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A BSTRACT

Processes are building blocks for the modelling of
environments in which parallel and distributed processing
occurs. They play in parallel programming the role of
sfandard units (as do subroutines or procedures in sequen-
tial programming). Process communication and synchronization
can be achieved either through shared variables (common
address space) or by message transmission. It has been
shown that the message transmission mechanism leads to a

more general computational structure, We develop

in this paper the beginnings of a methodology to deal with
what we call message oriented programming. We note in
passing that the methodology for programming with shared
variables is well developed and shows a development leading
from operational (automata oriented) constructs (semaphores)
to high level programming constructs (critical regions and
then monitors). Recent mathematical theories of message
oriented‘programming deal with the subject from an opera-

tional (automata oriented) point of view. However, the



models are too far removed from the control and data struc-
tures of programs to guide the designer in constructing a
process. To be able to bridge this gap between program
specification and program implementation (expressed in the
high level language that we use), we resort to a definitional
specification technique based on the concept éf abstract data
type.

The specification technique is used in conjunction
with some useful design principles to illustrate our ideas
via solutions to well known problems. The two main prin-
ciples we discuss are: differences (and needs) for defini-
tions of process and message structures in a given applica-
tion and the concepts of module strength and module coup~-
ling as put forward by Myers. Finally, we illustrate how the
high level definitional technique leads us to a straight-forward
method for studying some properties of message oriented pro-
grams. We give an example of proving the deadlock freeness of
a solution to the consumer and producer problem.

Key Words . and Phrases: Distributed processing, message oriented

programming, software design, specification, synchronization

constructs, definitional specification, communication descriptions,

deadlock.



1. Introduction

The classical approach for dealing with complex problems and computer
systems in particular is to attempt their decomposition into smaller and
simpler parts. Processes. are building blocks for the modelling of dynamic
environments in which parallel and distributed processing occurs. They
play in parallel programming the role of standard units which have
been reserved for subroutines or procedures in sequential programming.

Although there is hardly any agreement in the literature on a
precise definition for the term process, several programming constructs
have been proposed to capture its intuitive meaning. The independent
actions that occur in a parallel system can be represented through
independent processes. The processes are independent in the sense
that each contains all the information required for the execution of
its intended action. Process communication and synchronization can
be achieved either through shared variables or by message transmission.
It has been shown [38] that the message transmission mechanism leads
to a more general computational structure, since shared variables can
be viewed as a special case of message transmission in which two
processes cannot communicate at the same time. Furthermore, shared
variables cannot deal with the case in which processes run on different
nodes of a network of processors because they require a common address
space.

In the last few years the various approaches to parallel



programming, from Dijkstra's semaphores [14] to Hoare's monitors [21],
responded to the need of good engineering techniques for parallel programs.
(n fact they encompassed ideas from structured programming, program
verification and programming with abstract data types.) Nevertheless,
since all these techniques relied upon shared variables they failed

to match up with the present needs for fully distributed systems. .

The current trend in parallel programming is programming
through messages and processes. The general idea of message passing
for interprocess communication was preliminarily discussed by Brinch
Hansen in [2]. More recently the concept has been discussed in a more
general setting, by presenting processes and messages as both a
structuring tool and as a synchronization mechanism. Instances of
this recent effort can be found in Zave [38,39] , Jammel [23] ,
Hoare[22] and in the description of multiprocessing systems such as
Demos [1] , Mininet [29] and Thoth [8] .

Zave [38] has argued for the naturalness, usefulness and
generality of programming with messages and processes. We think that
a further characterization of this programming technique is necessary.
It needs to be at least as well understood as the techniques for
parallel programming with shared variables. In other words, design
principles, specification and proof methods need to be developed for

the complete characterization of this novel programming style.



In the present paper we review the programming style induced
by the use of semaphores [14,37], critical regions [19,3,4] and
monitors [5,21] . We focus on the basic ideas introduced by the
different methods for the utilization of shared variables for process
communication. We then contrast the above approaches to programming

with processes and messages which we call message oriented programming.

The discussion is based on different solutions to the often used
example of the readers and writers, and a message oriented program for
the producers and consumers problem. We emphésize the design principles
which guide message oriented programming.

The paper proceéds by showing that the needed theoretical
foundations for the new programming approach are currently being
developed. We illustrate this last point by presenting a concise
description of the specification method proposed by Milne and Milne
[31] that introducesthe notion of flow algebras for the specification
of processes and messages. We finally report our current efforts
towards an algebraic specification of processes and messages. All the
advantages usually attributed to the algebraic specification methods
[17,40,16] are present in this context and the method described is
proving to be useful in the specification and verification of proper-

ties of parallel programs [11].



2. Process Synchronization Through Shared Variables

In the present section we review the notions of semaphores
[14] , conditioned critical regions [19,3,4] and monitors [5,21] which
have been used for the syncronization of processes through shared
variables. The following discussion will be based on different ver-
sions of the problem of the readers and writers, originally proposed
and solved by Courtois et. al. in [10]. The problem can be stated in
the following way. Readers and writers are processes which share a
resource. The readers can use the resource simultaneously but the
writers require exclusive access to it. When a writer is ready to
use the resource, it is entitled to do so as soon as possible.

The discussions which follow the brief definition of each
syncronization method and the presentation of the example will center
on programming style. The comments made about the various methods are
net necessarily new. In fact, each newer approach tried to by-pass
the problems recognized in the preceding method. The reason for the
compilation of the characteristics of the various methods in the
present text is to facilitate the task of establishing a clear

differentiation between these methods and the one presented in the

next section.



2.1 Semaphores

The concept of semaphore was introduced by Dijkstra [14] and
it is known as the first attempt for dealing systematically with inter-
process communication in programming.

A semaphore s is a non-negative integer which can only be
modified by two special operations called P and V . 1In his original
work Dijkstra differentiated between binary (assuming the values 0 and
1) and general semaphores. The P and V operations are defined in
the following way:

P(s)

when s > 0 do s <+ s - 1

>

V(s) s +s +1

In Appendix T we present the solution to the readers and
writers problem proposed by Courtois et. al. in [10]. Although other
solutions to the same problem also based on semaphores have been
published (e.g. Brinch Hansen [ 3], Keller [24]), Courtois' version
of the problem does not resort to extensions of the original semaphore
concept.

The following comments can be made about the utilization of
the semaphore concept in its original form:

(i) With the semaphore approach, the code for synchronizing

éé@h'accessito é'fesourcgiis located in the procéss'that
‘;gqgéges itI:ﬁAs»a consequence the Synghron?;gﬁion c9de

gets distributed through all the processes therefore



causing repetition of commands.

(ii) The verification of a control structure based on sema-
phores is not easy- (see for instance Brinch Hansen [3]).
The problem resides in the fact that semaphores estab-
lish a strong dependency among tle various processes.
Besides, a system based on semaphores is more suscep-
tible to catastrophic errors since the omission of P
or V operation in one of the processes can lead the

whole sytem to block.

An important design assumption was made in connection with
semaphores: they require all processes to be able to address

directly the shared structure.

2.2 Conditional Critical Regions

The concept of conditional critical regions was first introduced
by Hoare in [19] and then further studied by Brinch Hansen in [3]
and [ 4] . The proposal was motivated by the contemporary work in
structured programming and program verification and was aimed at
providing features for structured multi-programming.

For an easy understanding of the example in Appendix II, we
quote a few definitions from [4 ].

(i) var v ¢ shared T ; shared variable v of type T which can

only be referrenced and changed inside a critical region.



(ii) region v do S ; associates a statement S with shared variable
v . Critical regions referring to the same variable exclude
each other in time.

(iii) await B ; delays a process until the components of v satisfy

the condition B and must be enclosed in a critical region.

The general form of a conditional critical region is as
follows:

var v : shared T;

region v do

begin...await B ; ...end

In the example presented in Appendix II , variable v is a
record consisting of two integer components which specify the number
of readers and writers that currently use the resource.

Analysis of the use of conditional critical regions suggests
the following observations. Critical regions have managed to structure
the use of semaphores. This was achieved by both the explicit associa-
tion of the data being shared with operations defined on them and the
direct statement of the conditions under which computations are carried
out. Problems still remained in this newer method of synchronization

through shared variables. They are the following:

(i) Although the syncronization commands are now hidden in the

statements "region v do" and "await B", the syncronization code



is still distributed through all the processes;

(ii) The repeated evaluation of the boolean expression B in the
statement "await B" causes a considerable inefficiency in

processing time.

In general, it can be said that critical regions are very inefficient
whenever there is a heavy utilization of resources. In fact it can be

said that it was the price paid for structuredness.

2.3 Monitors

The notion of good structure in parallel programming was re-—
assessed for the formulation of the concept of monitors (Hanmsen [ 5]
and Hoare [21]). The concept was based on the contemporary notion of
abstract data types (Hoare [20]). A monitor consists of a schedule
composed of local data, procedures and functions, which is called by
programs that need to acquire or release resources. Since the monitor
is an abstract data type the programs that need to manipulate resources
can only do it through the operations that define the type, without
having any information about how the resources are implemented within
the monitor.

The notation used for monitors was based on the class mechanism
of SIMULA 67 [12]. 1In [21] monitors are described in the following

manner:



monitor mame : monitor
begin ... declarations of data local to the monitor;
procedure procname (...formal parameters...);
begin ... procedure body ... end;
... declarations of other procedures local to the monitor;
... initialization of local data of the monitor ...

end
Procedures of a monitor are called in the following way
monitor name — procname (...actual parameters...);

A monitor's procedures are common for all running processes. However,
only one process can enter a monitor procedure at a time. The "wait"
and "signal" operations must be preceeded by the name of the condition
variable (e.g. card variable . wait and card variable . signal) since
there may be, for instance, more than one reason for waiting. The
solution to the readers and writers problem presented in Apprendix TIT
is quoted from Hoare [21]. 1In the following example it should be noted
that:

(i) There are four local procedures:

startread - entered by reader to initialize reading
endread - entered by reader when finishing reading
startwrite — entered by writer to initialize writing
endwrite - entered by writer when finishing writing
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(ii) A conditioned function of the form "cardname - queue"
returns the value true if any process is waiting for that card-

name and returns false otherwise.

Monitors, as described, concentrated the code which was previously
scattered through all the processes. Structuredness was achieved
together with independence of the representation at a lower cost than
that required by the repeated reevaluation of general boolean
expressions in conditioned critical regions.

Some old problems were not solved. 1In fact, the centraliza-
tion of the access to the resources via the monitor's procedures still
relies on the user for the proper use of the procedures which are
scattered through all the processes. If a user forgets to release
some resource, he will block the whole subsystem controlled by the
monitor.

Some new problems were introduced. The rule requiring that
only one program at a time enter a monitor procedure may lead to
excessive sequentialization of access to the resources. That will
preclude, in some cases, a better utilization of processing time.

Given the short discussions about semaphores, critical regions
and monitors above the key idea that we want to convey is that what is
needed in parallel programming is not yet another extension of the
semaphore concept which will necessarily still require the use of

shared variables. One example of guch an extension is the interesting
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idea of path expressions [6,18]. Using path expressions it suffices to
specify the order in which the operations on a shared object can be
performed by different processes. A compiler will translate the path
expression specification into the necessary semaphores and P and V
statements. Path expressions provide a very high level language to
deal with the synchronization problem but they are still based on the
idea of shared variables and so share the shortcomings of the concepts
discussed above.

What is presently needed is a major departure from the above
programming style which will allow the development of reliable and
efficient software for highly distributed systems. Such a programming
technique based on processes and messages will be presented in the
next section. It has already been discussed to some extent by the
originators of the Thoth system 18,9].

There is a lesson that needs to be learned from the program-
ming techniques based on synchronization via shared variables. The
introduction of new programming constructs must be accompanied by the
development of analytical tools which enable its rigorous character-
ization. - Such tools consist of formal specification techniques and

the corresponding verification methods.
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3. Message Oriented Programming

In this section, we introduce the expression message

oriented programming to refer to programming with processes and messages.

This programming style has been adopted more or less systematically in
the programming of parallel systems and has been called in the liter-
ature by different names. Programming through message passing [ 1 ],
programming through managers [23] and proprietors [ 9] are some of
the names used for more or less restricted versions of message oriented
programming.

Message oriented programming has been proposed both at the
theoretical level [38] and as a technique developed in connection
with actual sytems implementations [23, 8 ]. To gain a wider accep-
tance it needs a precise characterization. In this section we attempt
this characterization by stating some major program design principles
associated with message oriented programming and by illustrating these
principles through examples.

In message oriented programming, processes belonging to a
given system of processes (which is also considered to be a process)
communicate via messages that flow through the source-to-destination
paths that connect them. Processes send messages through the communi-
cation paths and the messages are to be received at the destination some
arbitrary finite time later. At the destination, all messages received
are saved in arrival order in a separate queue for each of the sending

processes. (Although this is the scheduling technique adopted, in
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general many scheduling methods may be used in conjuction with message
oriented programming). The structure of the system of processes determines
the destination of the output stream of messages for the various processes.
A message is removed from the queue when it is received by the corresponding
process. We are assuming that imperfect communication -- messages arriving
out of order or being lost -- is handled by a communication link process
which verifies the communication protocol. (The order of the messages can
be assured by attaching some sequence number mechanism and messages being

lost can be avoided by a time-out mechanism.)

Message oriented programming sharply contrasts with parallel
programming with synchronization through shared variables because the
message model permits asynchronous communication only through message
transmission with arbitrary delay and the asynchronous processes have
disjoint state spaces.

The programming style of message oriented programming resem-
bles the programming approach enforced by a highly extendable language
(e.g. ECL [ 7]) which allows the definition by the user of both the
control and data structures to be used in a given application. In
‘fact, message oriented programming requires the program designer to

provide both the definition of the process and message structures for

a given application. In terms of problem solving two programming
problems are present in this case: the question of how much of the
program should be contained in the message structure and how much
should be in the process structure, and the question to what extent

should a program be data driven (that is, whether data should be dealt

with more or less explicitly).
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The inherent excessive flexibility of message oriented pro-
gramming suggests that careful attention be paid to the methodological

issues that it raises. Testing of these kinds of parallel programs is

very difficult since, in general, it takes place in very general

configurations of distributed machines (where the configuration may

change dynamically).

3.1 Program Modularity

Message oriented programming responded to some of the very
rigorous requirements for modularity proposed in the literature. 1In
[13] a program segment can be called a module if it follows the
properties of syntactic non-interference, semantic context independence
and data generality. Syntactic non-interference accounts for the
possibility of combining program segments without having to make
syntactic changes in any of the segments. Semantic context indepen-
dence insures that a given segment cannot cause side-effects and can-—
not be affected by side-effects. The property of data generality
requires that modules be able té communicate via arbitrary data struc-
tures. Data generality allows for the full application of Parnas'
"hiding principle" [34,35] through which each module's programmer needs
to know only about another module's specification and not about its
internal implementation.

The most difficult property to be satisfied for most programming
systems s data generality. The very essence of message oriented pro-
gramming, that is, the fact that communication between processes can .
only take place through message transmission and the fact that asyn-

chronous processes have disjoint state spaces, satisfies it by definition.
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The whole (process) structure of a message oriented program is it~
self specified by a pypcess.wProcesses caq'be deébmpogedrinto an arbitraryr
number of component processes. In the programs to he presented later, we
will use the symbols "{" and "}" to delimit processes in substitution
to the usual pair begin / end. At execution time, the invocation of
a process includes the invocation of all its constituent processes,
since processes can invoke sub-processes as well as create and delete
sub-processes.

The possibility of recursive process decomposition (nesting
of processes) plus, once more, the mode used for process communication
allow program segments in message oriented programming to be called
modules, since they also satisfy the properties of syntactic non-in-

terference and semantic context independence by definition.

3.2 Program Design

The design of the process and message structures that form a
message oriented program must be guided by sound programming prin-
ciples. These principles have in part been spelled out in the liter-
ature in connection with sequential programming and can almost directly
be applied to the message oriented programming approach. Such princi-
ples are structured programming [15] , modular design [36,33] and
programming with abstract data types [26].

From structured programming, the notion of program construction



16.

by stepwise refinement can be directly used to structure processes as
a hierarchy of virtual machines. The proper structuring of independent
processes as ahierarchy of virtual machines not only facilitates the
understanding of the system but also helps in defining which layers of
the system are responsible for process creation and deletion and for
the protection of resources. Stepwise refinement also characterizes
the constructive approach of '"writing the assertions before the code'.
This idea is readily applicable. to message oriented programming.

The design of each main process in a parallel system must be

preceded by the definition of a process control statement that

specifies it. For instance, the specification of the control structure
of the readers and writers problem can be stated rather simply. Let

us define for this purpose the following three predicates:

NRA - There is no reading activity

NWA - There is no writing activity

NWR - There is no writing request in the system

We recall that the reading and writing conditions of the problem can

respectively be stated as:

reading condition : NWA A NWR

* writing condition : NWA A NRA

Therefore, the process control statement for the readers and writers
problem, expressed in our informal assertion language, is:

(NWA A NWR) Vv (NWA A NRA)
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We will use the above statement later to informally prove the correct-
ness of our example programs.

Modular design can give us a tool to deal with the problem of
how much of the program should go in the process and message structures
respectively. Myers [33] proposes. two criteria to be used in decompo-
sing systems into modules : module strength and module coupling. A
balance between high strength and low coupling must be attempted.
Module strength tries to achieve high module independence by maximizing
the relationships within each module (and so minimizing dependence be-

_tween separate modules). Minimizing module coupling is a process of
both eliminating unnecessary relationships among modules and minimizing
the tightness of those relationships that are necessary.

This procedure of achieving high strength and low coupling
implies a clear identification of the resources needed in order to solve
the problem. Our view of resource is an extension of the concept of
abstract data type. In the commonly accepted view of abstract data
types, there are no a priori constraints on the way that the operations
from the type should be activated. These ideas agree with Myers'
concept that a module should implement some data type in order to get
high module strength and low module coupling. However, with modules
corresponding to resources, in addition to the usual set of values and
operations to be applied to them, we have to define how these operations
are going to be synchronized (with each other and with the resource's
external environment).

Motivated by the considerations given in the preceding para-

graph, we postulate two ways of accomplishing the balance between high
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strength and low coupling in message qriented programming: dinformational
strength and functional strength. We will focus for the moment on infor-
mational strength. This criterion is used when the operations defined on
the resource (or the associated abstract data type) are handled explicitly.
A message oriented program has informational strength when each 6f its
constituent processes performs a specific operation on the resource. The
search for processes'in this case can be done by determining all the asyn-
chrénous conditions in a problem (such as the process control statement
given previously for the readers and writers problem) and associating to
each of them a process that handles this particular aspect of the resource.
(The conditions are separated in the process control statement by the
alternafi&e operator ''or'".)

If we look now to the reading and writing conditions in the
process control statement for the readers and writers problem, the following
process modularization can be stated to achieve high strength and low
coupling using one process to handle each of the two stated asynchronous

>conditioné ((NWA A NWR) and (NWA A NRA)). 1In Figure 1 the processes
p-readers and p-writers follow the basic asynchronous conditions of the
problem and the arrows indicate the source-to-destination paths that connect
the pfocesses. One message may flow through a given path at a given time.
However, the same path may carry different values of messages at different
times (indicated by the use of '(or"tbelow. The dotted area indicates which
resource (named in capital letters) is being protected and fhe scope of its
protection (i.e., which processes are in charge of it). In this case the
access to the resource "FILE" is handled by the processes p-readers and

'p—writers. The resources readers and writers (enclosed in dotted
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For the specific solution outlined in Figure 1, some operations are

defined for message passing. A full definition of a data type intended

for synchronization through message passing can be found in f11]. The

following operations are some of the operations of this type:

(1)

(ii)

(iii)

sendi(j,msg)

receivei(j)

rec—any,
yl

process 1 sends a message msg to process j ;
the subscript may be omitted when it is clear
which process is sending the message; no blocking
is produced by this operation. When the value of
msg is unimportant, i.e. when process i is just
signalling process j , then we will abbreviate the
construct to sendi(j).

process 1 wants to receive a message from
process j ; the receiving process blocks if
there is no message in its buffer from the
specified process.

process i wants to receive a message from any
of the running processes ; this operation returns
a pair composed of the name of the process that

sent the message and the message itself; the

two components can be distinguished by var-

name and var-msg ; in this case the receiving
process blocks if there is no message from any
of the other processes.

Note: another form of this operation could be
rec—anyi(set—of—proc) where process i can re-

ceive a message from any process in the given
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set. The first process in the set which is
sending a message to the receiving process will
satisfy this operation.

(iv) istheremsgi(j) : This boolean function returps the value true
if there is a message from process j to
process 1 1in the queue of messages and returns
false otherwise.

Given the message structure informally specified above, we
can express the first version of a message oriented program for the
readers and writers problem. We will make use of the type "set" for
which the operations of insertion and deletion of elements are defined.
We also leave out of sendi, receivei and isth.eremsgi the subscript i

when the value of i is obvious from the context.
p-reader( )
{readercount : integer;
setproc : set of strings;
rproc : pair of strings;
readercount := 0;
while true do -

{ if istheremsg(p-writer)
then { rproc := receive(p-writer);
while feadercount # 0 do
{rproc := rec-any(setproc);
readercount := readercount - 1;
delete(rproc.name, setproc) }
send (p~writer);

receive(p-writer) }



else { rproc := rec-any;
if rproc.msg = startread
then { send(rproc.name, OKtoread);
readercount := readercount + 1;
insert (rproc.name, setproc)}
§l§g_{ readercount := readercount - 1;

delete(rproc.name, setproc)}

p~writer( )
{wproc : pair of strings ;
while true do
{ wproc := rec-any ;

send (p-reader) ;
receive (p-reader) ;
send (wproc.name, OKtowrite) ;
receive (wproc.name)

send (p-reader) }

We had proposed the following process control statement for
the readers and writers problems: (NWA A NWR) v (NWA A NRA). The
following argument may be presented to show that the above assertion

is satisfied:

22,



23.

(i) As soon as the process p-writer receives a request, it sends a
signal to the process p-reader, and the test istheremsg (p-writer)
assures that no further reading can take place. 1In this case the
while loop enforces the completion of the previous readings be-

fore the process p-reader tells the process p-writer to go ahead.

(ii) The process p-writer controls the writing so that the process
p-reader cannot proceed while there are-some writing requests in
the system. This assures mutual exclusion of reading and writing

and it also provides priority for the action of writing. When

there is no writing process waiting, more than one reading can be

performed at the same time (by different invocations of the process

p-reader).

The above very informal proof could be expressed rigorously if we had a
formal specification for the program.

Another way to achieve high strength and low coupling is the
use of the functional strength approach. Functional strength can be
used when it is necessary or desirable to make the structure of the
resource implicit. (The associated set of values and operations are
treated implicitly and the operations are executed sequentially.)

In other words, a functional strength solution packages together in

one process all related operations. Whenever functional strength

modules can be identified it is easier to develop a solution with

lower coupling between modules since data management becomes centralized.

By associating processes to resources to apply the above modulariza-

tion criteria we sre in essence adapting the concept of moniters te.



24,

message oriented programming. This technique has been called in the
literature programming withAmanagers [23] or proprietors [9].

Returning to the readers and writers example, we notice that
it is possible to associate a single process to the resource FILE. A
solution in which a process is dedicated to the protection of a resource,

is outlined in Figure 2.

- T T =TT T
| READERS | !  WRITERS
:._ —_——— T |

start-to-rea OK-to-read

VvV end-reading
start~-to-write

v end-writing

OK-to-writ

Such a data oriented programming style has heen proposed in
[23] and [ 9] . The general format of a resource—protecting process
can be outlined as follows:

manager C )
‘ .proprietor

{ rec-any

case 1 S
. Mutually exclusive modes
. of data manipulation.
case n
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It can be observed in the above process schema that if a
different process is used for each case (as in the previous example)
the need for communication links will grow and we will tend to have
a higher coupling in the modular system. A solution for the readers
and writers problem that follows the above approach can be expressed

as follows:
p-resource( )

{ readercount : integer ;
setproc : set of strings;
mproc, mprocl : pair of strings ;
readercount := 0 ;
vhile true do
{ if - istheremsgc (startwrite)
then { mproc := rec-any ;
if mproc.msg = startread
then { send(mproc.name, OKtoread) ;
readercount := readercount + 1 ;
insert (mproc.name, setproc) }
else { readercount := readercount - 1 ;
delete (mproc.name, setproc) }
else { mproc := receivec(startwrite) ;
while readercount # O do
{ mprocl := receive(setproc) ;
readercount := readercount - 1 ;
delete(mprocl.name, setproc) }
send (mproc.name, OKtowrite) ;

receive (mproc.name) }
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Note that we have introduced two small changes in the message

structure used in the above example. In fact we introduce into our

communications data type the following operations:

(1)

(ii)

istheremsgci(msg) : asks if there is a message in the
queue whose content is equal to msg.

receiveciCmsg) : process 1 wants to receive a message
msg; the receiving process blocks if there is no

message in its buffer whose content is equal to msg.

As before, the main process can be verified easily with respect

to the same process control statement. The following informal argument

can be used in this case:

(1)

(ii)

The test "—1istheremsgc (startwrite)" insures NWR and
the end of any writing activity previously started (NWA)
is guaranteed by the priﬁitive "receive (mproc.name)"
that blocks waiting for its occurrence. More than one

reading can be performed at the same time.

As soon as a writing request arrives, the while loop
forces the completion of all previous readings (NRA).
The sequence (startwrite, endwrite).is activated with-
out any external interference, thqs assuring the ter-
mination of the writing'aétivity before the next

operation (NWA).
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As the above program illustrated, the notion of data abstraction
was introduced by having a process (or several processes) performing
standard operations on the data and other processeé wanting to use the
data abstraction passing control to it. We could, as Jammel [23] has
indicated, have serveral hardware processors running simultaneously
within a data abstraction implemented as a message oriented program.

The above data driven approach to message oriented programming
can be generalized by having not only one process (or several processes)
dedicated to the protection of each resource involved in the problem but
also by making these processes interact. A parallel programming system
can then be expressed through communicating data abstractions. This
programming approach leads to a very interesting structure pattern which
can be applied to a number of situations. (The problem of protocols in

computer networks is one of them.)
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4, Specification of Message Oriented Programs

In the previous section we have described informally the dis-
tributed computing enviromnment in which message oriented programs
operate. We have also specified very informally all the programs that
appeared in the text. That, of course, was responsible for the very
informal proofs of correctness presented for thése programs. It is
universally accepted today that specification is a part of programming.
Furthermore, as we are trying to characterize a new technique for
parallel programming it is very important to state precisely the logical
computing environment provided by a general purpose distributed computing
system. This section is devoted to the presentation of the computation
model that we assumed when writing our example programs and to the
presentation of a specification technique for expressing and verifying
properties of message oriented programs.

MacQueen [28] in an excellent recent survey studies some models
for distributed computing. The work concentrates on message passing
systems, for the same reasons that we decided to study programming techniques
based on processes and messages. That is, the belief that the full
promise of distributed computing is unlikely to be fulfilled unless a
new programming technology is developed to match the new hardware
systems.

MacQueen [28] classifies message passing systems according to
the character of the communication medium. In models with direct
communication, processes have global names and messages can be sent

between two agents if and omly if the source process knows the address



of the target process. In models with indirect communication, explicit
channels or paths are used to transmit messages. We have assumed the:
form of direct communication in the programming environment used in
the previous section. Milne and Milner [31] have proposed a model using
channels in which there is information flow in one or both ways and
multiple senders and receivers. In their model, operations are

algebraic in character, operating independently of the internal structure

of the processes to which they are applied. That allows for the direct
application of structured programming as discussed before, since the
composition operations on processes can be used at every level of the
process hierarchy. The model also allows for the localization of the
effects of explicit nondeterminism by considering all possible inter-
leavings of a set of related events, therefore eliminating the need

to deal with global interleavings of all events.

Since we implicitly followed Milne and Milner's model for
providing the logical computing enwironment in which we wrote our
programs we are going to start this section by describing this model.
The description will be concise and based on the readers and writers
example. The specification expressed in the language of the model will
help in the understanding of the message oriented programs presented
for the readers and writers problem.

The reservations which we have-about this model can be stated
as follows. The fact that Milne and:Milner's model doés not deal with
the internal structure of processes makes it comparable to Petri nets

and the other models described in MacQueen's paper [28]. In other words

29.
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the model is too far removed from the control and data structures of
programs to guide the designer in constructing a process. One might
compare it to the situation in which a sequential language is modelled
semantically by using an SECD like mechanism (Landin [25]). Knowledge
of this semantic model is of very little help in the construction of
structured (sequential) programs.

To be able to bridge the gap between program specification and
program implementation (expressed in the high level application language
that we use), we resorted to a definitional specification technique. We
show how the -notidn of algebraic specification can be formalized and
used for both program design and verification of properties of parallel
programs. We illustrate the method by using the preceding specification
of the consumers and producers problem and by showing that the proposed

solution is deadlock free.

4.1 The Flow Algebra Model of Distributed Computing Systems

In this section we present a concise description of the flow
algebra model of distributed computing systems [31, 301 and apply it to
an example.

The model #ees a system of processes as a graph in which
the nodes are processes represented by habelled ports and the edges
are channels connecting these ports (and thus the processes to which
the ports belong). The labelled ports used to represent processes are
meant to capture the idea of the process's potential communication
capabilities. To the model, the process is just a set of communication

capabilities; that is, the communications (zero or more) which the
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process offers to make with other processes at any given point in time.
Each capability expresses not only the content of the offered communica-
tion but also the renewal (or continuation) process which will replace
the communicating process following the communication. Suppose for
example

p={o :: Qs O 33 Gy, Y 3 r} is a set of communication
capabilities. (A set is used since concurrency is reduced to the non-
deterministic interleaving of all communication sequences). The possible
renewals of process p are 455 9 and r ; process p can carry out one of
two O communications or a Y communication and then enter a renewal state
which is dys 4y OF T respectively. The renewal (or state) which results
from a communication activity is determined for different port names
solely by the port being used for the communication. 1In the case of non-
deterministic use of the same port name (as for o above), the renewal
is chosen non-deterministically among the renewals specified for that
port. As can be observed immediately, the model concentrates on the
synchronization aspects of interprocess communication by abstracting
the data communication aspects (only signals are modelled with no value
passing being described).

The algebraic approach comes into play here because the
behaviour of a composite process will be modelled by the composition
of the behaviours of its sub-processes. In what follows we are going
to present a specification for the readers and writers problem in the
language of the model. We make use of a simplification of the

scheduling technique presented in [321].
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The operations read, request to write and write are labelled
by the capabilities r, vy and w, respectively. Resource sharing processes

are called access; and contain capabilities r, vy and Wy The model

introduces the idea of "controlled-access'" to control the begin and

"after" are used

the end of operations. Two functions, "before" and
to define the controlled-access.

Let o :: q belong to the set of capabilities of the process
p. It means that if p communicates via o with another process (i.e.,
both processes have the same capability o) then q will follow p in the
system. The function before(B', B) replaces all capabilities labelled
by B, for example B :: q, in the capability set of a process p or its
renewals by B' :: {8 :: q}. This indicates that a B communication may
take place only after a B' communication.

The function after (8, B') replaces B :: q by B :: {B" :: q}

to indicate that a B communication has occurred and is followed by a B

communication.

In the following definition of controlled-accessi the following
abbreviations are used: rd for begin reading, wtl.for begin writing
requgst, wt2 for begin writing, rf for end reading and wf for end
writing. The dot stands for function composition.

Controlled—accessi = before (rd ,r).after(r,rf ),before(wti,wl).

before (wtz,wz).after(wz,wf)(accessi)

The scheduler s , which performs the control for the readers

and writers problem is defined recursively as follows:



33,

i. s = s,(0)

ii. s, €0) ='{wtl':: 52(02,'rd 03 31(1)}

iii. s; (1) = {wt, s,(1), rd :: 8 (4H), rf :: s;(1-1)} for 121
iv. s,(0) = {wt, {wf :: s}}

v. s,(1) = {rf :: sz(i—l)} for i 21

The system as a whole is described by

system = (controlled—accesslH...Hcontrolled accessn) Il s

where || stands for a derived operation which is applied whenever two

composite processes require their interconnected parts to be invisible

to other processes. (The basic operations in the theory are composi-

tion, restriction of the set of ports of a given process and relabelling

of processes).

In what follows we give the intuitive interpretation of the
definition of the scheduler s above:
i. defines the initial state of s
ii. defines a state in which a write operation is performed but

where there is no read operation or writing request.

iii. states that some reading operations are being performed
iv. states that there is a writing operation being executed
V. states that when there is a writing request, the process

makes sure that all currently active readers finish before

the writing operation is initiated.
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Note that the model does ﬁot make use of a queue of messages~
in the communication system. If a writing operation is being processed
then all‘other possible operations are delayed until the end of ' the
writing operation.

The behavior of the specification of the readers and writers
problem as expressed in terms of the flow algebra model can be summarized

in the following diagram that represents the scheduler s (for i 2 1)

s (l) eee S (i 1);:::;, 1( )

rd
sS=s (0) wty wt,
\(1) ces S (i 1) 1——-—- s (i)
wtz,wf
s, (0) 7
Figure 3

As Figure 3 illustrates, the flow algebra model is in essence

an operational model characterized by states and transitions. It bears

similarities to automata models, but the operatioms it defines provide

a richer structure that cannot be found in previous models.
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4.2 Algebraic Specification for Process Communication

The flow algebra model helped to further characterize the
computing environment in which message oriented programs operate. The
reason we used it to specify the readers and writers problem was to
emphasize the conceptual distance that exists between this level of
specification and the programming level presented in the previous
section. TFor that matter, the flow algebra model is representative of
the class of models surveyed by MacQueen in [28], which have proved to
be useful in the specification and analysis of parallel system but which
fail to assist programmers in the design or natural verification of
parallel programs.

To be able to make the specification level adhere more natumally

to the programming level we are going to adopt a definitional specifica-
tion technique. Following Liskov's classification [27], definitional
methods include axiomatic and algebraic specifications. We are in the
process of extending the algebraic specification method, to use it for
the specification of parallel programs.

We are now going to introduce the algébraic approach for the
specification of parallel programs and illustrate its use for
verification by addressing a central problem found in message
oriénted programming: ‘the deadlock problem. The ease of proving
the deadlock freeness property in the consumers-producers example
will serve the purpose of illustrating the power of the algebraic
specification approach. It is, at the present, preferred to the

axiomatic approach because of its ability to abstract from the
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structural details contained in the problem solution.

Now we present a solution for the producer-consumer problem
that is deadlock free in order to illustrate the use of our approach.
The problem can be stated informally in the following way: a producer
and a consumer process interact by means of a buffer area into which the
producer "deposits items" and from which the consumer "extracts items";
the two processes repeat their actions continuously and it is known that
the buffer is large enough to hold n items. It is possible to base the
solution of the problem on two variables or resources: avpl (number of
available places in the buffer) and avit (number of available items in
the buffer). To each of these two resources will be associated a process
which will be responsible for controlling access to it. Note that we

are assuming the use of an implicit buffer in this solutiom.

producer ( )
{ last : pointer;
% ! pair of strings;
while true do

{ produce message;
x.msg = wait;
while x.msg = wait do
{ send(p-avpl);
= := receive(p~avpl)}
place message at last;
last := last + 1l(mod n);

send (p-avit)



consumer ( )
{ first : pointer;
y : pair of strings;
while true do
{ y.msg := wait;
while y.msg = wait do
{ send(p-avit);
y := receive(p-avit)}
get message from first;
first := first + 1(mod n);
send (p-avpl);

consume message

p-avpl( )
{ avpl : integer:
t : pair of strings;

avpl := nj

while true do

{ t := rec-any;
if t.prc = producer
then if avpl = O then send(producer, wait)

else { avpl := avpl - 1;
send (producer, goahead)}

else avpl := avpl + 1}

37.
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p-avit( )
{ avit : integer;
u : pair of strings;
avit := 0;

while true do

{ u := rec-any;
if u.prc = consumer
then if avit = O then send(consumer, wait)
else { avit := avit - 1;
send (eonsumer, goahead)}

else avit := avit + 1}

In our proposed solution to the producer and consumer
problem a process can be in a deadlock situation if it is blocked while
executing a receive operation. Thus, the condition for the occurrence
of a deadlock in the system is the existence of a circular chain of
processes in which each process is blocked and is waiting for a message
from the next process in the chain.

The asynchronous nature of message oriented prograﬁming determines
the possible occurrence of delay situations such as (i) processes sending
message before they can actually be processed; (ii) processes trying to

receive messages before they are sent. The idea we introduce to handle

delays is what we call a canonical synchronization formula (csf). This

formula is a canonical representation of the sequence of all communication
operations (''sends" and ''receives") performed by a parallel program. In
the csf, the overall blocking (delay) period between send operations and

the corresponding receive operations is minimized. Intuitively, what the
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formula means is that a message sent by process Py is received as soon as
possible by the target process P, (immediately in a well designed system).
Thus, a csf is a specification tool which attempts to specify the intended
history of communications actions in the system. A given execution of the
system will not in general result in the same sequence of communications
actions but it is intended that whatever sequence results, it be equivalent
to the sequence specified by the csf. It is of course necessary to prove
that the non-determinism introduced by the asynchronous behavior of the
system does not affect the result (and so the csf does describe the behavior
of the system).

We use what we call "synchronization axioms" which transform a
given sequence of communication primitives into the corresponding csf.
This is done by looking at the delay situations. If the sending operation
is performed before it can be processed (i.e. the sending and receiving
operations are not together) then this "send" can commute with the next
primitive in the expression., The same happens if there is a receiving
operation that was performed before the message was sent. There is no
change of places where the receiving operation is preceded by the corres-
ponding sending operation. It is, of course, clear that primitives of the
same process cannot be interchanged; otherwise the original order deter-
mined by the sequential program would be violated.

Let us assume a set of synchronization formulae which describes
the communication aspect of a parallel program. These expressions (sf's)
give the possible communication skeletons for each of the processes that
compose the program (by relating the different communication behavior of

a process). The set of communication behaviors (subexpressionsseparated
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by the operator or) form the corresponding sf. By grouping the related
subexpressions - i.e. the ones that refer to each other and are activated
together —— we can identify distinct behaviors of the program. Instead of
doing a general shuffle of the sf's, we will derive directly the csf for
each of the groups of interrelated subexpressions. A message oriented
program is deadlock free if we can construct a csf for each of the groups
of interrelated subexpressions. Otherwise, we may have cases of potential
deadlock or an unavoidable deadlock situation.

If we consider now the solution proposed to the consumer and
producer problem, we can apply the proposed technique for deadlock
detection. The first step is to derive the several synchronization formulae
from the code through which each process is expressed in the program. The
expressions for the four processes used in the program are given below.

Let us denote send by s, receive by r, producer by pd, consumer by cs,
p-avpl by‘pl'and p-avit by it in the following expressions. The symbol ";"

denotes sequentiality of actions (as in programs).

1. Producer:

C(s(pl); r(pl))i; s(it)] © for i € N
2. Consumer:

C(s(it): r(it))j; s(p1)l for j € N.
3. Proprietor of resource avpl:

L(x(pd); s(pd, W))i_l; (r(pd); s(pd, go)) or (r(cs))]
[N ~ J —

3a 3b

for i ¢ N. "or" denotes that more than one

expression can be used for the process.
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The two alternative expressions in this case arise from the use
of rec-any in the program defining avpl. The possible senders for this
rec-any are either the producer or the consumer. Thus, the rec-any
operation can be replaced by the equivalent receive(producer) (r(pd))
and receive(consumer) (r(es)) operations, respectively. The two
possibilities given rise to different sequences of actions thus giving
rise to expressions 3a and 3b, respectively.

4, Proprietor of resource avit:

[(r(es); s(es, w3 (x(es); s(es, g0)) or (r(pd))]
— -~ ~ ———d

4La 4b

for j € N. The alternative expressions arise for reasons
analogous to those in 3.
A simple analysis of the program code allowed us to derive the

i and j exponents used in the expressions 1 to 4 above. The analysis
consisted of finding matching subsequences of sends and receives in the
computation sequences of the interacting processes. Exponent i in
expression 1 expresses the fact that producer received from the proprietor
of- resource avpl a wait message (called simply w above) (i-1) times
before it was permitted to proceed (or go). Therefore the first part of
expression 1 (corresponding to exponent i) is related to the first
alternative used in expression 3 (called 3a). It can also be seen that
the last part of the first expression (s(it)) corresponds to the second
sub-expression of the fourth expression (r(pd)) . Symmetrically, the
the exponent { used in expression 2 can be related to the correspond-

ing alternatives in expressions 3 and 4.
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Since the logical end of the various processes is located at the
physical end of their codes, the expression that corresponds to the
execution of each of the processes is the transitive closure (repetition)
of the expressions 1 to 4 given above.

By analysing the code of the program we find that the expression
1l to 4 can be divided into two interrelated groups: firstly 1, 3a, 4b and
secondly 2, 3b, 4a. If we manage to construct the two csf's that describe
the joint behavior of the alternatives that form each of the distinct groups,
then the program is deadlock free. We match the send commands with the
corresponding receive commands to construct directly the canonical synch-
ronization formula for the two alternatives. We give below the csf's for
the groups of alternatives (1, 3a and 4b) and (2, 3b and 4a).

1. Processes pd, pl and it:

m ni—l
151 [((spd(pl); rpl(pd); spl(pd,W); rpd(pl)) ;

(spd(pl); rpl(pd); spl(pd,go); rpd(pl)); (spd(it); r, . (pd)))]

for n, ¢ N. We use the symbol II to denote concatenation of expressions.
2. Processes cs, it and pl:

m' n!-1

I [((s  (i0); 7, (e8); s, (es,w); T (i) *

i=1
(s, (1t)5 1, (c8)5 s, (cs,80)5 xr (1)) (s (PL); 7 4(cs)))]

for n] € N.
i
By matching the send commands with the receive commands we con-
structed the csf's corresponding to the two groups of expressions above.
(We have skipped the proof that the csf's are a canonical representation of

the general shuffle of these groups of expressions.) We may then conclude

that there is no process blocked forever while performing a receive
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operation because there are no unpaired receive operations and there is no

deadlock because we were able to construct both csf's.
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5. Conclusions

The objective of the present paper was to characterize more
precisely a new programming style which we called message oriented
programming. This programming style has been suggested in general
terms in both theory and practice. Zave [38, 39] showed that inter-
process communication via message passing is more powerful than
synchronization through shared variables and McQueen [28] has surveyed
models of computation which describe abstractly the semantics of the
message passing mechanism. Some practical efforts have illustrated
the power of the method while hinting at some programming practices
which proved useful during its application to the implementation of
real systems [23, 81].

Our emphasis was placed on the presentation of the method
through the statement of the programming principles on which it is
based and the proposal of a specification technique which can
naturally be associated to it. Examples were used to illustrate most
of the ideas.

We do not propose a programming language for message
oriented programming nor do we give a set of rules for deriving
message oriented programs from their specifications. Much inter-
disciplinary work is needed in these directions. Efforts must be
undertaken to relate the design principles of message oriented
programming to the design of fully distributed systems and to the
development of techniques for the specification and verification

of properties of such programs. The initial results of the latter
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effort have been illustrated in the use of a simple communications
data type in the development of processes and the verification of their
properties. This data type and the relevant verification techniques

are more fully specified in [111.
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APPENDTIX I

integer readcount, writecount; (initial value = 0)
semaphore mutexl, mutex2, mutex3, r, w; (initial value =1)
comment READER;
P (mutex3);
P(r);
P(mutexl)
readcount := readcount + 1;
if readcount = 1 then P(w);
V (mutexl);
V(r);
V(mutex3) ;
reading is done
P(mutexl);
readcount := readcount - 1;
if readcount = 0 then V(w);
V(mutexl)
end
comment WRITER;
begin
P(mutex2);
writecount := writecount + 1;
if writecount = 1 then P(r);

V(mutex2) s
P(w);

writing is dome

V()

P(mutex2) ;
writecount := writecount - 1;
if writecount = 0 then V(r);

V(mutex2):
end

46.
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APPENDTIX I1I

var v : shared record readers, writers : integer end (initial value = 0)

3

shared boolean;

comment READER;
begin

region v do

begin await writers = 0;

readers  := readers + 1 end
e « « Yead . . .}
region v do

readers := readers - 1
end

comment WRITER;
begin
region v do
begin writers := writers + 1;
await readers = 0 end
region w do . . . write . . .;
region v do
writers := writers - 1

end



APPENDTIX ITITI

class readers and writers : monitor
begin readercount : integer;
busy : boolean;
OKtoread, OKtowrite : condition;
procedure startread;
begin if busy v OKtowrite.queue then OKtoread.wait;
readercount := readercount + 1;
OKtoread.signal;
comment once one reader start, they all can
end startread;
procedure endread;
begin readercount := readercount - 1;

if readercount = 0 then OKtowrite.signal

end endread;

procedure startwrite;
if readercount # 0 v busy then OKtowrite.wait;
busy := true
EEQ startwrite;
procedure endwrite;
begin busy := false;
if OKtoread.queue then OKtoread.signal
else OKtowrite.signal
end endwrite;
readercount := 0 j
busy := false

end readers and writers;
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