DETERMINING THE MODE!

by

David Dobkin? and J. Ian Munrol

Computer Science Dept.
University of Waterloo
Waterloo, Ontario

Canada

Research Report CS-79-27
July 1979

Abstract
The complexity of computing modes and sorting multisets
is considered. Previous lower bounds are improved and an
algorithm is given to determine the mode of a multiset in a

number of comparisons differing from the lower bound by only

a "lower order term".

lportions of this research were supported by the National
Science and Engineering Research Council under Grant A8237
and the National Science Foundation under Grant MCS76-11460.

2Computer Science Dept.
University of Arizona
Tucson, Arizona, USA

3Computer Science Dept.
University of Waterloo
Waterloo, Ontario N2L 3Gl
CANADA

1. INTRODUCTION

The inherent complexity of sorting and selection problems is
important both from a practical and theoretical point of view. Certainly
the realization of an n log ﬁfcomparison sorting algorithm is fundamental
to practical computing while the O(n) median algorithms [3,10] and lower
bounds [8] strike at the heart of the complexity of '"frequently computed
functions". Furthermore, work of the latter type has clearly led to
results of both mathematical and computational interest [9]. In this
paper we direct our attention to a closely related problem, that of find-
ing the mode, or most frequently occurring element in a list. This
problem has been previously investigated in [7]. Letting n denote the
number of elements in the list and m the frequency of the mode, upper
and lower bounds of roughly 3n log (n/m) and n log (n/m) comparisons
(in the worst case) have been shown. In this paper we make a slight
improvement in the lower bound on the number of comparisons required,
The main contribution is, however, an algorithm to find the mode using
n log (n/m) + o(n log (n/m)) + O(n) comparisons in the worst case.
The gap between upper and lower bounds on this problem is thus reduced
to "a lower order term plus O(n)". Our main algorithm, as presented,
is rather complicated and not what one would be inclined to use in
practice. However, as is often the case, the general approach can
easily be followed to produce a practical method which runs in a near

minimal number of comparisons on the average, although not necessarily

+all logarithms in this paper are to base 2.

-2 -

in the worst case. This simplified version is used here to introduce

B

the more complicated scheme.

The basic model of computation is a random access machine whose
memory can store one data element in each location. The basic operation
employed is the 3-way (<,%,>) branch comparison. Our measure of com-
plexity is the maximum number of comparisons used by an algorithm.

We assume indexing is performed at no cost.

2. SORTING MULTISETS

We consider first the problem of sorting a list containing
repeated elements. Munro and Spira [71 have shown that, given a

list of n elements, k of which are distinet, where m, are of the

th k
i~ type (hence Z m,=n),
. i
i=1
k
n log n - Z m, log m, - (n-k) log log k - 0(n)
i=1

(3 way branch) comparisons are necessary (on the average) to sort
the list. Furthermore, by applying a modification of treesort, they
demonstrate that n log n - Z m, log m, + 0(n) comparisons suffice.
The general aim of this paper is to demonstrate upper and lower
bounds which differ by "a lower order term plus O(n)". For this
reason we find it appropriate to rephrase and slightly extend the

lower bound quoted above.

Theorem 1: Let S be a multiset with multiplicities LIPRREN.

(where n = vai).k Then at least

k k
n log n - z m, logm, — n log (logn - (Z m, log m,)/n) - 0(n)
i=1 * * i=1 " .

3-way branch comparisons are required, on average, to sort S even if

the m, are given.,

Qutline of Proof: TFollowing [7] we note that the sequence of results

of comparisons performed by any algorxithm can be viewed as a word

4

over the ternary alphabet {>,= <}. Furthermore, any such word based
on the "optimal" algorithm will contain exactly n-k occurrences of

)

"=" (since any additional "=" 's are redundant). There are (m no
10 my

ways to place the elements of S into their equivalence classes.

Therefore, letting s = n-k and T be the complexity of a sorting .algorithm,

Ottt
First note that if T = O(n) then n log n - z m, log m, = o),
and so the theorem holds in this case. Now consider the case in
which T = Q(n).

In this case (2) is T°/s! (to terms of 0(n)), and so taking
logarithms we get

T —
log [(S) ZT S] = slog T-slogs+s+T=-s+ 0(n)

)

\%

n
log (ml...mk

and so
T 2 log 0-1.?.-k) - » log (T/8) - O(n)

Noting that under the constraints s £n, T=80(m), s log (T/s) is
maximized when s = n we have

T = log (ml?..mk) - n log (T/n) - O0(n)

which implies the theorem. i

While we conjecture that the upper bound noted is within O(n)
of optimal, Theorem 1 provides an interesting analogy with binary
search trees. Given a set of k distinct elements {ai} and their
probabilities of being accessed {pi}, an optimal binary search tree
can be constructed. The problem of locating each element in the tree
(with weight corresponding to the probability of the element) is, then,
analogous to the sorting problem. We emphasize that although the
analogy is rather close, there are important differences between the
two problems. For example, more "information" is available in the
case of searching the optimal tree, while the "searches" are not
required to be independent in the case of sorting. These differences
are sufficient to prewent the immediste translation of bounds on one
problem to the other. The known bounds are, however, remarkably
similar. Bayer [2] has shown that the weighted average number of
comparisons to find an element in an optimal binary search tree
lies between

ZP- log}L + 0(1) and Zp. log};h— log(Zp.logJL) + 0(1).

i Py i Pi 177%py
Rewriting p; as mi/n and multiplying through by n to indicate

locating all n elements in the sorting problem, we have the

sorting bounds outlined above.

It may well be that these bounds are as tight as possible
given the set (rather than sequence) {mi}. Our reasoning is based
on the fact that Bayer's bounds are tight in the sense that there
exist probability distributions which achieve his upper bound and

-6 -

others achieving the lower bound. Allen [1] has observed that this
gap can be largely due to the order of the P, He shows a gap of

n
log (z pi(log(l/pi)) (which in his example is roughly log n) between
i=1

the average cost of the two orderings of the same set of probabilities.
Indeed he constructs an example in which Epi log (l/pi) is almost its
maximum possible value, log n, yet under 2 different orderings of the
probabilities, the costs of the optimal binary search trees differ

by almost log (ZP:.L log (l/pi)), the maximum possible difference.

Our main problem, that of determining the mode, or most
frequently occurring element in a multiset, is closely related to

sorting a multiset. Based on the lower bound of

n log n - Zmi log m, - (n-k) log log k - 0(n)

for sorting, a lower bound of n log (n/m) - (n-k) log log k - O(n)
is demonstrated for determining the mode [7]. The method of proof
is to show that if we have found the mode (and m, its frequency of
occurrence) then given any set of mtl elements we know at least one
(specific) element which is greater than another (specific) element.

k
This allows us to "finish" sorting the list in n logm -) m, log m,
i=1

+ 0(n) comparisons. The lower bound on the mode problem then follows
by subtraction from lower bound on sorting. Theorem 1, then,
leads immediately to a slight improvement on the lower bound for

finding the mode.

Corollary 2 - n log(n/m)-n log(log n -) ((mi/n)log mi) - 0(n)
i

comparisons are necessary to determine the mode.

3. FINDING THE MODE

In this section we derive the main result of this paper,
namely an algorithm for finding the mode in a number of comparisons
differing from the lower bound by only a lower order term. An
algorithm given in [7] provides an upper bound of 3n log (n/m)
where m denotes the frequency of the mode. The basic approach of that
technique and those of this section is to obtain a good estimate of
the median of the multiset, and so partition it into those elements
above, below and equalkto this estimate. If there are more elements
equal to the estimate than there are elements above that value and
also more than there are below, then of course the mode has been found.
Otherwise the process continues by repeatedly splitting the largest
segment which may contain elements of unequal value. Using the
3n + o(n) median algorithm of Schonhage, Patesson and Pippenger [10],
the mode can thus be found in about 3n log (n/m) comparisons.

Our main goal.,is, of course, to reduce the constant to 1.

To formalize this procedure, define a multiset to be

homogeneous 1if all elements are known to be equal and heterogeneous

otherwise. By a segment of the multiset, S, we will mean a submultiset
which contains all elements of S in a given range. Observe that a

segment of a segment of S is itself a segment of S.

A natural, and indeed practical, approach to determining the
mode of S is formalized as follows.

ALGORITHM EASYMODE

Begin
Initially the only segment in the system is S which

is, of course, heterogenous;

While the largest heterogeneous segment, H (which
constaing h elements), is larger than any homo-
geneous segment do

begin B
In o(h) comparisons find a reasonable estimate,

mid, of the median of H;

By comparing each element with mid, split H into
2 heterogeneous segments (those less than and
those greater than mid), and 1 homogeneous

segment (those equal to mid)
end;

- The value in the largest homogeneous segment is the

mode
end.

It is not hard to see that this algorithm will coreectly
determine the mode. Furthermore, ignoring the cost of determining
estimates of medians, fewer than n comparisons are used to split all
ot heterogeneous segments of size about n/2i into pitl of size n/21+l.
Viewing the bookkeeping in this way, we see that no more than about
n log (n/m) comparisons are used, provided we can get a good median
estimate "free'". TIf our interest is in an algorithm which runs

quickly on the average, this is rather easy. 1In a manner analogous

-9 -

to the Rivest-Floyd [9] median algorithm, we take a random sample of
o(h/log h) (say vh to be concrete) elements and determine the median by
some straightforward method such as sorting. It is not difficult to show
that the probability of this element being more than 0(vh) elements away
from the true median of H, goes to 0 as h becomes large. Such an approxi-
mation is then, satisfactory for a simple technique which, on the average
and also with probability tending to 1, finds the mode in n log(n/m) +
O(VE.log(n/m)) comparisons. Indeed, this is the method we would recommend
in practice.

The main goal in this study is, however, to find an algorithm
guaranteed to determine the mode in the desired number of comparisons. For
this reason we must be able to guaranteee that our estimate of the median
of a segment is very near the true median. With this goal in mind, a
technique analogous to the Blum et al [3] median algorithm is employed.

The basic method is given below, the details of the splitting and merging
follow. 1In the preliminary exposition we will assume that m, the frequency
of the mode, is known and large. We then return to the (more realistic)

case in which m is unknown.

- 10 -

ALGORITHM mMODE

Begin
Split S into sublists of length %= [log n/m] elements and sort each
sublist (a sorted sublist will be called a column)

While the largest heterogeneous segment, H, (containing h elements)
is larger than any homogeneous segment do

begin
Using o(h) comparisons, find an element, mid, such that at most
L + 0(l) of the elements of H exceed mid and at most % + o(l) are
less than mid;

Split H into 2 heterogeneous and 1 homogeneous segments H,, H, and
E whose elements are, respectively, less than, greater than and
equal to mid;

Repeatedly merge pairs of columns of H, until the average column

length is restored to about £. Do the same with H2.
end;

The value contained in the largest homogeneous segment 1is the mode.
end.

- 11 -

3.1 The Splitting

We present a fairly informal description of the splitting procedure
and an analysis of its cost. A more formal version of the process follows.

A reasonable, but naive, approach to splitting would be to take
the median of the column medians, and then perform a binary search in each
column to partition H into those elements above, below and equal to this
median of medians. Unfortunately, as in the Blum et al [3] median algorithm,
it is possible that all but % of the elements exceed this median of medians
even if we are able to guarantee that all columns are of length £ on each
iteration. In fact we will not even be able to make this guarantee as the
column lengths will vary later in the computation. We note furthermore
that about % of all the elements could lie between a pair of consecutively
ranked column medians. It was this difficulty which led, in a preliminary
version of this paper [4], to the notion of splitting the multiset into
three heterogeneous segments. While this approach does lead to the desired
solution to the problem, we find it extremely difficult to present a
reasonably comprehensible proof and so follow a different approach.

The first time a splitting is performed, ﬁur approach is to begin
by simply finding the median of the column medians, and determining its
rank with respect to all the elements. This splitting leaves one homo-
geneous and two heterogeneous segments. If all columns are of length £,
as they are on the first splitting, we can claim that neither heterogeneous
segment contains more than 3/4 of the elements. However we will be attempt-—
ing to get a better estimate of the median and this will involve working
with subcolumns of varying sizes. Indeed after the first splitting has been

performed we will no longer be able to guarantee that all columns are of the

- 12 -

same length. For this reason we introduce the notion of finding a

weighted median.

Suppose we have a number of sorted columns of various sizes. The
median of the column medians is not guaranteed to rank in the middie % of
the multiset. However, if each column median ''represents'" aweight equal to
the number of elements in its column, then the weighted median of the
medians is guaranteed to exceed (or equal) at least % of all the elements.
The weighted median of k elements is easily found in 0(k) comparisons,
independent of the weights. The technique is simply to find the actual
median. The weighted median then lies in one of the halves of the k
elements. We again find the median of that half, and so on recursively.
The cost of determining the weighted median is, then, about twice that of a
simple median computation.

The basic approach, then, is to find the weighted median of the
column medians of H, and to partition all elements of H about this wvalue.
Using a binary search on each column to achieve the latter task we note that
about (h/z)lég 2 comparisons are used if the average column length is 2.
The technique is reapplied to the subsegment of H (and so h/% subcolumns
of various sizes) which contains the median of H. This process is iterated
a number of times. After i iterations the subsegment containing the median
of H contains at most (3/4):.L of the elements. To apply this technique to
actually find the median of H would be too costly for our purposes.
However, as long as we choose the number of iterations to be w(l), we know
H can be split about this value into one homogeneous segment and two heter-
ogeneous segments, neither of which contain more than % + o(1) of the
elements. This is satisfactory for our purposes. As long as o(L/log %)
iterations are performed the entire éplitting process will cost o(h)

- 13 -

comparisons. The (rather arbitrary) choice of V2/log % iteration suffices,
and the maximum size of a resulting heterogeneous segment will be

1/2 + 0((3/4)" %/ 1og %

Y = 1/2 + o(1).
More formally, we may write the splitting procedure as follows:

Procedure SPLIT

Initially, let M denote the entire segment H;
For i = 1 until v%/log % do
begin

Determine mid, the weighted median of the subcolumn medians of
elements of H;

Using binary search, partition M into three subsegments, those
elements above, below and equal to mid;

Let M denote the subsegment containing the median of H
end;

Partition H into three subsegments H,, H, and E which consist of the
elements respectively, above, below and €qual to mid.

3.2 The Merging

The main goal of the merging process is to reconstitute both Hl

and H, into a form consisting of columns whose average length is about 2.

2
Any pairwise merging of the subcolumns of H which constitute Hl and of those
which constitute H2 can accomplish this goal in h or fewer comparisons.

It is, perhaps, more satisfying to be able to keep not only the average
column length at the desired level, but to keep all (except perhaps 1) of
the columns in the range of‘2/2 to 22 elements. It is not difficult to
check that this can be accomplished if the smallest remaining pair of sub-
columns of Hl are merged repeatedly until either no columns of length

< % remain or no more columns can be merged without an accumulated cost of

- 14 -

more than one comparison for each element of H The process is then

1°
applied to H2.
Details concerning the effects of the splitting not being

"perfect" and that E, the homogeneous segment , may be of a nontrivial size,

are minor and tedious, and so omitted.

3.3 Estimating m Quickly

We have now shown that the mode can be found quickly if its
frequency m, is known. An intelligent scheme must be found here to estimate
the cardinality of the mode, since if our estimate is too high too much work
will be done in repeatedly finding medians, and if our estimate is too low,
extra work done in sorting lists will dominate the computation. Of the two
possibilities, it is easier to resolve being too high, so we begin by over
estimating m. Our mode estimates are taken as n/(221—l) with i beginning at
2 and we begin with columns of size 5 (rather than 4). When we have deter-
mined that our estimate is too high (i.e. when the largest heterogeneous
segments size has been reduced by a factor of about 221), we increment i and
repeat step 1 of mMODE for all remaining heterogeneous segments with the
column size doubled. However, since all sorting information is available,
columns are now formed by merging. This extra work requires 0(n) operations,
and must be done loglog n/m times. Hence, we can use algorithm mMODE with an
additional 0(n 1oglog n/m) = o(n log n/m) + 0(n) operations. The cost of
doing the mMODE algorithm does not change, so that our total cost, even

though m is unknown is still n log n/m + o(n log n/m) + 0(n). We summarize

these ideas in the following

- 15 -

ALGORITHM MODE

i
Set i<2; the estimate ofm,mguess<—[n/(22 -1)] = [n/15}, and so 2<5;

Divide S into sublists of size 5 and sort each sublist;
Until the mode has been found do
Begin
Until we have determined that m < mguess do
Begin

Apply Step 2 of algorithm mMODE to all
heterogeneous segments

End;
i

Set i<«i+l, mguess<—[n/22 -1], <22

Merge columns pairwisein each heterogeneous segment so that
the average column length is about 2,

end

Output the mode

Theorem 3: Algorithm MODE correctly computes the mode of a multiset of size
n with mode cardinality m in n long n/m + o(n log n/m) + 0(n) compares.
Proof: Correctness is obvious from the algorithm's construction. The

time bound follows from the analysis of mMODE and the observation that
the column merging, the only deviation here from mMODE requires

0(n log log(n/m)) operations.

- 16 -

4. CONCLUSION

Improvements to a previous lower bound for sorting of multisets
are presented. An interesting connection between this problem and a
problem on binary search trees is given which suggests that further improve-
ments may not be possible. This lower bound is used to generate a lower
bound on the complexity of computing the mode of a multiset. Using a
technique for quickly estimating the median of a multiset and various
submultisets, an algorithm is developed for matching this lower bound up to
lower order terms. While initial versions of the algorithm require advanced
knowledge of the mode cardinality, we show that this assuption can be

removed through appropriate estimation procedures.

- 17 -

5. REFERENCES

[1] Allen, B., "On Binary Search Trees', Research Report CS-77-27,
Department of Computer Science, University of Waterloo.

[2] Bayer, P.J., "Improved Bounds on the Costs of Optimal and Balanced
Binary Search Trees', Project MAC Technical Memorandum 69, M.I.T.,
November 1975.

[3] Blum, M., R. Floyd, V. Pratt, R. Rivest and R. Tarjan, "Time Bounds
for Selection', JCSS 7 (1973), pp. 448-461,

[4] Dobkin, D., and I. Munro, "Time and Space Bounds for Selection
Problems'", Proc. ICALP 5, July 1978, Springer-Verlag Lecture Notes
in Computer Science 62, pp. 192-204.

[5] Hwang, F.K. and S. Lin, "A Simple Algorithm for Merging Two Disjoint
Linearly Ordered Sets'", SICOMP 1, 1 (March 1972), pp. 31-39.

[6] Knuth, D.E., Sorting and Searching, Addison-Wesley, Reading, Mass.,
1973.

[7] Munro, I., and P. Spira, ''Storing and Searching in Multisets'",
SICOMP 5, 1 (March 1976) pp. 1-9.

[8] Pratt, V., and F. Yao, "On Lower Bounds for Computing the ith
Largest Element", Proc. 1l4th IEEE Symp. on S.W.A.T., October 1973,
pp. 70-81.

[9] Rivest, R. and R. Floyd, '"Bounds on the Expected Time for Median
Computations'", in Combinatorial Algorithms ed. R. Rustin, Courant C.S.
Symp. 9, Algorithmics Press, 1973, see also Rivest and Floyd
"Algorithm 489" (Select) CACM 18 (1975), p. 173.

[10] Schonhage, A., M. Paterson, and N. Pippenger, "Finding the Median",
JCSS 13 (1976), pp. 184-199,

- 18 -

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

