EPARTMENT
EPARTMENT
EPARTMENT

ENCE B
ENCES

&
g

Porting The Zed Compiler

G. Bert Bonkowski
W. Morven Gentleman
Michael A. Malcolm

May 1979
CS-79-22




PORTING THE ZED COMPILER

G. Bert Bonkowski
W. Morven Gentleman

Michael A. Malcolm

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

May 1979

Authors’ addresses: G.B. Bonkowski, W.M. Gentleman and M.A. Malcolm,
Department of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada, N2L 3Gl.



Porting The Zed Compiler

G. Bert Bonkowski
W. Morven Gentleman
Michael A. Malcolm

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

Introduction and Context

Zed is the base language used to implement the portable realtime operating
system Thoth[7], and to write commands, utilities, application programs, and
other software which run under Thoth. (Zed is similar to C, although language
details are not important in this paper.) One of the founding principles of Thoth is
our experience that the hardest problems in porting programs usually arise when
interfacing to different operating systems. By porting the whole operating system
first, we ensure that other programs see the same system interface. Hence, with a
modicum of care in programming, programs can be machine independent in that,
without change, they can be compiled for any machine to which Thoth has been
ported. Since the Zed compiler is a program which runs under the Thoth operating
system, it is portable in this sense, and the same source serves to produce either
native mode or cross compilers because it does not depend on the machine on
which the compiler will run.

Compilers, in common with certain other "system software”, are, however,
machine specific in that the output from executing a compiler must be different
depending upon the machine on which that output is destined to be run. Clearly,
for Thoth to be ported to many machines, the compiler should be portable in this
second sense: as much as possible of the source of the compiler should be machine
invariant, that is, independent of the target machine, and for those parts which are
machine specific, there must be a well organized scheme to assist realizing versions
for new machines. The Zed compiler is designed to ease such ports. Actually, the
objective is broader than that, because the initial port is only part of the problem:
once versions of the compiler are available for several machines, we still have the
problems of maintaining all these different versions, enhancing them, and evolving
them to follow changes in the language. To do this, we need a structure that is easy
to understand and to work with. We also want to minimize the amount of source
code for which multiple versions must exist.



The purpose of this paper is to illustrate how, by careful attention to the
structure of the compiler, its decomposition into modules, the definitions of the in-
terfaces between those modules, and the data structures and algorithms it uses, a
fairly conventional[10,21] production quality compiler can provide this kind of
portability. The structure finally chosen has other virtues - of the many compilers
we have written, this one is the easiest to learn and to work on, so we will use this
structure again for other languages. We will describe the structure by outlining
what must be done to port the compiler to a new machine.

It has been our experience that with adequate understanding of the abstrac-
tions of phases, algorithms, data structures, etc. in compilers, these entities can be
machine invariant at some level. However, the design of the generated code, i.e. of
what code bursts to produce corresponding to each source language construct, is a
much more sensitive matter. We are concerned with the production of very high
quality code on many diverse architectures. Since Thoth is a realtime operating
system which must run even on small minicomputers, execution speed is important
but the size of generated code and the sizes of data structures such as stack frames
are even more important. (The compiler itself must also run on minicomputers,
and consequently some of the structuring issues involve how to keep its size down.)
Since this is a production compiler, rather than an academic research vehicle, we
are concerned with the quality of code in a statistical sense, not with respect to
isolated case studies. It is important that things which actually are done often
(either in a static or dynamic sense) be done well - things that are done rarely do
not matter. We have over 70,000 lines of Zed source which we can study. We want
the ompiler writer to have the tools and facilities to concentrate on the creative
task ~f best exploiting the instruction set.

Significantly, we are not trying to automate compiler construction. In the
past few years, there have been several attempts to automate code generators,
starting from some description of the instruction set[5,6,9,14]. We are very
pessimistic about such a process achieving the quality of code we desire except for
the simplest and most regular machines, such as the P-code interpreter or perhaps
the IBM 370 or PDP 11. This pessimism is based on our experience that even for
machines we have known for as much as 15 years, improvements in generated code
of 5 to 10 percent still occur. Our view finds support even amongst people who have
attempted automatic derivation of code generators. For instance, at the end of
Glanville's thesis[9], he remarks that his scheme does not work well with rich but
irregular instruction sets. Given the objective of portability, the existence of
irregular instruction sets must be accepted as a fact of life. Machines with irregular
instruction sets will continue to be built - geometry constraints and real estate
limitations in LSI fabrication introduce irregularity into microprocessors, for in-
stance. Furthermore, irregularity may not be undesirable. Tanenbaum[19] and
others have observed that an instruction set which provides appropriate special
cases and "Huffman encodes” constructs that happen frequently can provide sub-
stantially more compact code (with corresponding direct and indirect performance
advantages) than a fully orthogonal and regular instruction set. Machines with
such beneficial irregularity exist now, and our approach has little difficulty compil-
ing for them.



Strategy

The design of the Zed compiler differs from that of other portable com-
pilers[1,8,13,16] in three major ways, and these issues will be examined before
describing the compiler in detail. The first difference is that we chose to generate
relocatable object code rather than assembly code. The second difference is that we
chose to implement a multi-pass rather than, a single pass compiler. The third
difference is that we chose to represent the source program in an intermediate
language which is tree based, rather than with tuples or as source for a simple stack
machine.

Compilers often generate source for an assembler rather than directly
producing source for a loader. The motivations for this are usually fourfold:
assembler source can be read by the compiler writer to assist in debugging the
compiler; assembler source may be simpler to produce than loader source; the
compiler writer may want to avoid having an extra pass to do backplugging or to
resolve whether to use short or long form jumps, and he may be able to get the
assembler, but not the loader, to do this for him; for portable compilers, the fact
that source for existing assemblers is more uniform than source for existing
loaders may make it a preferable interface. These motivations do not apply in the
context of a compiler running under Thoth. We invested in developing a portable
disassembler, so we do not need assembler source for debugging. The loader is part
of the Thoth environment[17], and hence under our control, so we can make it
easier to feed than an assembler, and smart enough to do whatever we need - and
we made the input to the loader machine invariant.

We have a number of other reasons for wanting to generate load code
directly. The first is speed. An assembler phase is slow, if only because of the ad-
ditional text I/O which must be done. Second, using an assembler phase requires a
good enough assembler - and while we do implement an assembler during a port,
we do not want to be obliged to implement a very clever one. Third, the format of
assembler source, especially for elaborate addressing modes, may be harder to
generate than the actual bit patterns of instruction fields. Fourth, there are
problems of names and scopes associated with the language feature of inserting
machine instructions inline. Fifth, we want to facilitate separate compilation by
having the compiler access libraries to check for consistent usage, and we do not
want it to parse source to do it.

The primary motivation for having a multi-pass compiler is that it reduces
the size of any given pass, increasing the ability to run on minicomputers. Also, as
discussed below, all but one pass is machine invariant, reducing porting and
maintenance overhead. Finally, almost no price is paid for this choice. The com-
piler spends most of its time in lexical analysis, opening files and reading source, or
it spends its time in editing libraries or loading. The extra cost of invoking multiple
passes is trivial. /O time to read and write the files of intermediate language
between passes could be significant, but careful design[18] of the intermediate
language to pack it efficiently has prevented this from being a bottleneck.

The style of intermediate language is perhaps more eontroversial. We flatten
the parse tree with respect to declarations and control structure, but we explicitly
keep expressions in tree form. (Expression trees are linearized in the intermediate
files between passes, but they are rebuilt before use.) Other compilers usually
flatten expression trees too, representing them with triples or quadruples, or with
instructions for some simple stack machine as in P-code. We prefer explicit trees
because we want to transform expressions by inserting nodes, deleting nodes,
reordering nodes, etc. We also want to perform operations that require walking the



tree several times, not always in the same order. But perhaps more important is
that flattening a tree loses information which is hard to.recover. For instance,
quadruples introduce large numbers of extraneous temporaries, and considerable
effort is then required to collapse the redundant ones[10]. By contrast, our register
allocation algorithm rarely introduces redundant temporaries. Other compiler
writers have also noted how hard it is to make sensible use of a rich instruction set
or multiple registers if the level of the intermediate language is too low[11,12,20].
For example, any indication of why some sequence of operations is being perform-
ed is completely lost, whereas if it were still available, it might be apparent that
some addressing mode or some special instruction would enable the original com-
putation to be done in a completely different way. This flaw is present in P-code:
the problem is not that it is code for a stack machine, but that being code for such a
simple stack machine induces overspecification of code sequences which requires
considerable effort to optimize out again.

Having discussed the unusual aspects of the Zed compiler, let us return to its
general organization. The phases into which it is divided are: Lex (lexical
analysis), Parse (LALR(1) parsing), Clean (machine invariant code op-
timizations), Data (external data module creation and initialization) and Code
(code generation). The first four phases are completely machine invariant except
insofar as they may require the values of target machine environment parameters,
such as BYTES_PER_WORD, which are contained in a file available to each
phase. The library format and the relocatable object code format required by the
loader are also completely machine invariant. Consequently, the only machine
specific source appears in the single phase Code, and this is what must be rewritten
to produce a compiler for a new machine.

Code is basically an automaton, driven by a machine invariant intermediate
language produced by Clean, and it produces load code in the machine invariant
format required by the loader. The automaton itself is machine invariant, as are

many of the action routines it calls. Machine invariant routines are used, for ex-
ample, to enter symbols in the symbol table, to rebuild expression trees from the

input stream, to determine the type for each node of an expression, to record the
start of a select (multiple alternative) statement, or to record the start of each
successive alternative case within such a statement. In fact, other than a few simple
actions such as emitting the code to enable or disable interrupts, the only actions
that require machine specific implementations are those concerned with stack
manipulation, with expression evaluation, and with control flow. A number of
abstract models are used to facilitate the implementation of these action routines.
Many of these models actually have machine invariant implementations, while the
others at least have machine invariant interfaces.

Emitting Code

The first requirement in generating load code is the ability to output instruc-
tions or data. For each function that is being compiled, there are three address
spaces which must be built, and which may remain disjoint, or at least will be
relocated separately. These are the literal string space, the constant and table
space, and the instruction space. Copying literal strings to the string space and
recording appropriate addressing and relocation information in the symbol table is
done by a machine invariant routine. Putting constants and tables into that address
space can readily be done with service routines that implement a fairly low level of
abstraction: a function, Set_Joc, is called to change the address space to which
items are being output, and two other functions, Load_word and Rload_word, are



called to output data items whose values are absolute and data items whose values
must be modified by relocation, respectively. The offset within the current address
space at which the next item is to be loaded is available from an external variable,
Counter. This abstraction serves to hide all the details of how load code is actually
formatted and written, and the implementation is machine invariant.

For building code into the instruction space, however, we want a higher level
abstraction. The actual construction of code for real machines can be quite com-
plex. Instruction operands may require, or may be able to exploit, elaborate
addressing modes. Constant operands may best be used as immediate operands, or
may be collected in one of several kinds of pools. Jump instructions can take
different forms, depending on the distance to the jump target. Forward references
to items not yet defined (such as the targets of forward jumps) must be deferred
and backplugged when the definition becomes available. If short address forms
have been used, it is necessary to check, before each instruction is output, whether
addressability to forward referenced items is about to be lost, and if so, to output
the constant pool or intermediate jump target and emit a jump around this inser-
tion. The compiler writer would prefer not to be concerned with these kinds of
issues every time he produces a code burst. Instead, he would like to produce a se-
quence of instructions simply by a sequence of function calls that resemble
assembly code.

This level of abstraction is provided by four functions: Emit, Hop_gen,
Jump_gen, and Backplug_gen. The most basic of these is Emit, whose first
operand indicates the machine instruction to be generated, and whose remaining
operands are symbol table entries (or pseudo symbol table entries) for the
operands of the machine instruction. The symbol table entries carry all addressing
mode and relocation information as to how the operands might be addressed. Such
uniform addressing implies having pseudo symbol table entries for operands that
would not normally be in the symbol table, such as the registers or indirect
addressing modes which use registers or memory words. (These are pseudo entries
because their lifetime does not correspond to that of a normal symbol table entry -
it may be as short as a single expression or longer than one function). Emit,
however, produces exactly the specified instruction, and requires that all operands
be fully defined when it is called. As stated above, this certainly is not appropriate
for forward jumps, and may not be for some other jumps. Instead, the function
Hop_gen is called with a jump condition (usually specified as one of the available
jump instructions) and a label. If a backward jump is required it calls Emit to
produce the appropriate instructions; for a forward jump it reserves space in the in-
struction segment for the shortest form of the appropriate jump and defers the
generation of the actual instruction until the label’'s value becomes known.
Backplug_gen is called, with a symbol as operand, at the point where the symbol is
to appear. This triggers generation of any deferred instructions which are awaiting
definition of the symbol. The last function, Jump_gen, is used to force an uncon-
ditional jump of a form that can go to any location in the address space, thus
avoiding the jumps to jumps which might result from Hop_gen's forward jump
strategy when short addressing is used.

Backplug_gen is machine invariant. Emit, Hop_gen, and Jump_gen are
clearly machine specific. However, they can be implemented simply in terms of the
lower level abstraction, together with a few service routines:
Check_addressability, Defer—_gen, Backplug_symbol, and Cond—addr_gen. Only
the last two are machine specific: Backplug_symbol calls Emit to output deferred
instructions, and Cond_addr_gen enters constants into constant pools and
supplies addresses or immediate operands as required by the instruction type and
symbol table description.



Stack Manipulation

Zed, like other languages in the BCPL family, is a stack based language in
which users are encouraged to program using many small functions. This means
that the efficiency of function calls, both in time and space, is crucial. Since Zed
programs often have many small processes in the same address space, it is essential
to check for stack overflow on function calls. Arguments are passed by value only,
and the semantics are that a formal argument to a function is simply a local
variable which may have been initialized in the call - “may have been” because any
specific call can omit irrelevant trailing arguments. The called function can dis-
cover the number of arguments actually supplied by calling by a built-in function.
Zed also provides a mechanism to allow functions that can be called with a truly
arbitrary number of actual arguments, in which case the actual arguments supplied
are obtained by invoking another built-in function. The design of the stack format
and the call/return sequence must support these objectives.

This design, including the decision of what to include in a shared prolog and
epilog (if any), is one of the most important stages in implementing Zed. On a
typical machine there are six or more plausible designs to be considered and the
one recommended by the manufacturer is rarely optimal. Some of the factors
affecting the choice are: the exact form of the subroutine jump instruction, in-
cluding implied registers or side effects (JSR on the DEC PDP-11, for instance,
saves the return address in the specified register but also pushes the previous con-
tents of that register onto the stack); any asymmetry in the forms of short address-
ing that should be used for high-use local variables (as on the IBM Series 1, the
Modcomp IV, or the TI 990); the functionality provided or any asymmetry present
in hardware supported stacks or stacking instructions (although it is rare for these
to be of any use in implementing the stack frames required for high level
languages); asymmetry in the direction of allowed offsets to base registers; the
effect of a stack frame cache if provided; the cost of checking for stack overflow;
and (of course) the execution times for different instructions. The style of Zed
programming is to have many small functions, and many small processes. This
means that, for most machines, keeping too much in registers is unwise because,
statistically, more is lost by the required register saves and restores than is gained
by the increased option of using register type instructions.

One somewhat unusual stack design, which has turned out to be very good
for a number of machines, keeps the stack frame size fixed throughout the lifetime

of a function, and uses a single stack frame base pointer which points to the top of
the stack frame rather than to the usual bottom position adjacent to the caller’s
stack frame. With this design, checking for stack overflow is cheap, in that the
stack frame base pointer need only be compared against its limit for this process.
Although this check is not complete (because arguments to called functions are
placed beyond this pointer), stack overflow will be caught when function entry to
the called function is attempted. Use of this stack format does, however,
necessitate expression modification to avoid function calls when collecting
arguments to another function.

An abstraction, provided by several machine specific functions with machine
invariant interfaces, allows these decisions to be encapsulated so as not to affect
other parts of the compiler. Even such questions as whether the stack grows up-
ward or downward are hidden. The functions Prolog_gen and Return—_gen call
Emit to generate function entry and exit. The three major parts of a stack frame,
namely the space for local variables, the space for local vectors, and the space for
temporaries used in expression evaluation, are each allocated as separate address
spaces, and commands to the loader to relocate them into a single contiguous



space are given by Epilog_gen after each function has been compiled. The func-
tions Next_auto, Next_autovec and Nexi_temp allocate space in their respective

segments.

Expression evaluation

Code receives expressions as trees in the intermediate language, rather than,
for instance, as operations on a simple stack machine. The reason for this is that
many machines have powerful instructions that are equivalent to large subtrees of
expression trees, and if we want to exploit such instructions, it is much easier to
recognize where they would be useful from the explicit tree representation rather
than from peephole optimization on some already flattened representation of a
tree.

The semantics of Zed specify a precise mapping of source language ex-
pressions onto binary trees and require evaluation by a tree walk in a strict left-
right-root order: the compiler writer may deviate from this only where he can
prove that bitwise identical results will be obtained, including all side effects. This
requirement originates from the demand that compiled code have the same effect
on all machines, and it is heavily relied upon by programmers. (Measurements on
many thousands of lines of existing code show very little could be gained by a more
liberal order of evaluation). A consequence of having a well defined order of
evaluation is that most of the tree modifications permitted for optimization are
machine invariant and will already have been done by the Clean phase. Machine
specific modifications to the expression tree are performed by the function Modify.
One of these modifications is to set the test location used for select statements, and
another is to set the return location for function values. Modify may also invoke
Modify—calls, which is a machine invariant function used with fixed size stack
frame designs to rearrange the tree to avoid function calls during the loading of
arguments for other function calls, as mentioned earlier. Modify invokes the
machine specific function Modify_opers which walks the tree replacing any nodes
or subtrees for which the particular machine has better operators.

Once the final expression tree is determined, each internal node is labelled
with the location at which its result will be deposited, and the names of scratch
registers used in its evaluation. The machine specific function A/lot_regs does this
by a tree walk. This walk is done in the order right-left-root, rather than in the
more usual order left-right-root, so that the locations changed between the time an
intermediate result is computed and when it will be needed are known when
deciding where to save it. This enables Allot_regs to avoid storing an intermediate
result in such a location. While this does not necessarily lead to optimal register
allocation, in practice it is very good, and does avoid the problem with the more
conventional allocation strategies that results left in registers may be moved more
than once before they are used. Since real machines often restrict the choice of
source, destination, and/or scratch registers for various instructions, we have
developed an abstract model of register allocation. For each operator in an ex-
pression tree, we specify the register class required for its operands, and the
register class required for its result. This specification is obviously machine
specific, and indeed may depend on information about the operand subtrees. We
define the locations where the operands are available to be the external operands,
and if these locations do not satisfy the register constraints, we pick registers that
do satisfy them and specify that the operands, after both have been evaluated, be



loaded into these registers which we call the internal operands. The internal result,
the location where the result will be produced, is often fixed once the internal
operands are chosen. However, sometimes it is not, in which case it must be chosen
subject to whatever register constraints apply. Finally we choose the external
result, that is, some safe location where the value computed at the node can be left
until it is needed. All choices are made (using bit vectors defining the available
registers) in such a way as to minimize unnecessary moves and to minimize the
number of registers and temporaries used. Although the functions which im-
plement all this are machine specific, this organization appears to be readily
adapted to any machine we have encountered so far, and the register and tem-
porary allocations it makes are in practice very good.

Once the allocation of registers and temporaries is complete, it would be
simple to have the function Arith_expr—gen walk the tree, checking various con-
ditions and calling Emit to generate the best instructions to evaluate the nodes into
the result locations indicated. Such a procedural approach, however, often
produces a bulky compiler if we try to take advantage of all the special cases for
which the instruction set provides. The usual solution to this would be to have
Arith_expr_gen use code tables, made up of templates which match possible sub-
trees, and code bursts to be produced if a template is chosen. Unfortunately, for a
machine with a complex structure, these code tables can also be bulky because of
redundancy. We achieve a balance between these approaches by another abstract
model we have developed, that of a code generating interpreter. This machine
walks an expression tree, driven by a table that, for each operator which may label
a node, specifies possible conditions that might exist at that node and the sequence
of actions to be taken if the conditions are met. The actions normally involve calls
to Emit, Hop—gen, and Backplug_gen with the internal operands of the node, its
scratch registers and its external result - as for a conventional table driven code
generator. The possibility of other actions, especially calling functions or reenter-
ing the table to expand macros, justifies viewing it as a more powerful machine.
Again the table, and the functions which define the conditions, expand the
operands and take the actions, are all machine specific, yet implementing this
model for a new machine seems to be easy, and the resulting compiler is small even
when it fully exploits a rich and irregular instruction set.

Control flow

Although Zed has powerful modern control structures, the earlier phases of
the compiler have reduced these so that Code is only faced with three control types:
unconditional jumps, jumps depending on the truth value of an expression which
must be evaluated, and the select (multiple alternative) statement. Unconditional
jumps are trivial in that they may be done by a machine invariant call to
Jump_gen.

Conditional jumps are more interesting. Through classical (and machine in-
variant) techniques, the logical AND, OR, and NOT functions are expanded so
that we are only interested in expression trees for which the top node is a simple
variable, an arithmetic operator or a relational one. Registers and temporaries
have been assigned just as for any expression tree. Relation_gen, the machine
specific function which produces the conditional jump, knows how to test a simple
variable for zero (FALSE) or nonzero (TRUE), on the specific target machine.
Many machines have some kind of condition code which is set by arithmetic or
comparison instructions. On such machines, for expression trees with arithmetic



operators as the top node, Relation_gen uses Arith_expr_gen to generate code to
evaluate the expression tree and then makes use of its knowledge of whether the
specific operator at the top node set the condition code usefully in order to know
whether a specific test for zero or nonzero is needed before generating a jump on
condition code. Again on such machines, for expression trees with a relational
operator as the top node, Relation_gen calls Arith_expr—_gen to generate code to
evaluate each of the operand subtrees of a relational operator, then calls a machine
specific function Set_condition_register to produce the comparison instructions so
that Relation_gen can generate the appropriate jump on condition codes. There is
a second class of machines which can perform conditional transfers as a side effect
of the same instruction that does the comparison or arithmetic operation. For such
machines, Relation_gen can call Arith_expr_gen to generate code to evaluate the
operand subtrees, but it must issue the instructions to evaluate the top node itself.
Although Relation_gen is machine specific, the appropriate version for any par-
ticular machine can readily be transcribed from one of only a few prototypes.

There are two forms of the select statement in Zed. One form, the string
select, matches a test string against a set of literal strings, and then executes the
action corresponding to the matching string, if any. The other form, the word
select, matches a test value against a set of constant values and intervals, and then
executes the action corresponding to the match, if any. Machine invariant routines
in the Code phase record the beginning of a select statement, arrange that the test
value is put in a test cell, and generate a jump to the multiway branching code to be
produced at the end of the set of alternative cases. As each case is compiled, the
condition that selects it and the starting address of the code for it are recorded. At
the end of the select statement, machine specific routines are called to generate the
multiway branch. Strselect_gen, called for string selects, often implements the test
as a loop that calls the standard library function .Equal to compare strings for
identity, breaking out of the loop when a match is found. On some machines,
however, it is cheaper simply to generate inline code to compare the strings.

For word selects, the compiler chooses amongst four different implemen-
tation strategies. Straighttest_gen 1is called to generate code equivalent to a se-
quence of if statements when there are so few cases that this produces the most
compact code. When more than half the possible values between the smallest and
the largest cases have corresponding actions, Jumptable_gen is called to generate
code to check that the test value is in the appropriate interval and, if so, to jump in-
direct through a jump table. For select statements not implemented by the above,
if there are any interval cases Pairtest_gen is called to generate code to do the
matching. All cases are represented as intervals (although some may consist of a
single element), the intervals are sorted, and code is produced to search sequential-
ly to find the interval enclosing the test value. Finally, for the remaining select
statements, Binarysearch_gen orders the cases in a heap-like structure without
pointers so that the matching case can readily be found by a binary search, and
produces the appropriate code.

All five of these functions are easy to write for a new machine, by following
the existing functions for other machines as models, and using Emit, Hop—gen,
Jump_gen, and Backplug_gen to produce the machine instructions and Set_Joc,
Load_word, and Rload—word to build the necessary tables.



10

Conclusions

The Zed compiler originated in the spring of 1976 as a compiler for the
typeless language Eh. It has successfully adapted to changes in the language as it
evolved, including the introduction of types (which led to the name change) in the
summer of 1978. The compiler has so far been ported to half a dozen very different
machines, and the critical issues in porting it to another half dozen machines have
been examined in detail. The structure has proven general enough to cope with all
of them.

Our principal conclusion is that the structure of the Zed compiler has been
successful in enabling us to port the compiler easily to new machines. The time for
one person to perform such a port has varied from one month to six. (This com-
pares very favourably with the time required for porting other portable compilers,
and even compares favourably with the time required to write an interpreter for
Pascal-P[2,4,11,13,15]). Very little of this time is spent coding the machine specific
functions. Instead, time is spent where it should be: on the design of the stack,
analysis of register constraints, and determination of code bursts so as to take the
best possible advantage of the available instruction set. The resulting code is
statistically almost as good as an assembly language programmer can do while
satisfying the language semantics.

Another effect of the chosen structure is that the resulting compilers are
remarkably free of bugs. For example, in one implementation for a machine we
had never used before, after the first clean compilation of the machine specific
functions only a total of 92 bugs were found in a year of heavy use. Of these, 67
were found within the first 13 days of testing. Many of the remaining bugs were
misunderstandings of how the machine hardware worked, or could be classified as
performance bugs: the code produced worked correctly but was not as good as
possible. All these bugs were easily corrected.

Acknowledgements

In addition to the authors, several other members of the portability group
have contributed to this compiler. The first versions of it were written by Reinaldo
Braga. The Lex, Parse, and Clean phases were written by Gary Stafford. The
loader was written by Gary Sager. Fred Young did two of the ports.



11

References

1. Basili, V.R., and Turner, A.J.,, “A Transportable Extendable Compiler”,
Software-Practice and Experience, Vol 5 No 3 (July-September 1975), pp 269-278.

2. Berry, R.E., "Experience with the Pascal P-Compiler”, Software-Practice and
Experience, Vol 8 No 5 (September-October 1978), pp 617-627.

3. Bonkowski, G.B., "The Structure of the Eh Comptler: Code Generation”, Com-
puter Science Department, University of Waterloo, August 1978.

4. Bron, C., and De Vries, W., "A PASCAL Compiler for PDP 11 Minicom-
puters”, Software-Practice and Experience, Vol 6 No 1 (January-March 1976), pp
109-116.

5. Cattell, R.G., "A Survey of Some Models of Code Generation”, Department of
Computer Science, Carnegie-Mellon University, November 1977.

6. Cattell, R.G., "Formalization and Automatic Derivation of Code Generators”
Technical Report CMU-CS-78-115, Department of Computer Science, Carnegie-
Mellon University, April 1978.

7. Cheriton, D.R., Malcolm, M.A., Melen, L.S., and Sager, G.R., "Thoth, a Por-
table Real-Time Operating System”, CACM, Vol 22 No 2 (February 1979), pp
105-115.

8. Colin, A.J.T., Shorey, K., and Teasdale, W., "The Translation and
Interpretation of STAB-11”, Software-Practice and Experience, Vol 5 No 2
(April-June 1975), pp 123-138.

9. Glanville, R.S., ”A Machine Independent Algorithm for Code Generation and
Its Use in Retargetable Compilers”, Technical Report UCB-CS-78-01, Computer
Science Department, University of California, Berkeley, December 1977.

10. Gries, D., "Compiler Construction for Digital Computers”, John Wiley and
Sons, 1971.

11. Grosse-Lindemann, C.O., and Nagel, H.H., "Postlude to a PASCAL-
Compiler Bootstrap on a DECSystem-10”, Software-Practice and Experience, Vol
6 No 1 (January-March 1976), pp 29-42.

12. Haddon,B.K., and Waite, W.M,, "Experience with the Universal Intermediate
Language Janus”, Software-Practice and Experience, Vol 8 No 5 (September- Oc-
tober 1978), pp 601-616.

13. Lecarme, O., and Peyrolle-Thomas, M.-C., "Self-Compiling Compilers: An
Appraisal of their Implementation and Portability”, Software-Practice and Ex-
perience, Vol 8§ No 2 (March-April 1978), pp 149-170.

14. Newcomer, J.M., "Machine Independent Generation of Optimal Local Code”,
Department of Computer Science, Carnegie-Mellon University, 1975.



12

15. Neal, D., and Wallentine, V., "Experiences with the Portability of Concurrent
PASCAL”, Software-Practice and Experience, Vol 8 No 3 (May- June 1978), pp
341-353.

16. Richards, M., "The Portability of the BCPL Compiler”, Software-Practice and
Experience, Vol 1 No 2 (April-June 1971), pp 135-146.

17. Sager, G.R., "The Thoth Linking Loader”, Technical Report CS-77-15, Com-
puter Science Department, University of Waterloo, October 1977.

18. Stafford, G.J., "Structure of the Eh Compiler: Lexical Scanning, Syntactic
Analysis, and Optimization”, Computer Science Department, University of
Waterloo, December 1978.

19. Tanenbaum, A.S., "Implications of Structured Programming for Machine
Architecture”, CACM, Vol 21 No 3 (March 1978), pp 237-246.

20. Waite, W.M., "Intermediate Languages: Current Status”, Workshop on Por-
tability of Numerical Software, Oak Brook, Ill., (June 1976).

21. Wulf, W.A., Johnsson, R., Weinstock, C., Hobbs, S., and Geschke, C., "The
Design of an Optimizing Compiler”, American Elsevier, 1975.



	
	
	
	
	
	
	
	
	
	
	
	
	
	

