations. In fact by using the same
argument as in the previous case, it can be shown that ©
(T*¥*¥3) operations are necessary for any algorithm solving

the problem.

Unfortunately, if the algorithm is implemented as out-
lined in Section 2, at 1least O(T¥¥2) storage cells are
necessary to determine the reorganization points and levels
even if the reorganization and operating costs are comput-

able. From Figure 3, it is clear that virtually every node

- 19 -

x0+1

x0+

2

Figure 3 Partial reorganization

x0+3 x0+4

Time peiiods

x0+5

x0+T

xO0+T+1

20 -

may be the target of one or more reorganizations in the pre-
vious time period. Thus, unlike the situation described 1in
Section 2, for each of the O(T) values of F for a given
time, O(T) reorganization points may have to be stored. In
other words this algorithm may require ©(T¥¥2) units of
storage to determine the optimal reorganization scheme.
When T is large this storage requirement is at best annoying

and at worst prohibitive.

The following modification of the basic scheme permits
a solution wusing only 6(T) space while (roughly) doubling
the previous time bound. Again in discussing the possibil-
ity of 1linear space, it is assumed that the deterioration

and reorganization costs are computable.

It has been noted in Section 2 that storing the optimal
path to the point (x,y) is not essential for computing the
length of the shortest path, but is used only to reconstruct
the shortest path itself. Because of the optimality of the
shortest route, if follows that that if the shortest route
from (x0, y0) to (x0+T+1, 0) passes through points (x1, y1)
and (x2, y2), then the shortest route from (x1, y1) to (x2,
y2) must coincide with the shortest path for the complete
problem in the [(x1, y1), (x2, y2)] interval. Consequently
the optimal reorganization points for the subproblem are the
same as those for the original problem (in the [x1, x2]

interval).

First consider solving the original problem as if only

- 21 =

the cost of the shortest path were required and not the path
itself. Now, at the midpoint (i.e. x0+T/2) label each node
in the period by its y-coordinate, i.e. a value from {1,
2,..,y0+T/2}. From time period (x0+T/2)+1 to the end of the
lifetime, record for each node the node through which the
route passed at period x04T/2. 1In fact the values can be
recorded as they are carried forward during the computation
of the cost of the shortest route. When time x0+T+1 1is
reached and the value of the shortest route computed, the
mid-node, y', that this (optimal) route passed through will
be known. Since at any time period there are only ©(T)
nodes, it follows that only O(T) space is required for for-

warding mid-node identification.

Once the node (x0+T/2, y') is known, solve the follow-

ing two subproblems (recursively):

(i) find the optimal reorganization points for a database
starting period x0 with deterioration y0 and running
until time x0+T/2, with the constraint that it must go
through y' at the last time step
and,

(ii) find the optimal reorganization points for a database
starting period x0+4T/2 with deterioration y' and having

a lifetime of T/2 periods.

The first subproblem is equivalent to finding the set

of optimal partial reorganization points of a database

- 22 -

starting period x0 with deterioration y0 and terminating
period x0+4T/2 with deterioration y'. The second subproblem
is identical to the original, except that it is half the
size and starts with a database of deterioration y' at
period x0+T/2, and thus the original algorithm can be
applied without alteration. (The appendix contains an

implementation of this method in PASCAL.)

The recursive application of this "divide-and-conquer"
technique will produce the set of optimal reorganization
points for the original problem. It remains to show that
the application of this technique will conserve the O(T¥¥3)
time bound. Let c¥T¥¥3 denote the number of basic opera-

tions required to find the cost of the optimal arrangement

by the dynamic programming scheme first proposed, and 1let
&(T) represent the computation time required in the worst
case for the above scheme. Then, ignoring the minor cost of
recursive calls and some trivial pointer operations,

@ (T) = c*T**3 4+ 2%§(T/2) for T>2
and suppose

a (1) = 1

As a result @&(T) = 2¥c¥T¥¥3 that is, the time to find
the optimal reorganization points 1is approximately twice
that required to find the minimum cost alone and so is still
O(T*%*¥3), If the scheme maintained the 1/3 and 2/3 positions
(rather than the midpoint) of the optimal path and carried

them through on the first pass, the running time of the

- 23 =

algorithm would be roughly 3/2 that of the basic scheme, but
the space requirement, although still ©6(T) would be notice-
ably greater than for the method outlined. It is straight-
forward to develop this time-space trade-off for maintaining

any fraction of the points.

- o4 -

6. Conclusions.

We have shown that ©(T*¥2) basic operations and 6(T)
storage 1locations are necessary and sufficient to compute
the reorganization points for arbitrary or for monotonic
costs, where T 1is the database lifetime. Furthermore, we
have shown that ©(T¥¥3) basic operations and 6(T) space are
required to compute partial reorganization points. The
space-saving divide-and-conquer technique presented in Sec-
tion 5 is applicable to any shortest route path problem in
which the weights of edges are computable and thus do not
have to be stored explicitly. Since a common measure of
"cost" is the product of time and space used, this trick 1s

often very effective.

For some applications, reorganizing the database may
imply that all users must be locked out during the reorgani-
zation period. A possible minor extension to the algorithm
is to compute reorganization points optimally given a limit
on the maximum number of reorganizations and/or the total
reorganization time for a given time interval T (and thus

guaranteeing a minimal availability for the database).

The major limitation of this algorithmic approach 1is
its dependence on a discretized, finite database lifetime.
There exist some special cases for which the algorithm could
be modified to handle unbounded lifetime, for example when
the deterioration and reorganization costs are identical 1in

every stage after some time T or when they are periodic

- 25 -

after T.

It should be noted that when the reorganization and
deterioration costs are linear, Tuel's closed form solution
is to be preferred to any algorithm since it requires virtu-
ally no computation. Similarly, if other closed forms can
be found for particular cases, they should be preferred as
well; unfortunalely no work has been reported other than for
the linear case. Therefore, the simplicity, wuniversality,
and practicality of this reorganization algorithm make it a

worthwhile tool for database or data structure designers.

- 26 -

APPENDIX

ALGORITHM 1

function shortest (x0, y0, t : integer) : real;
var f1, ftop, fopt : real;

X, ¥, yopt, who : integer;

from : array [0..T] of integer;

f : array [1..T] of real;

begin
ftop := 0; from[x0J]:=TOP; {bounday condition}
for x 1= 2 to t do

begin

f1 := r(x0+x-2,x+y0-2) + d(x0+x-2,0) + ftop;
from[x0+x-1]:=TOP;
ftop := d(x0+x=-2,x+y0-2) + ftop;
for y := x-2 downto 1 do
begin
fly+1] := d(x0+x=-2,y)+fly];

£f1 := min(f1, r(x0+x-2,y)+d(x0+x-2,0)+f[y], who);

if who = 2 then from[x0+x-1]:=y;
end;

fL1] := £1;

end;

{ find optimal value }

fopt:=ftop; yopt:=TOP;

for y:=1 to t-1 do
begin
fopt:=min(fopt, flyl, who);
if who = 2 then yopt:=y;
end;

shortest:=fopt;

{retrace optimal path}

while yopt <> TOP do
begin
t:=t-yopt;
writeln('reorganize at stage',t);
yopt:=from[x0+t+11];
end

end;

- 27 -

ALGORITHM 2
var f : array [0..TY0] of real;
half : array [0..TY0] of integer;
function shortest(x0, yO, t, yprime : integer; forced : boolean):real;
var ft, oft : real;
X, vy, z, halft, ohalft, yp, who : integer;
begin
for y:=0 to t div 2 + y0 do halflyl:=
for y:=0 to yO0 do flyl:=INFINITE;
fly0]l:=0; oft:=0; halft:=0;
for x:=x0+1 to x0+t do
begin
for y:=1 to x-x0+y0 do
begin
if y = 1 then ft:=INFINITE else ft:=d(x-1,y-1) +fly-11;
fly-1]:=0ft;
if x-x0 > t div 2 then

begin
halft:=zhalfly-1]; halfl[y-1]:=ohalft;
end;
for z:=y to x-x0+y0-1 do
begin

ft:=min(ft,r(x-1,z,y)+d(x-1,y-1)+fl[z],who);
if (x-x0 > t div 2) and (who = 2) then halft:=halflzl;
end;
oft:=ft; ohalft:=halft;
end;
£l x-x O+yO] =ft;
if x-x0 > t div 2 then hal f[x-x0+y0]: =halft;
end;
if forced then
begin
shortest:=f[yprimel; yp:=zhalfl[yprimel;
end
else begin
ft:=f[1]; yp:=halfl1]; yprime:=1;
for y:=2 to t+y0-1 do
begin
ft:=min(ft,f[y]l,who);
if who = 2 then begin yp:=zhalfl[yl; yprime:=y end
end;
shortest:=ft;
end;
if £t = 2 then
begin
writeln('stage',x0,' from',y0,' to',yp);
writeln('stage',x0+1,' from',yp,' to',yprime);
end
else if t = 3 then writeln('stage',x0,' from',y0,' to',yp);
if t >=4 { t div 2 >= 2}
then ft:=shortest(x0,y0,t div 2, yp, true);
if t >= 3 { t div 2 >= 2}
then ft:=shortest(x0+t div 2, yp,t - t div 2,yprime,true);
end;

[11

[2]

(3]

(4]

[51

- 28 -

REFERENCES

Bellman R.
Dynamic Programming

Princeton University Press 1957.

Dreyfus S. E. and Law A. M.
The art and theory of dynamic programming
Mathematics in Science and Engineering. Vol. 130

Academic Press 1977.

Shneiderman B.
Optimum database reorganization points
Communications of the ACM

Vol. 16, No. 6 (June 1973), pp. 362-365.

Tuel W.

Optimum reorganization points for 1linearly growing
files.

ACM Transactions on Database Systems

Vol. 3, No. 1T (March 1978), pp. 32-00.

Yao S. B., Das K. S. and Teorey T. J.
A dynamic database reorganization algorithm.
ACM Transactions on Database Systems

Vol. 1, No. 2 (June 1976), pp. 159-174.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

