Consequence Verification of Flowcharts

K.L. Clark
Queen Mary College and Imperial College
University of London

M.H. van Emden
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

CS-79-23

June 1979

Consequence Verification of Flowcharts

K. L. Clark-
- M. H. van Emden

1 Introduction

For program verification a multitude of different formalisms and proof rules
have been proposed. As examples of proof rules we mention McCarthy's
recursion induction [14], Scott's induction rule [2], Park's fixpoint
induction [17], and subgoal induction [16]. Floyd's method of inductive
assertions [9] is based on a proof rule which concludes partial correctness
from the truth of verification conditions. Hoare [10] proposed a separate
proof rule for each of a selected set of constructs of an Algol-like language.
Verification-oriented 1languages such as Lucid [1] and Euclid [13] come with
their own inference systems.

Prior to all of these, Tarski has established [19] a ‘'methodology of the
deductive sciences! which incorporates predicate 1logic as the sole
application-independent inference system, all application-specific matters
being embodied in the axioms of the 'deductive theory'. At first sight,
programs and their verifications would appear to be a suitable subject for a
deductive theory. Yet, although predicate logic plays a part in some
approaches to program verification, such as Floyd's, Hoare's and Park's, even
these do not follow Tarski's paradigm because they use application-specific
rules of inference.

The realisation that first order logic can be used as a programming notation
[11,7), with resoclution inference systems as program executors, has made it
possible to bring program verification within the compass of Tarski's paradigm
[5,6]. A logic program comprises a set of first order sentences. These are
used to (computationally) infer instances of the relations they describe. To
verify the program, to show that all the derivable instances are instances of
the relations we want to compute, we just have to show- that the program is
made up of true statements about these relations. We do this formally by
showing that each statement of the program is a logical consequence of set of .
axionms that constitute an dintuitively correct characterization of the
relations in question, by showing that the logic program comprises a set of
theorems of a theory of what is to be computed. We call this the consequence
verification method feor logic programs.

In this paper we show how the verification of flowchart programs can be
reduced to consequence verification of logic programs. We do this by reading
off, from a flowgrabh version of the flowchart, an equivalent 1logic program;
equivalent in the sense that the set of input-output pairs computed by the
flowchart is exactly the set of instances, of some particular relation,
derivable from the logic program. A consequence verification of the logic
program is a (partial) verification of the flowchart.

Introducticn 2

We shall see that there are two straightforward methods for reformulating a
flowgraph program as a logie program. The first method gives us a 'forward'
description of the flowgraph, a description in terms of the relations computed
between the start node and each ncce of ths flowgraph. The second method is
the "backward! description, a descripiicn in terms of the relations computed
between each node and the halt nrode. Each of these is an implicit, or
recursive, description. A consequence verification of the forward description
program is equivalent to a verification of the flowgraph using Floyd's
inductive assertions. A consequence verification of the backward description
is equivalent to a verification of the flowgraph by subgoal induction.

That a flowchartable program can be given two quite different recursive
desceriptions 1s not a new idea. In [3] de Bakker gives these alternative
representations as two different sets of mutually recursive procedures, and in
[4,7] they are given as alternative sets of relational equations. Blikle[l]
calls the 'forward' equations the initiation semanties, and the 'backward!
equations the continuation semantics. He goes on to show that a verification
of the forward equations by fixed point induction[9] corresponds to a Floyd
verification of the program, althcough he dces not pursue the verification of
the backward equations. We are sinpiy going one step further. A fixed point
induction for Blikle's forward equztions is a consequence verification of our
forward description, which, in turn, reduces to a proof of the verification
conditions for Floyd's method. Correspondingly, a fixed point induction for
his backward equations 1is & consequence verification of our backward
description, which reduces to a proof of the verification conditions for
subgoal induction.

Because of the above correspondences consequence verification does not
provide us with a new verification msthod. 1Its main interest lies in the fact
that it can be justified solely in tsrms of the model theory of first order
logic. Moreover, the manner in wiaich it subsumes Floyd verification and
subgoal induction serves to illuminate their essential similarity. We shall
see that they differ only in tke way in which they implicitly factor the
overall computation into component sub-ccmputations.

We offer consequence verification as a conceptdal tool, and we offer our
analysis of the relationship between it and the other verification methods as
a tutorial. We want to demonstrate that the semantics and proof theory of
first order logic provide a useful frazmework for the discussion of computation
and verification. i

2 Flowgraphs

In this section we define flowgrapts, which are a streamlined version of the
conventional flowcharts. An advantage of a flowgrapn is that tests and
actions are both viewed as binary relaticns over states; therefore, they are
not distinct entities as they are in flowcharts. Each half of a test in a
flowchart is represented in a flowgrzph, independently of the other half, as a
complementary subset of the identity relation. Fig. 1(a) is an example of a
flowgraph. Fig. 1(b) is an equivalert flowchart. Each arc of the flowgraph
is 1labelled with a binary relation, 2ziled a command, over the states of the
computation. In this example the states are pairs of integers. In general, a
state 1is an ordered tuple of the values of the variables accessible to the

Flowgraphs 3

(a) (b)

Fig.1

flowgraph. 1In the flowgraph of Fig. 1
"u:=1" names the binary relation {(u:v, u':v') : u'=1 & v'=v}
"y<0" names the binary relation {(u:v, u':v*') : u'su & v'=v & v<0}

The semicolon between binary relations is the wusual relational product. A
pair (x,y) is in r;r' iff there is a state z such that (x,z) is in r and (z,y)
is in r'. Hence,

"y>0; u:i=uxv; v:i:zv-1" denotes {(u:v, u':v') : v>d & utzuxv & v'=v-1}.

We may visualize a forward computation of a flowgzraph as a path from the start
node to the halt node as it is traced by a token carrying a state. The
constraint which determines which paths are computations is that an arc can
only be traversed if the state is in the dorain .of the relation labelling the
arc. When the arc is traversed, the state changes to one of the values
allowed by the relation.

A more precise description of flowgraphs and their computations may be given
as follows.

DEFINITIONS ,

(1) A flowgraph is a labelled, directed graph with one node S (the start
node) which has no incoming arc and one node H (the halt node) which has no
outgoing arc. Each arc is labelled with a binary relation over a set of
states.

Flowgraphs)

(2) A forward computation is a sequeﬁce ¢f (node, state) pairs. The set of
forward computations of a flowgraph G is the smallest set such that

a) it contains the unit sequence (S,x) for all states x.

b) if it contains (S,x),..., (P,y) and if G has an arc from P to Q labelled
with € such that there is some z with (y,z) in C, then it contains also

(S,%),...,(P,y),(Q,2).

(3) A backward computation is a sequence of (node,state) pairs. The set of

backward computations of a flowgrapn G is the smallest set such that

a) it contains the unit sequence (H,x) for all states x.

b) if it contains (Q,y),...,(H,x) and if G has an arc from P to Q labelled
with C such that there is some z with (z,y) in C, then it contains also

(P,2),(Q,y),y.-.,(H,x).

(4) The input-output relation of the forward computations that end at P is
the set of state pairs (x,y) such that
(S5,%) 30004, (P,¥)

is a forward computation. Similarly the input-output relation of the
‘backward computations that begin at P is the set of palrs (y,2) such that
(Pyy)yeo..,y(H,2) .

is a backward computation,

tne fiowgraph is the input-output relation

(5) The input-output relation of % iow
at H, or the input-output relation of
S.

of the forward computations that end
the backward computations that begin zi

The alternative characterisations of tne input-output relation of the entire
flowgraph given in the last definition are a consequence of the fact that a
sequence

(S,%X)yevesay(H,2)
is a forward computation iff it is a bzackward computation. Qur alternative
mappings of flowgraphs into logic prozrams exploit the fact that we can view
the input-output relation of the flowgradh as either the iaput-output relation
of a special subset of the forward cozputations, or that of a special subset
of the backward computations. .

3 Logic Program Descriptions of a Flowzraph

' Forward Description

Suppose that we associate with each node P of the flowgraph a predicate FP
understood as the name of the Lnﬂ“t-output relation of all the forward
computations that end at P; that is, FP(x,y) 1is true iff there exists a
forward computation (S,x),...,(P,y).

Now suppose that there is an arc in the flowgraph from P to Q labelled with

a command C. The following impiication is a true statement about the
relations FP and FQ:

(VX:Y1Z)[FQ(X,Z) <~ FP(X:Y) & C(Y9Z)] {3~1)

Logic Program Descriptions of a Flowgraph 5

We can read the implication as:

for all x,y,z, if y is a state reached at P in a forward computation that
starts with x, and z is related to y by command C, then z is a state reached
at Q in a forward computation that starts with x.

If S is the start node of the flowgraph, then FS is the input-output
relation of all the forward computations that start and end at S. Hence
(Vx)FS(x,x) is true.

DEFINITION ,

The forward description{[7] of a flowgraph is a set of implications of
the form (3.1), one for each arc of the flowgraph, together with the
assertion (Vx)FS(x,x).

Note that the forward descripticn 1is just a formalisation of the two
conditions that characterise the set of forward computations.

Example

The sentences:

FS(x,x),
FP(x,y) <- FS(x,¥) & A(y,2),
FP(X,Z) {=- FP(X’Y) & B(Ysz)s

FH(x,z) <- FP(x,y) & C{y,2z),

Fig. 2

each implicitly universally quantified with respect to its variables, 1is the
forward description of the flowgraph of Fig. 2. Note that FH, being the name
of the input-output relation of the forward computations that end at H, names
the input-output relation of the entire flowgraph.

Suppose that C is a set of asserticns asbout the commands of a flowgraph
which includes C(a,b) iff (a,b) is in the command relation C. Then the
forward description and the set of zssertions C characterise the input-output
relations of the forward computations in the following sense.

Theorem 1

Let F be the forward descripticn of a flowzraph and let C be the set of
command assertions for the flowgraphk. Then

F,C FP(x,y)
iff there exists a forward computaticn (S,x),...,(P,y).

Corollary
F,C FH(x,y)
iff (x,y) is in the input-output relzticn of the flowgraph.

Logic Program Descriptions of a Flowgraph 6

Sketch Proof

. By an induction on the length of the derivation we can show that FP(x,y)
is derivable from F and C by a hyper-resolution proof [18] (of length n) iff

there is a forward computation (S,x),...,(P,y) (of 1length n). The hyper-

resolution proof simulates the forward computation of the flowgraph. By the

soundness and completeness of hyper-resolution FP(x,y) is so derivable iff it

is a logical consequence of F and C.

Backward Description

Again we associate with each node P of the flowgraph a predicate, BP, which
this time is intended to name the input-output relation of all the backward
computations that begin at P. That is, BP(x,y) is true iff there is a backward
computation (P,x),...,(H,y).

For each arc from P to Q labelled with command C we read off the implication
(Vx,y,2z)[BP(x,z) <~ C(x,y) & BQ(y,z)] 3.2
We can read this as the statement:

for all x,y,z, if z is the cutput of a backward computation that starts at Q
with state y, and x is related to y by C, then z is also the output of a
backward computation that starts at P with state x.

DEFINITION

The backward description[7] of a flowgraph is a set of implications of
the form (3.2), one for each arc of the flowgraph, together with the
assertion (¥x)BH(x,x), where BH is the predicate associated with the start
node.

Again the backward description is just the formal statement of the two
conditions that characterise the set of backward computations.

Example
The sentences:
BH(x,x),
BS(x,z) <- A(x,y) & BP(y,z),
BP(x,2z) <- B(x,y) & BP(y,z),
BP(x,2z) <~ C(x,y) & BH(y,z).
are the backward description of the flowgraph of Fig. 2. This time BS is the

name of the input-output relation of the flowgraph.

L4

Theorem 2 A .
. Let B be the backward description of a flowgraph and let C be the set of
command assertions of the flowgraph. Then

iff (s,t) is in the input-output relation of the backward computations that

Logic Program Descriptions of a Flowgraph 7

begin at P.

Corollary
B,C k= BS(s,t)

iff (s,t) is in the input-output relation of the flowgraph.

“

Sketch Proof

Analogous to the proof of Theorem 1 but using SL-resolution [12] as the
logic program executor. An SL proof that (u)BP(s,u), using the appropriate
selection rule, will simulate the forward construction of the sequence

(PyS)yeue.a,(H,t).

} Consequence Verification of Logic Programs

The forward description together with the command assertions can be
considered .a logic program for the predicate FH. By the corollary of Theorem
1 we know that every assertion FH(s,t) which is a logical consequence of the
program names an input-output instance of the corresponding flowgraph, and
vice versa. Similarly, the backward decription together with the command
assertions can be considered a logic program for the predicate BS, and again
the set of assertions BS(s,t) derivable from this program name exactly the
input-output instances of the flowgraph.

To verify a logic program, to show that each of the assertions R(s,t) that
are derivable from the program denote a positive instance of some actual
relation R, we need only check that each sentence of the program is a true
statement when we interpret the predicate R as the name of the relation R. If
the program sentences are 'obviously' true statements about R, this is the end
of the matter. If not, we need to prove that they are true of R. This can be
done by deriving each sentence of the program from a formal specification of
the relation R. This formal specification is a set of sentences of first
order logic which make use of the predicate R. However, unlike the sentences
of the logic program, they are all obviously true statements when R is
interpreted as the name of R.

Fig. 4 is a diagrammatic representation of this verification method[6] for
logic programs, which we shall call consequence verification.

Relation to Fixpoint Induction

We can interpret consequence verification as fixpoint induction [17]. We
can associate with a logic program comprising a set of simple implications,
like those of the forward and backward descriptions, a monotonic mapping from
interpretations (& la Tarski semantics) to interpretations. A fixed point of
this mapping is a model of the program [8]. Qur derivation of the 1logic
program from the specification is a proof that the relations as described by
the specification, which are a model of the specification, are also a model of
the program. Hence, they comprise a fixed point of the mapping asscciated
with the program. Fixed point induction tells us that the relations computed

Consequence Verification of Logic Programs 8

SPECIFICATION

Set of first order sentences using the
predicate R that are obviously true when
R is taken as the name of some particular

relation R.

L
‘:.1

Verification inference

LOGIC PROGRAM

Set of sentences that must also be true
when R is understood as the name of the
relation g. :

Computational inference
/)

INPUT-OUTPUT RESULT

Derived assertion R(s,t) which must be a
true statement about R, i.e. (s,t) must
denote an instance of R.

Fig. 4.

by the program are sub-relations of any fixed point interpretation. In other
words it confirms that the relation instances derivable from the program are
instances of the relations described by the specification.

The consequence verification method for logic programs, and its relation to
fixpoint induction, is more fully discussed in [6]. However, as a
verification method, it has its own Jjustification in terms of the model theory
of first order logic. We express this formally in the following theorem.

Theorem

If the set of sentehces of a logic program L. are each derivable from a set
of specification axioms S, then any relation instance R(s,t) derivable from L
denotes an instance of the relation assigned to R in any model of 8.

Corollary 1 '

If the forward description program F, C of a flowgraph is a set of theorems
derivable from a specification S, then each input-ocutput instance (s,t) of a
flowgraph computation is an instance of the relation assigned to FH in -any
model of S.

Consequence Verification of Logic Programs 9

Corollary 2

If the backward description program B,C of a flowgraph is a set of theorems
derivable from a specification S, then each input-output instance (s,t) of a
computation of the flowgraph is an instance of the relation assigned to BS in
any model of S.

Proof '

The theorem is just the statement that first order deduction is sound, that
it preserves truth. Corollory 1 follows from this fact and Theorem 1,
Corollory 2 from this fact and Theorem 2.

The specifications from which we shall ¢try to derive the forward and
backward logic programs will implicitly include all the command assertions.
So we shall only need to derive the sentences of the forward and backward
descriptions of the flowgraph. We shall give explicit definitions of the
relations that we believe are computed between the input node and each other
node, in the case of the forward description program, and the relations that
we believe are computed between the other nodes and the halt node in the case
of the backward description program. In addition we shall include any axiom
that describes a property of the command relations that we know to be true.

5 Consequence Verification of a Flowgraph: The Forward Cése

The flowgraph of Fig. 1(a) has the forward description
FS(um:v",uty")
FP(u":v',usv) <- FS(u":v", u':v') & (u=1&vs=1v") (5.1)
FP(u™:v",u:v) <-.FP(u":v“,u':v') & (v'>0 & u=u'xv' & v=v'-1)
FH(u":v",u:v) <~ FP(u":v",u':v') & (v;gp é u=u' & v=v')

Remember that FH is the name of the input-output relation computed by the
flowgraph and FP the name of the input-output relation of all forward
computations that begin at S and end at P. We would to like prove that at the
end of the computation the u component of the memory is the factorial of the v
component of the initial state. To do this we take as our specification of FH
the definition

FH(u":v", u:v) <=> u = v" !

where (5.2)
0!=1
vi=vx(v-1)! <= >0

Notice that we have specified the input-output relation in terms of the
primitives of the commands of the flowgraph.

Consequence Verification of a Flowgraph: The Forward Case 10

To this definition we must add definitions for FS and FP. The input-output
relation of the forward computations that end at S is the identity relation,
and all the input-output instances of the forward computations that end at P
are instances of the relation:

{(u“:v",ufv) : uxvizv"l} .
We therefore add the following definitions to our specification:
FS(u":v",usv) <-> u=u" & v=v" . (5.3)
FP(um:v',u:v) <> uxvizv"l
Remember we can augment the specification with any axioms that are true of

the command primitives of the flowchart. For the deriviation of (5.1) from
specification axioms (5.2) and (5.3) we can make use of algebraic laws such as

1Xu = u (5.4)
(uxv)xw = ux(vxw) .
which we know to be true of the program primitives.
Example derivation
Each of the sentences of the forward description (5.1) is a theorem of the

specification comprising the definitions and axioms of (5.2),(5.3) and (5.4).
As an example we shall show that the third sentence of the forward description
is a theoren. Its proof is a demonstration that the relation FP as
characterised by the definition of (5.3) satisfies this 'implication equation'
of the forward description.

The premiss of the implication is:

FP(um:v",u':v') & v'>0 & u=u'xv' & v=v'-1
<=> u'xv'l=v"! & v'>0 & uszu'xv' & v=v'-1 (by definition of'FP)
<> u'x(vix(v'=1)1)=v"! & v'>0 & u=u'xv'& v=v'-1 (using v'!=v'x(v-1)1<-v'>0)
<=> (u'xv)x(v'=1)1=v"! & v'>0 & u=u'xv' & v=v'-1 (associativity law)
<=> uxvi=zv"! & v'>0 & u=u'xv' & v=v'-1 (equality substitution)

=> FP(u":v", u:v) (by definition of FP)

which is the conéequent of the implication.

Consequence Verification of a Flowgraph: The Forward Case 11

Relation to Floyd's verification method

The consequence verification of the forward description is essentially a
verification of the flowgraph using Floyd assertions[9]. If we take u" and v"
as parametric input values of the program variables u and v, then each of the
definiens of the definitions for FS, FP and FH are the assertions about the
'states of the computation' that would be attached to nodes S, P and H
respectively. Such an annotated flowgraph is depicted in Fig. 5. Moreover,
the derivation of each of the sentences of the forward description is just the
proof that for each forward path between assertion points the assertion at the
beginning of the path 'implies' the assertion at the end of the path taking
into account the state transformztion of the path. 1In other words, it is a
proof of the Floyd verification condition for each such path.

More generally, the task of shoging that some flowgraph is partially correct
with respect to input condition @(x) and input-ouput relation #’(x,y), is for
us the task of augmenting the specification

FS(x,y) <> x=y (5.5)
FH(x,y) <=> [p(x) =>¢(x,y)]

with suitable definitions for predicates FP1,..,FPn associated with the
interior nodes of the flowgraph. The constraint on these definitions is that,
together with axioms about the preogram primitives, they enable us to derive
all the implications of the forward description.

Second order formalisation

Let Fy_ o be the forward description with all mentions of the predicates FS
and FH ‘replaced by appropriate instances of the (5.5) definitions. A
consequence verification of F¢ @ is, in effect, a proof that

k]
(3FP1,.., FPn)E¢’¢
is true for some fixed interpretation of the command predicates, & and ¢

Trhis 1is the second order formalisation of the Floyd verification method which
Manna gave in [15]. '

6 Consequence Verification of a Flowgraph: The Backward Case
The backward description of the flowgraph of Fig. 1(a). is
BH(u:v,u:v)
BS(u:sv,um:v"*) <~ (u'=1 & v'=v) & BP(u':v',u":v") (6.1)
BP(u:v,um:v") <= (vD0 & u'=uxv & v'=v~1) & BP{u':v',ut:v")
BP(u:v,u":v") <- v<0 & BH(u:Q,u":v")

This time BS is supposed to name the input-output relation of the entire

Consequence Verification of a Flowgraph: The Backward Case 12

Fig. 5

flowgraph, so its definition is

BS(u:v,um:v") <=> u"=v!

where (6.2)
0!=1
vi=v(v=1)! <~ v>0

BH names the input-output relations of the backward computations that begin
and end at H. We define it as the identity relation. BP names the input-
output relation of the flowgraph of Fig. 1(a) minus the initialisation ¢f u to
1. Without this initialisation the flowgraph computes the relation

{(usv,u":v") : u"=uxv!}.
Our definitions for BH and BP are:
BH(u:v,u":v") <-> u=u" & v=v"
(6.3)
BP(u:v,u":v") <-> uf=zuxv! r
Example derivation

With the addition of certain algebraic axioms about the program prizitives
each of the sentences of the backward description (6.1) is a theorem of the
specification comprising the definitions (6.2) and (6.3). For compariscn with
the forward description derivation we show that the third sentence of the
backward description is a theorem.

The consequent of the implication is:

BP(u:v,ut:v")

<~>u"=zuxv! (definition of BP)

<= 20 & u=ux(vx(v-1)1) (using vi=vx(v-1)! <~ ¥v>0)

Consequence Verification of a Flowgraph: The Backward Case 13

<=>v>0 & u"=(uxv)x(v-1)! (associativity law)

<~ v>0 & u'zuxv & v'=v-1 & u"=utxv'! (equality introduction)
<=>v>0 & u'z=uxv & v'=v-1 & BP(u:v,u':v') (definition of BP)
which is the antecedent of the implication.

Notice that the derivation comprises almost exactly the steps that were
needed to derive the corresponding implication of the forward description.
However, the former was a forward deduction, inferring the consequent from the
antecedent. This is a backward deduction, reducing the consequent to the
antecedent. The moral seems to be that the same deductive work is reguired no
matter which relational view we take of the flowgraph. The only significant
difference lies in the definitions that we have to invent for the predicates
associated with the interior nodes.

Relation to subgoal induction

The three implications of the backward description, specialised by replacing
the reference %to FS by certain equality substitutions, are exactly the
verification conditions that would be generated by the subgoal induction
verification method[16]. More interestingly, Jjust as the definiens of the
forvard description definitions were Floyd assertions describing the states of
the computation in terms of parametric initial values u",v" of the program
variables, so the definiens of the backward description definitions describe
the states of the computation in terms of parametric final values u",v" cf the
program variables. Fig. 6. is the flowgraph annotated with these assertions.
The derivation of each of the sentences of the backward description is now a
proof that the assertion at the end of each path between assertions ‘izplies!
the assertion at the beginning of the path taking in to account the invsrse of
the state transformaticn for the path. In other words it is a sort of
backwards Floyd verification.

More generally, a subgoal verification of the flowgraph with respect to
input predicate @(x) and input-output predicate @(x,y) is for us the task of
augmenting the pair of definitions))
BH(x,y) <-> x=¥y ' (6.14)

BS(x,y) <-> [¢(x) -> S‘y(x)Y)] .

with definitions for predicates BP1,..,BPn associated with the interior nodes.
The constraint on these definitions is that, with suitable extra axioms about
the command predicates and the correctness predicates and , wWe are adble to
derive each of the implications of the backward description.

Second order formalisation

Let B4 be the backward description with occurences of BH and BS replaced
in accordance with definitions (6.4). The finding of suitable definitions for
BP1,..4,BPn is a proof that

(3BP1,.., BPn)B .
S ¢,y

is true for some fixed interpretation of the command predicates, gé and 90 .

This formula provides us with an alternative second order representation of

the concept of partial correctness. It also gives us a second order

Consequence Verification of a Flowgraph: The Backward Case 14

formalisation of subgoal induction.

Fig. 6

7 Concluding remarks

We believe that the foregoing analysis does show that the concepts of formal
logic provide a rich framework in which to discuss computatica and
verification. The undertaking of the analysis certainly sharpened the z:thors
understanding of the relationship between Floyd!'s inductive asserzions,
subgoal induction, and fixed point induction.

¥We have seen that, coupled with an appropriate resolution theorem trover,
verification conditions can be 'run' as programs. Extending this idea, we can
think of the flowgraph as the 'compiled' form of these logic programs. Since
logic programs are correct if they comprise a set of (provabls) true
statements. This suggests what we believe will prove a most fruitful
metaphor. It is that programs essentally comprise a set of gcomputaticnally
useful theorems about the relations they compute.

8 Acknowledgements
We gratefully acknowledge the support of the Canadian National Science and

Engineering Council and the British Science Research Council. We should also
like to thank Cameron Burton for some useful comments on an earlier dral:.

9 References .

1. E.A. Ashcroft and W.W. Wadge: Lucid, a non-procedural language with
iteration. CACM 20 (1977), 519-526.

2. J.W. de Bakker and D. Scott: A theory of programs. IBM Seminar, Yienna
1969. :

References - 15

3. J.W. de Bakker: The fixed point approach in semantics, theory and
applications. In Foundations of Computer Science (ed. de Bakker), Tract 63,
Mathematics Centrum, Amsterdam, 1975.

L, A. Blikle: A comparative review of some program verification methods. 1In
Mathematical Foundations of Computer Science 1977, (ed. J. Gruska), Springer-
Verlag,1977.

o . o
5. K.L. Clark and S.A. Tarnlund: A first-order theory of data and
programs. Proc. IFIP 1977, 939-9ul.

6. K.L. Clark: Predicate 1logic as a computational formalism, Research
Monograpn (in preparation), Dept. of Computer Science & Statistics, Queen Mary
College, London.

T. M.H van Emden: Relational equations, grammars and programs. Proc. Conf.
Theoretical Computer Science, University of Waterloo, 1977.

8. M. H. van Emden and R.A. Kowalski: The semantics of Predicate Logic as
Programming Language. JACM 23(4). 1976 pp. T33-742.

9. R.¥W. Floyd: Assigning meanings to programs. Proc. Symp. App. Math. Vol.
XIX (ed. J.T. Schwartz), A.M.S., Providence, 1967.

10. C.A.R. Hoare: An axiomatic basis for computer programming. Comm. ACM 12
(1969), 576-581.

11. R.A. Kowalski: Predicate logic as a programming language. Proec. IFIP
1974, 556-57H4.

12. R.A. Kowalski and D. Kuehner: Linear resolution with selection function.
Artificial Intelligence. 2. 1971, 227-250.

13. B.W. Lampson et al,: Report on the programming language Euclid. SIGPLAN
Notices 12 (1977).

14. J. McCarthy: A basis for a mathematical theory of computation. Computer
Programming and Formal Systems (eds. P. Braffort and D. Hirschberg), North
Holland, 1963.

15. Z. Manna: Second-order mathematical theory of éomputation, Proc. 2nd
Annual ACM Symp. on Theory of Computation, 158-168, 1970

16. J.H. Morris and B. Wegbreit: Subgoal induction. C.ACM 20 (1977),
209-222.

17. D. Park: Fixpoint induction and proofs of program properties. Machine
Intelligence 5 (eds. B. Meltzer and D. Michie), Edinburgh University Press

1969.

18. J.A. Robinson: Automatic deduction with Hyper—Resolution Int. J. of
Comp. Math. 1. 1965, 227-234. ‘

19. Alfred Tarski: Introduction to Logiec and to the Methodology of the
Deductive Sciences. Oxford University Press, 1965.

Revised August 13, 1980

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF WATERLOO

TECHNICAL REPORTS 1979

Report No. Author
CS=-79-~01*%* E.A. Ashcroft
W.W. Wadge
Cs-79-02* T.S.E. Maibaum
CS~-79-03* D.R. McIntyre
Ccs—~79-04* K. Culik II
A. Salomaa
CS-79-05% T.S.E. Maibaum
CS=79-06% C.J. Colbourn
K.S. Booth
CS=79-07* K. Culik, II
N.D. Diamond
CcS-79-08* M.R. Levy
T.S.E. Maibaum
- C8-79-09 K.O. Geddes
Cs~79-10% D.J. Taylor
J.P. Black
D.E. Morgan
C8=79-11% G.H. Gonnet
Cs-79-12 M.O. Afolabi
CS~79-13%* W.M. Chan
J.A. George
Cs~79~14 D.E. Morgan
C8-79-15%* M.H. van Emden
G.J. de Lucena
CS-79-16% J. Karhumaki
I. Simon
CS-79~17* K. Culik II
J. Karhumaki
Cs-79-18

F.E. Fich

Title

Generality Considered Harmful - A
Critique of Descriptive Semantics

Abstract Data Types and a Semantics
for the ANSI/SPARC Architecture

A Maximum Column Partition for

Sparse Positive Definite Linear
Systems Ordered by the Minimum Degree
Ordering Algorithm

Test Sets and Checking Words for
Homomorphism Equivalence

The Semantics of Sharing in Parallel
Processing

Linear Time Automorphism Algorithms
for Trees, Interval Graphs, and Planar
Graphs

A Homomorphic Characterization of
Time and Space Complexity Classes of
Languages

Continuous Data Types

Non~Truncated Power Series Solution
of Linear ODE's in ALTRAN

Robust Implementations of Compound
Data Structures

Open Addressing Hashing with Unequal-
Probability Keys

The Design and Implementation of a
Package for Symbolic Series Solution
of Ordinary Differential Equations

A Linear Time Implementation of the
Reverse Cuthill-McKee Algorithm

Analysis of Closed Queueing Networks
with Periodic Servers

Predicate Logic as a Language for
Parallel Programming

A Note on Elementary Homorphisms and
the Regularity of Equality Sets

On the Equality Sets for Homomorphisms
on Free Monoids with two Generators

Languages of R-Trivial and Related

. Monoids

* Out of print - contact author

Technical Reports 1979

CS-79-19%

CS~79~20*

Ccs-79-21*

cs-79-22

CS~79~-23*

CS-79-24%

CS~79-25%

Cs~79-26*

CS-79-27*

CsS~79-28

cs=79-29

CS-79-30

CS-79~-31%*

CS-79-32%*

CS-79-33%
Cs-79-34

¢s-79-35

cs-79-36

Cs-79-37

D.R. Cheriton

E.A. Ashcroft
W.W. Wadge

E.A. Ashcroft
W.W. Wadge

G.B. Bonkowski
W.M. Gentleman
M.A. Malcolm

K.L. Clark
M.H. van Emden

D. Dobkin
J.I. Munro

P.R.F. Cunha
C.Jd. Lucena

T.S.E. Maibaum

T.S.E. Maibaum

D. Dobkin
J.I. Munro

T.A. Cargill

R.J. Ramirez
F.W. Tompa
J.I. Munro

A. Pereda v
R.L. Carvalho
C.J. Lucena
T.S.E. Maibaum

J.I. Munro
H. Suwanda

D. Rotem

J. Urrutia

M.S. Bra@er
D.J. Taylor
D.E. Morgan
J.P. Black

D.J. Taylor
D.E.. Morgan
J.P. Black

J.C. Beatty

E.A. Ashcroft
W.W. Wadge

-2 -
Multi-Process Structuring and the
Thoth Operating System

A Logical Programming Language
Structured LUCID

Porting the Z2ed Compiler

Consequence Verification of Flow-
charts

Optimal Time Minimal Space Selection
Algorithms

On the Design and Specification of
Message Oriented Programs

Non-Termination, Implicit Definitions
and Abstract Data Types

Determining the Mode

A View of Source Text for Diversely
Configurable Software

Optimum Reorganization Points for
Arbitrary Database Costs

Data Specification Methods

Implicit Data Structures for Fast
Search and Update

Circular Permutation Graphs

-

PHOTON/532/Set - A Text Formatter

Redundancy in Data Structures:
Improving Software Fault Tolerance

Redundancy in Data Structures: Some
Theoretical Results

On the Relationship between the LL(1)
and LR(1l) Grammars :

R.x for Semantics

* out of print - contact author

Technical Reports 1979

Ccs-79-38

Ccs-79-39%

Cs-79-40

CS-79-41%*

CS~79-42

E.A. Ashcroft
W.W. Wadge

J. Albert
K. Culik II

F.W. Tompa
R.J. Ramirez

P.T. Cox
T. Pietrzykowski

R.C. Read
D. Rotem
J. Urrutia

-3 -

Some Common Misconceptions about LUCID

Test Sets for Homomorphism Equivalence
on Context Free Lanqguages

Selection of Efficient Storage
Structures

Deduction Plans: A Basis for Intelli-
gent Backtracking

Orientations of Circle Graphs

* out of print - contact author

ReEort No.
CS-80-01

€s-80-02
CS-80-03
Cs-80-04
CsS-80-05
Cs—-80-06

Cs-80~-07

CS-80-08

CS-80-09%

cs-80-10%

CsS-80-11

cs-80-12

cs-80-13%

CS-80~14

CS-80-15

Cs-80~16

Ccs~-80-17

Revised August 13, 1980

DEPARTMENT . OF COMPUTER 'SCIENCE

UNIVERSITY. OF WATERLOO

' RESEARCH REPORTS 1980

Author
P.T. Cox

T. Pietrzykowski

K. Culik II

J. Brzozowski
H. Suwanda
M.H. van Emden’

Y. Kobuchi
K. Culik II

G.H. Gonnet
J.I. Munro
H. Suwanda

J.P. Black
D.J. Taylor
D.E. Morgan

J.L1l. Morris

N. Santoro
H, Suwanda

T.5.E. Maibaum
C.S. dos Santos
A.L. Furtado

. Apt
. van Emden

R
H
.A. George
T. Heath

T.S.E. Maibaum

J.P. Black
D.J. Taylor
D.E. Morgan
K.0O. Geddes

P. Calamai
A.R. Conn

Title

On Reverse Skolemization

Homomorphisms: Decidability,
Equality and Test Sets

Open Problems About Regular
Languages

Implicit Data Structures for the
Dictionary Problem

Chess-Endgame Advice: A Case Study
in Computer Utilization of Knowledge

Simulation Relation of Dynamical
Systems

Exegesis of Self-Organizing Linear
Search

An Introduction to Robust Data
Structures

The Extrapolation of First Order
Methods for Parabolic Partial
Differential Equations II

Entropy of the Self-Organizing
Linear Lists

A Uniform Logical Treatment of
Queries and Updates

Contributions to the Theory of
Logic¢ Programming

Solution of Sparse Linear Least
Squares Problems Using Givens
Rotations

Data Base Instances, Abstract Data
Types and Data Base Specification

A Robust B~Tree Implementation

Block Structure in the Chebyshev-
Padé Table

A Stable Algorithm for Solving the
Multi-facility Location Problem
Involving Euclidean Distances

* Qut of print, contact author

+ In preparation

Reseafch Reports 1980

Cs-80-18
¢s-80-19
Cs~-80-20
Cs-80-21

Cs-80-22

CsS-80-23

Cs-80-24

Cs~-80-25
Cs-80-26
Ccs-80-27
CsS-80-28
CS—80—29
CsS-80-30
Cs-80-31

CS-80-32

CS-80-33

CS-80-34+

CS-80-35

CS-80-36

R.J. Ramirez
D. Therien

J. Buccino

N. Santoro

L. de Carvalho
S.E. Maibaum
H.C. Pequeno
.A. Pereda

A.8. Veloso

H

J.P. Black
D.J. Taylor
D.E. Morgan

N. Santoro
J.A. Brzozowski

J. Bradford
T. Pietrzykowski

P. Cunha
T.S.E. Maibaum

K. Culik II
Arto Salomaa

T.F. Coleman
A.R. Conn

T.F. Coleman
A.R. Conn

P.R.F. Cunha
C.J. Lucena
T.S.E. Maibaum

Karel Culik II
Tero Harju

K.S. Booth

Alan George
J. W-H Liu

D.J. Taylor

-2 -

Efficient Algorithms for Selecting
Efficient Data Storage Structures

Classification of Regular Languages
by Congruences

A Reliable Typesetting System for
wWaterloo

Efficient Abstract Implementations
for Relational Data Structures

A Model Theoretic Approach to the
Theory of Abstract Data Types and
Data Structures

A Handbook on Algorithms and Data
Structures

A Case Study in Fault Tolerant
Software

Four 0{(n**2) Multiplication Methods
for Sparse and Dense Boolean Matrices

Development in the Theory of Regular
Languages

The Eta Interface

Resource = Abstract Data Type Data

.+ Synchronization ...

On Infinite Words Obtained by
Interating Morphisms

Nonlinear Programming via an Exact
Penalty Function: Asymptotic Analysis

Nonlinear Programming via an Exact
Penalty Function: Global Analysis

Message Oriented Programming - A
Resource Based Methodology

Dominoes Over A Free Monaid

Dominating Sets in Chordal Graphs

Finding Diagonal Block Envelopes of

Triangular Factors of Partitioned Matrices

Robust Storage Structures for Data
Structures

+ In preparation
% Out of print, contact author

Research Reports 1980

CS-80-37
C5-80-38+

CS-80-39+

CS-80-40

CS-80-41+

CS-80-42+

CS-80-43+

R.B. Simpson

D.Rotem
J. Urrutia

S.T. Vuong
D.D. Cowan

F. Mavaddat
K. Culik II
J. Pachl

J.A. George
E. Ng

T.S.E. Maibaim
P.R.F. Cunha

+ In Preparation

A Two Dimensional Mesh Verification Algorithm
Finding Maximum Qliques in Circle Graphs
Automated Validation of a Protocol:

The CCITT Recommendation X.75 packet level

Another Experiment with Teaching of Programming
Languages

Equivalence problems for mapping on infinite
strings

A comparison of some methods for solving
sparse linear least squares problems

Synchronization calculus for message oriented
programming ‘

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

