OPTIMAL TIME MINTMAL
SPACE SELECTION ALGORITHMS
by
David Dobkin§

and
J. Ian MunroT
Research Report CS-79-24

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

Department of Computer Science
University of Arizona
Tucson, Arizona

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

Portions of this research were supported by the National Science
Foundation under Grant MCS76-11460 and the National Research
Council under Grant A8237.



OPTiMAL TIME MINIMAL SbACE SELECTION ALGORITHMS*

By
David Dobkin J. Ian Munro
Department of Computer Science Department of Computer Science
University of Arizona University of Waterloo
Tucson, Arizona Waterloo, Ontario, Canada
ABSTRACT

Algorithms for finding medians and solving arbitrary selection
problems in minimum space are investigated. A linear time algorithm
is given in the first case and it is shown that no such scheme exists
for many other interesting selection problems, such as finding a
quartile. A tight trade~off is demonstrated balancing extra space
versus time,

*Portions of this research were supported by the Natiocnal Science

. Foundation under Grant MCS76-11460 and the National Research Council
under Grant A8237. This research was begun when both authors were in

Pittsburgh, continued by the first author at Yale and the second on

the Thaynes Lift at Park City, Utah, and extended while the first author

visited Waterloo and the second visited Yale. Portions of Section 3

were presented at the 1977 CISS Conference at which time the results

of Section 4 were discovered. Finally, the research was completed while

the second author was visiting the University of Warwick. Portions of

Section 4 were presented at ICALP V in Udine, Italy. The final paper

was written in Tucson, Arizona one sunny Friday.



1. INTRODUCTION

During the past few years, considerable attention has been focused on
the discovery and improvement of algorithms for computing the t-th largest
from a set of n elements [3]. Of particular interest have been algorithms
for computing medians or doing particular selections that have running
times which are linear in the number of elements [2,5]. The existence

of such algorithms has created the following open question:

What is the minimum space required by an algorithm which,
with a single pass through its input determines the median

using a number of comparisons linear in the number of inputs?

In this paper we show that a linear algorithm is possible for the
median problem which requires a workspace of only [n/2] + 1 cells.
Since the generation of the median of a set requires showing that all
but one element have the property of being either larger or smaller than
[n/27of the other elements, this space requirement is clearly minimal. We
also consider the more general problem of determining the kth largest
element of a set (for arbitrary k) under similar storage constraints.
We note that our scheme does not generalize to a (simultaneously) linear
time and minimum space selection algorithm for arbitrary ranks. Indeed
we show that no such algorithm exists and demonstrate a time-space
trade-off for such selection problems. En route to these results,
attention is turned to the problem of determining the elements of an
arbitrary set of ranks in a near minimal number of comparisons (without

space constraints).



Throughout this paper our model of computation is the RAM model
presented in [1] with the added constraint that the memory of the machine
which can contain data elements may, at times, be limited. The RAM will
consist of a one way read-only input tape, a write-only output tape and
k words of internal memory each capablerf storing a single data ele-
ment. We will not concern ourselves with the details of storage re-
quired for indices and so shall refer to computations on such a machine
as being of space complexity k. Our basic operation will be the
comparison and our time complexity measure will be the number of com-
parisons possible for an algorithm on its worst case
input. Throughout, whenever we require the median or arbitrarily
ranked element of a set of t elements and have t available words of
memory, we will use a known linear algorithm for computing such an
element and denote its ccmplexity by M(t). At present, the best known
algorithm is that of Schthage, Paterson and Pippenger [5] giving M(t)

as 3t + o(t)-.



2, THE COMPLEXITY OF MULTIPLE SELECTION

An essential part of the minimal space median algorithm involves
selecting a subset of elements having specified ranks from a set of n
elements. Since the general multiple selection problem is of interest,
we present here upper and lower bounds on this problem.
oyl

We represent the complexity of selecting the i largest

12igeeendy

of a set of n elements as ms(n; il,iz,...,ik) and establish the

following results, throughout our discussion, we adopt the conventions

ij < ij+1’ io=0 and ik+l=n+l
Theorem 1:
k
ms (n; il,iz,...,ik) > nlogn —ifo (ij+1~1j) log (ij+1-1j) - 0(n)

Proof: We observe that having determined, by performing comparisons alone,

the 1 .1 ranking elements in the set, we must know which elements

1,12,.. K
lie between elements ij and ij+1 for j=1,...k-1. If we then sort each of
these sets, we will have found the sorted order of the entire list.

Since 2 log £ - 0(R) comparisons are both necessary and sufficient for
sorting a set of £ elements, we observe that our bound follows since we

can transform the output of our multiple selection algorithm into a sorted

set of n elements in a total of



I (ij+l - ij) log (ij+1 - ij) - 0(n)

comparisons. The theorem follows by subtraction of this time bound
from the lower bound for sorting the entire list. The bound

holds not only in the worst case, but also on the average. 0
Next we present an algorithm which approaches this bound.

Theorem 2:

k
ms (n; il’iZ""’ik) = 0 (max(n,(n log n —.E

I, Cpeaty) 1os (gymtp))

0

Proof: The lower bound follows from the previous theorem, to demon-

strate the upper bound, we propose the following algorithm.

Algorithm MULTISELECT (n:illiz""’ikl for finding the il,iz,...,ik largest

-elements of a set of n elements.
If k=1
then

find the 1,st largest element of the set

1

else

for the ij closest to n/2 find the ij

.and call MULTISELECT(ij—l; il""’ij-l) on the ij—l largest

th largest element of the set

1 -1))

elements of the set and MULTISELECT (n-i,; j""’ik 3

Pl -

on the n—ij smallest elements.

-



It 45 clear that the run time of this algorithm leads to the recurrence

ms(n;il,iz,...,ik) < ms(ij - 1;11,12,...,1j_1) +

ms(n - 1,5000,1

; - - +

ij’ij+1 3 K ij) M(n) (1)
where M(n) is the number of comparisons necessary to do a selection
from a set of n elements (M(n) < 3n + o(n)). We prove the theorem

by induction on k, the number of selections to be done. For k=1,

the algorithm requires M(n) operations which obviously satisfies

the theorem. To simplify what follows, we define f(n;il,...,ip)
as
p .
max (n, n log n —jzo (lj+l - ij) log (ij+l - ij))

Now, assume that the theorem is true for all £ < k, so that there is a

constant c, with
ms (n} 11""’12) <c -+ f(n; il""’il)
Then, from (1) it follows that

ms (n; il,...,ik) <c - f(4, - 1; 1

1,""ij—1)
ik) + M) sc ¢ f(n; 1

3

+c+ f(n - ij; ij+1""’

l’...’ik)

from which the theorem follows. Given that M(n) < 3n + o0 (n), we note

s (n; il...,ik) <3+ f(n, il,...,ik) + o(f(n; il,...,ik))



3. A MINIMAL SPACE LINEAR TIME MEDIAN FINDER

We turn now to the main problem of the paper, and
present a minimal space median finder. Our algorithm involves
an initializing step in which the first n/2 +1 elements of the input
are organized using the multiple selection algorithm of the previocus
section. Next, we begin an iterative process using this organization
to eliminate 2i non-medians at the ith step. Deleted elements are
always balanced so that the median of remaining elements is the median
of the original set. We continue this process until about half of the
original elements have been deleted whence any linear median finder

can be applied to obtain the final result.

We present the algorithm here for inputs of size Zk -~ 1. The

generalization to inputs of arbitrary size is immediate.

Algorithm MEDIAN

Input: A set of 2k - 1 elements
Output:! The median of the set

Workspace: Zk_l + 1 cells of memory

Step 1: Read in the first 2k--1 elements into the workspace and,
using MULTISELECT find the Zi ~ 1 largest and smallest of
these elements (for 1 = 1, ..., k = 2). This leaves the
initial portion of the input partitioned into sets

and S Sk—z’ where B, contains the

1’."’ i
elements ranked 21“l through 21-1 largest (dinclusive), and

Bl,. LY ’Bk—z

—-6-



Si is similarly defined for the smallest elements. The re-
maining element constitutes a set, J. Initialize sets R

(residue) and I (input) as empty.

Step 2: For i = 1 step 1 until k - 2 do
begin
i-1

Let I denote the next 2 input elements

Logically form T = IURUSiUBi

Find and discard the 21_'l largest and 21“1 smallest

elements of T
Set R to be the remaining elements of T

end

Step 3: Read in the remaining elements
Find and output the median of the Zk-l + 1 elements

remaining in RuJ.

We observe that in Step 2 the ith deletion step involves a
balanced set consisting of 21-1 elements on each side of fhe median.
Furthermore, the 21—1 largest of these elements are larger than the
2i ~ 1 elements placed into R, the 21“l smallest elements, all elements
J and S

i and all 21"1 - 1 previously de-

n Bi+l""Bk—2’ i+l""sk-2
leted small elements. This i1s a total of

k-2 k-2
PSR I Ll Byl + I sy + 3]+ 2l g
J=1+1 i+
or
k=2 k=2
D T e T X A T IR TP ot SR TP o NV
JH41 Jui41

-7-



elements. Hence none of these elements could have been the median.
A similar count shows that none of the elements deleted as being
too small could have been the median. Because of the balance of

deletion, it is clear that the median of all elements remaining in
k-2

Ru U (S
J=i+1

(i=1, ..., k-2). Hence, the result of Step 3 yields the actual

fJBi) or on the input tape is the medianm of the entire set

median and we have

Theorem 3: Algorithm Median correctly ¢omputes the median of Zk -1

elements using the minimal space, Zk.l + 1 memory cells.

Proof: We have shown above that the algorithm correctly computes the
median. Now, we observe that initially Zk—l cells of memory are used
to form J, the Bi and Si’ and one new input is added to the first
iteration of Step 2. In the ith iteratioa of Steb 2, 2i elements are
deleted, allowing for 2i new elements to be input at the next iteration.
Hence, no more than Zk-'l + 1 cells are ever used for Step 2. During

R R |
the execution of Step 2, a total of I 27 =2

i+l

- 1 elements are

discarded, hence there is room for the remaining elements together
with all remaining inputs in Step 3.

" That the storage used by this algorithm is minimal, follows from
an adversary argument which can make any of the first Zk—l elements

the median if it is discarded before the Zk—1 + 1 element is read. [J



Theorem 4: It is possible to compute the median of a set in linear

time and minimal space.

Proof: It remains to prove that median operates in linear time.

We observe that Step 1 requires

ms (257415 1,3,... 2000, .00, 2K %, 002 L Rt okl
or
k-1 k-3 i+1 1 i+l 1
0((2" 7-1) log (2 —l) -2 L (27°7-27) log (27 7=27)
i=0
At the ith iteration of Step 2, we find the first and third quartiles

i+l

of a set of 21+1 - 1 elements requiring 2M(2~ "-1) operations. By

the linearity of M(r), the total work in Step 2 is

k-2
p) 2M(2 —l) 3. 2 +o(2 ) = 0(n) .
i=1

Finally, in Step 3, finding the median of a set of

Zk-l + 1 elements requires 0(n) operations. 0



4. MINIMAL SPACE SELECTION ALGORITHMS

Surprisingly, the algorithms of the previous section do not
immediately extend to arbitrary selection problems. In fact, the

following anomolous situation results:

Theorem 5: For every pe(0,1) such that p#1/2, there exists a
constant cp>0 such that cp n log n - 0(n) comparisons are necessary
to determine the pnth largest element of a set of n elements in

minimal storage.

Proof: Without loss of generality we will assume O<p<l/2, and so
pntl storage locations are necessary to solve our problem in a
single pass. The case in which p>1/2 is completely analogous. The

proof is by the construction of an adversary strategy.

We observe that in order to remove an element from consideration
as the pnth largest, we must show that either pn elements are larger
than it or that (l-p)n are smaller. Failure to do so premits an
adversary to force the algorithm to produce an incorrect result.

We therefore assume this strategy is followed by any algorithm.

Let ; denote min (p, 1-2p), and assume the first ;n elements
which are read are smaller than the next pn. This forces any
algorithm to reject the smallest element still in the system as
each of the final ;n of the first (p#S)n elements is read. Effectively,

then, we have forced the sorting of ;n elements, and have proved our

~10-



our theorem. With some care we can extend this argument to show that
p(1-2p) nlog n - O(n) comparisons are necessary to find the pnth largest
element in minimum space when O<p<1/2, and (substituting (l-p) for p)

(1-p) (2p-1) n log n — O(n) comparisons are required when 1/2<p<l. 0

Perhaps surprisingly, only a small increase in storage 1s necessary

in order_to make this problem feasible as the following theorem shows.

Theorem 6: For all €>0, the puth largest or smallest element of a

set may be found in linear time and (pt+e€)n space.

Proof: The bound is achieved by using the extra space to enablie us to
eliminate en elements at a time by having (pt+e)n elements in the
storage locations and using a linear selection algorithm to find the en

smallest. Since the linear selection algorithm requires only M((p+e)n)

operations to do the necessary elimination, in a total of at most

1
EM((p+e)n) comparisons we are left with pn+l elements of which the

smallest is the desired result. It is obvious why this result does

not generalize to satisfy the constraints of the previous theorem. 0

. These two results may be combined to result in a continuous
time space tradeoff whereby we may measure the effects of added

storage according to the following.

-11-



n

e(n)

comparisons are necessary and sufficient to determine the pnth largest

Theorem 7: If e€(n) = o(n), then for every pe(0,1), p#1/2, O(n log

element of a set of n elements using pnte(n) storage locations.

Outline of Proof: The proof of the upper bound follows immediately

from that of Theorem 6. The argument for the lower bound is similar

to that used in the proof of Theorem 5.

We observe that we must output a structurve consisting of
min(p,1-2p)n elements divided into sets of ¢ elements. And within
this structure, we know the relative sizes of differing sets of ¢
(-Sem)!_ ((-2p)n)!

elements. A total of min(—-= R =523= -) such structures exist
(e!)pn7€ E!(1 2p)n/e

from which an information theoretic argument generates the given bound.

Putting this result in another way we see that if e(n) = n/k(n)
extra space is available, then O(n log k(n)) extra time is required,

providing an interesting time space tradeoff.

-12-

)~0(n)



5. CONCLUSION

From a consideration of algorithms that solve arbitrary selection
problems in minimal space an interesting anomoly has been explored.
The median can be found in minimal space and linear time while all
other percentiles require either a linear amount of extra space or
nonlinear time. A tight time~space tradeoff is established in the
latter case. Work on the multipass generalization of this problem

appears in [4].

-13-



6.

[1]

[2]

[3]

[4]

(5]

REFERENCES

Aho, A.V., J.E. Hopcroft and J.D. Ullman,

The Design and Analysis of Computer Algorithms,

Addison-Wesley, Reading, Massachusetts, 1974.

Blum,M., R.W. Floyd, V.R. Pratt, R.L. Rivest and R.E. Tarjan,
Time Bounds for Selection,

JCSS, Vol. 7, No. 4, pp. 448-461.

Knuth, D. E.

Sorting and Searching,

Addison-Wesley, Reading, Massachusetts, 1973.

Munro, J.I. and M. Paterson,
Selection and Sorting with Limited Storage,
Proceedings of Nineteenth Symposium on Foundations of

Computer Science, October, 1978, pp. 253-258.

Schonhage, A., M. Paterson and N. Pippenger
Finding the Median,

JCSS, Vol. 13, pp. 184-199, (1976).

14—



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

