A LOGICAL PROGRAMMING LANGUAGE

Ed Ashcroft
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

and

Bill Wadge
Department of Computer Science
University of Warwick
Coventry, England

Research Report CS-79-20
June 1979

(Typed by Mary Wang)



A LOGICAL PROGRAMMING LANGUAGE
Ed Ashcroft
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
and
Bill Wadge
Department of Computer Science

University of Warwick
Coventry, England

Abstract

In this paper we consider a family of languages (USWIM) which
is based on Landin's ISWIM (the individual languages being defermined by
. appropriate continuous algebras of data objects and operations on these
objects). We give a simple mathematical semantics for USWIM, and also
give a system of program manipulation rules and a system of inference
rules for reasoning about USWIM programs, the latter using a system of
"program annotation” which allows inner, local environments to be

discussed. USWIM is the basis on which Structured Lucid is built.



0. INTRODUCTION

It is apparent that the goals of language designers and
logicians are quite similar: to develop systems for I_Drecisely specifying
objects and properties. In both cases this means the study and develop-
ment of the syntax and semantics of purely formal, as opposed to natural,
languages.

It is also apparent that logicians have been eminently more
successful. The logicians' languages, such as predicate calculus, are
simple, elegant and, above all, semantically well defined. Programming
languages, by contrast, are complex, clumsy and, above all, semantically
very poorly defined. It is often said that they are "illogical".

Furthermore, the languages of logicians were developed in
conjunction with rules of inference, so that reasoning about properties
of objects could proceed by simple finite manipulations completely within
the language itself. By constrast, formal reasoning about programs, to
the extent that it is possible at all, has to be carried out in a
separate formal systém in which the manipulations are performed on
comments on, or a translation of, the original program.

The obvious conclusion is that logic (and mathematics in
general) could be usefully applied to the study and design of programming
languages. Few would dispute this; but there have always been two points
of view about the relationships between logic and computer science.

One point of view sees mathematics as playing primarily a
passive role, being used to describe, to model and to classify. The

other point of view sees mathematics as playing primarily an active role,



being used not so much to describe existing objects as to plan new
objects.

These two approaches, which we might call the deseriptive and
prescriptive approaches [ 3], are well illustrated by'two important papers
by Landin, "A Correspondence between Algol 60 and Church's A Notation"
and "The Next 700 Programming Languages" [6, 7].

In the first Landin defines a translation from Algol 60 into the
A-calculus and so uses logic to desﬁribe Algol. 1In the second he begins
with A-calculus and develops a simple non-procedural language (ISWIMf) ’
with a naturally defined construct (the "where" phrase-H-) which introduces
local variables in a way similar to the Algol block, but which is actually
based on the A-calculus. Landin's first paper represents the descriptive
approach and the second represénts the prescriptive approach.

Our goal here ié to follow Landin's lead in the second paper and
develop an uncompromisingly logical language which has "facilities" for
functions and scope.

The language, USWIM-H-T, is in fact a minor variant of ISWIM.

Landin, however, gave no direct semantics (ISWIM is a syntactic variant

of a subset of the A-calculus), and neither did he give an inference

system for the verification of ISWIM programs. (He did give a system, of

T If you See What I Mean.

Tt We are using the term "phrase" rather than Landin's original "clause"
because we shall consistently use "phrase" to mean a compound
expression or term, and "clause" to mean a compound formula or
assertion.

Tt U See What It Means.



sorts, for transforming programs, but it is not very useful.) Of course,
these omissions are not Landin's fault, because at that time semantics
and program verification were in their infancy. We intend to fill in the
gaps in Landin's treatment, and the fact that the semantics and transfor—
mation and inference rules turn out to be simple, natural and elegant is
a vindication of Landin's mathematic;l approach to language design.
USWIM forms the basis of further development of Lucid [1], as

is considered in [2], but we feel that it is also an interesting

language in its own right.



1. ISwWIM AND USWIM

ISWIM is based on the where phrase, which is an expression
qualified by auxiliary definitions. For example

2 2
x” +y where zx =g+ b

y=a->
end

is a typical where phrase. Such a phrase is a term, i.e. has a value; in
the above example, it is the same as that of the term (a+b)2 + (a-b)2 .
These constructs can of course be nested, i.e. expressions occurring
anywhere in a where phrase may contain where phrases. The variables
defined by the equations in the right arm of the where phrase are the
locals: their definitions apply only to the right arm and to the left—‘
hand side expression of the phrase. In addition, functions are defined

with the formal parameter list on the left hand side, e.g.

flx, y) = z? - p*q where p=ay+b

q=ax~-b .
end

ISWIM also has a "whererec" phrase in which circular (recursive)
definitions are allowed.

The only difference between USWIM and ISWIM is that the former
is based on a slightly different phrase, namely the valof phrase. A
valof phrase consists of a set of definitions (like those in the right
arm of a where phrase) called the body, enclosed by the 'brackets' valof
(i.e. "value of") and end . One of the variables defined in the body
must be result , whose purpose is to indicate the value of the phrase.

Functions are defined as in ISWIM.



The following are legal valof phrases:

valof valof
r=a+b p = m? o+ 1 )
y=a-2>, q = n? -1
result = x® + y2 fle, d) =1 + valof
end p = e? - 42
result = p2 + 2:peg
end
result = (3, q)
end

The most important difference between valof phrases and where
phrases is that in the former recursiveness is assumed, i.e. the valof
phrase corresponds to the whererec phrase of ISWIM. This eliminates one
of the most confusing features of ISWIM, namely the fact that the same
variable can refer to different things on the opposite sides of the same
equation., Apart from this, there is another reason for preferring valof
phrases to where phrases. USWIM is the basis of Structured Lucid [2],
and, while it would be possible to base a Structured Lucid on the where
phrases of ISWIM, it would then be necessary, as pointed out in [2], to
considered the terms E and E where end as having different values (the

second is a where phrase with an empty body).



2. SYNTAX OF USWIM

Landin's goal in designing ISWIM was to achieve a clear
separation between two aspects of a programming language, the set of given
or primitive things and the ways of expressing things-in terms of other
things. ISWIM is therefore not a single language but a family of
languages, each of which is, in Landin's words, "a point chosen from
well-mapped space". The coordinate of a point in this well-mapped space
is the set of chosen primitives. Since ISWIM and USWIM are based on
expressions, to specify the primitives we have to supply a domain of data
objects, a collection of operations on these objects, and a collection of
symbols used to denote the operations. In other words, a member of the
USWIM family is determined by an algebra A ; we will call the corres-
ponding language USWIM(A) . The syntax of USWIM(A) is determined only
by the signature of A .

suppose therefore that we are given an algebra A with
signature I . That is, I 1is a collection of constant symbols of
various arities ("individual constants" being of arity 0). We follow
the usual terminology of symbolic logic and refer to the elements of X
as "constant symbols", even though it is only those of arity O which
are what computer scientists usually refer to as "constants". This is
understandable when we realise that, for example, + , like 3, has the
same meaning in all contexts.

We also assume that we have available an unlimited number of

variables of various arities (these are what are usually called

identifiers). The set of variables is the same for all algebras A

-



The nullary variables will also be called "individual variables".
Strictly speaking, the constant symbols and variables should be typed to
indicate the number of arguments expected, but in practice we will omit
these types . Non-nullary constant symbols will often_be called operation
symbols, and non-nullary variables will often be called function variables.
A USWIM program is simply a term, but to define the class of
terms we must also define the classes of definitions and phrases
simultaneously and inductively.
A term is either
(i) an n-axry constant symbol together with a sequence of n terms as
operands (n will be zero if the symbol is an individual constant) ;
(ii) an n-ary variable together with a sequence of n terms as
actual parameters (n will be zero if the variable is an individual
variable);
or
(iii) a phrase.
A phrase consists of an unordered set of definitions, no two
of which have the same definiens , and exactly one of which has has the
individual variable result as its definiens.
A definition consists of a definiendum which is a term, and
of a term consisting of an n-ary variable §{ (the definiens) together with an
ordered set of n distinct individual (nullary) variables (the formal
parémeterS). (§ is called a local variable of the phrase.)
All variables which are not local variables of a phrase are

called global variables of the phrase.



This, of course, is an abstract syntax of USWIM (in the sense
of MacCarthy [ 8]), analogous to Landin's abstract syntax for ISWIM. In
our examples, (like those already given) we will use a fairly obvious
conerete 1linear (or, more realistically, two dimensic-mal) representation
in which texrms are written using infix notation, definitions are written
as equations (with the definiens on the left), and phrases are written as
sequences of egquations enclosed by the keywords valof and end.-r We
will not give a precise definition of the concrete syntax. Such a defini-
tion wbuld clearly not be particularly complex, but it cén not Jjust take
the form of a context-free grammar because of the restriction that the
formal parameters in a function definition be distinct and the restriction
that no variable have two definitions in the same phrase.

In the metalanguage (i.e. when talking about terms in general)
we will use expressions like k(uol Uyr «--s 4 ;) to denote the term

consisting of the n-ary constant k together with the n terms

uo'ul""'un—l as operands. Similarly, we will use expressions like
6(u0, ul, e ey un-l) to denote the term consisting of the n—ary variable
§ together with the n terms uo,u.l,. . "u'n-l as actual parameters.

+ The order of the definitions in a sequence will not be important.
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3. SEMANTICS OF USWIM

The algebra A specifies not only the form of USWIM (A) but
also its meaning, because A specifies a universe of data objects and
assigns to each constant in I a meaning, which is an operation over the
universe of A . Since USWIM allows arbitrary recursive definitions, we
must, in assigning meaning to programs, be able to solve these
definitions over the data domain. We therefore assume that the ‘universe
of A is a cpo and that the operations of A are continuous,+ so that A
is what the ADJ [ 5] school calls a "continuous algebra". The least
element of A is L , which intuitively will be the "result" of
non-terminating computations.

Suppose now that we have chosen a signature I and a I-algebra

Even though we have settled upon the meaning of the basic
operations we still cannot in general conclude that such and such a term
has such and such a value, because the term may have free variables

(variables occurring in the term in positions at which there are no

relevant definitions). For example, to know the value of the term
valof
d=a’ + b2
e =a® - b?
result = valof
result = qvwg + b
a = 5
q = Tve
end
end

+ Thus, for example, the "equality operation” must be continuous, and
will be denoted by eq to avoid confusion with the "equality relation"
= used in definitions.
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we must know the values of the variables a and b .

Thus the value of a term depends on both the values of the
constant symbols (as represented by the algebra A ) and the wvalues of
the variables. The latter we represent as an envirom‘nent, by which we
mean a function which assigns to each n-ary variable § an n—ary function
over the universe of A .

These environments are exactly what logicians call "assignments",
a name which unfortunately already has other computer science connotations.
This coincidence is unfortunate because the word "environment"™ itself is
already widely used by computer scientists to refer to a wide wvariety of
much more complicated structures.

There are two ways to express the fact that the meaning (value)
of a term dependé on the environment as well as on the algebra. One is
to say that given an algebra and an environment, a term has such and suck1‘
a value; and the second is to say that given an algebra, the wvalue of a
term is such-and-such a function from environments to values. In formal
logic it is the first approach which is almost always used, whereas in
the "Scott/Strachey" semantics it is almost always the second. On this
guestion (as in most others) we choose the approach of the logicians over
that of the computer scientists; in this particular instance, becsuse it
is notationally and conceptually simpler (avcids higher type objects), and
also because it avoids an unnecessary distinction between the algebra and
the environment. Of course it is only the 'mathematical' nature of USWIM
and the consequent simplicity of the noticn of environment which allows

us to make the choice.
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Fox a given algebra A , the value of a term £ in an

enviraonment E is defined inductively as follows:

a) If t is an n-ary constant R together with n arguments
Ugrlyre = =2l 3, the value of £ in enviromment E is the result

of apply ing the operation which A associates with R to the values

of U .,

cee sl i i
or&qreeert 1 in the enviromment E

b) If t 4is an pi—g_rz;variable § together with n actual Parameters

ey U

Ugr U nel ’ the value of £ in the environment F is the

ll

result of applying the function associated with 4 (according to

environment E ) to the values of Ugr Uyr eeny U g in the
n—

environment E .

¢) If t is a phrase the value of £ in environment E is the value
of result in the least+ environment E' agreeing with E (except

possibly for the locals of X) which satisfies the definitions in £

An environment £ satisfies a definition if, for all environ—
ments E' which differ from E at most in the values associated with
the formal parameters of the definition, the value in E' of the left
hand side term containing the definiens is the same as the wvalue in
E' of the right hand side (definiendum).

This, strictly speaking, is not a definition of the wvalue of
X inr E since it assumes that least environments exist. However, if
the operations in the algebra A are continuous, least ervironments do
axist, 3o the above ilg a true statement about the value of £ in E

Since z U3BWIM =rogram is just a term, -he above iz an informal

t The partial crozv on the data domain induces an order on the
collection ¢ =znvircoments.
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description of the complete semantics of the language. It is a
mathematical semantics rather than an operational one, that is, it does
not specify the way one would actually compute the value of a program.

If the data domain is reasonably simple (for example, the integers), it
is in fact relatively straightforward to specify an operational semantics,
using conventional Algol-like recursion-implementation techniques, that
agrees with, i.e. realises, the mathematical semantics. In other data
domains, especially those where the data objects are infinite, such as
that of Lucid [ 1], the mathematical semantics corresponds to completely
different operational concepts like iteration, data flow and coroutines.

This subject will be explored in a forthcoming paper.
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4. SUBSTITUTION

The semantics of USWIM just given is simple and concise but
cannot easily be applied directly in reasoning about programs. Instead,
we use the semantics to justify purely syntactic manipulation rules and
rules of inference. These rules, because they are purely syntactic
(involve only text manipulation) can be used confidently without reference‘
to any semantic or mathematical notions. The rules will be given here
without proofs of their validity; such proofs exist, but it would be out
of place to include them here, since they tend to be repetitive and lengthy.

In common with all formal logical systems, in order to specify
rules of inference we must first define the concepts of free and bound
variables, the operation of substitution, and the conditions under which
substitution causes no clashes of scope.

The free occurrences of variables in a term are those which
refer to object§qexternal to the term itself. The value of a term
depends only on the values of the objects referred to by these free
variables. Substitution is the operation of replacing such free variables
by terms. There are no clashes of scope caused by this operation provided
the free variables of the terms being substituted still refer to external
objects, i.e. are still free variables.

Informally, a bound occurrence of a variable in a term is an
occurrence where the variable is a formal parameter of an enclosing
definition or is .a local variable of an enclosing phrase. All occurrences

in the term which are not bound are said to be free.
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More precisely, given any term £ and any definition d , the
free occurrences in & and d are defined as follows:
(i) if X 1is of the form

{z(uo,u e, W)

1’ n~1
then the free occurrences of variables in X are those correspond-
ing to free occurrences in some ui ;

(ii) if £ 1is of the form

6(11.0, u )

ceayp U
1’ " “n-1
then the free occurrences in £ are the initial occurrence of §
together with occurrences corresponding to free occurrences in some U, ;
i

(iii) if XL 1is of the form

valof ‘

ON

SN...“P

end
(where the ei's are definitions)
then the free occurrences are those corresponding to free occurxrences,
in some ei , of variables which are not locals of £ ;
(iv) if d is of the form

ceer X ) = a

6(XO' X n-1

ll
then the free occurrences in d are the initial occurrence of §
together with those free occurrences in a of variables other

than the formal parameters X of d .

X eeer X
o’ 1’ " "n-1
Any occurrence of a variable in a term which is not a free occurrence is

a bound occurrence. Any variable which occurs free in a term is a free

variable of the term.
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It is very common to want to talk about the result of replacing
all free occurrences of a variable in a term by some other term. Since
our variables are function variables, to do this replacement the
(substituted) arguments of the variable being replaced must in turn be
substituted into the term doing the replacing.

We say that the pair, consisting of the variable 4 to be
replaced (and individual variables Xo,xl,.. "xn-l representing its
arguments) and the term £ to replace it (which usually contains free
occurrences of the argument variables), is called an assigwment . The
assignment will be denoted by §(x

verX )« X . A substitution

o' Xy crerXng

is a set of assignments in which the variables to be replaced are all
distinct.

We specify the result ZX[S] of applying the substitution S
to the term X in the following informal manner. We work outwards from
the innermost terms of £ , and whenever we find a free occurrence of a
variable § to be replaced (say 6(x0, Xpo eees xn-l) + a4 occurs in S), if

the arguments of this occurrence are Upy U.l, ceer U (after possible

-1

substitution) then { together with W_, U., ..., w

o 1 will be replaced

-1

by a after simultaneously substituting u, for X, , 1 <dic<n.

More precisely, given any term £ , any definition d and any
substitution S
(i) if £ is of the form

_h(uo, Uys wenr )

1’ -1

then Z[S] is

k(uO[S], ul[S], cees un_l[S]) ;
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(ii) if AL 1is of the form
§hgr ups oo T
then £[S] is
fluy IS, w ISl oo w  JISD
unless S has an assignment of the form
6(x0, X[ v eeen X ) %0
in which case Z%£[S] is
ﬂ{%-+uow],ﬁ_+ulw],.n,xmd
(iii) if AL 1is of the form
valof
e
0
e
1
e
n
end
(where the Q,i's are definitions)
then ZX[S] is
valof
¢, [S]
¢, [S]
e [S]
end
where S is the result of removing from S

the locals of £ .

< un_l[S]}] .

all assignments to
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(iv) if definition d is of the form
Q(UO, é/l, ve ey yn_l) = b
then d[S] is
g(yO' yl’ ceey yn—l) = b[S]
Pa)
where S is the result of removing from $ any assignments to

the formal parameters Ygr Yqr =oer Yy of d .

Example

In the term

xz + valof
2=y +3
glx) = 1f 2 > y then z else g(y + )
result = hix + 2z)
end

there are two free occurrences and three bound occurrences of g , two
free occurrences of y -, four bound occurrences of z , two bound
occurrences ©f g , one free occurrence of % and one bound occurrence
of result .

If we apply the substitution

{z«2, hy) «gy + 1)), y«(x + 2)}

the result is

z + valof
2= (x+2) +3
glx) = if 2 > x then z else g((x + 2) + x)
result = g(h((z + 3) + 1))

end.
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This substitution has several undesirable effects. After
substitution, the two free cccurrences of x become occurrences of = ,
but they refer to different objects, since the second is a local variable
of the phrase. Similarly the two free occurrences of y become
occurrences ©of "x + 2" but again they refer to different obijects, since
the & in the second is a formal parameter. These are examples of free
occurrences Of variables in the term doing the replacement becoming bound
occurrences 1in the result of substitution. Another example of this is
the substitution for % , where the freé occurrence of the wariable g
becomes bound, since g 1is a local of the phrase.

We say that a term £ permits a substitution S  if none of
these effects occur, i.e., if no free occurrence in a term being
substituted becomes a bound occurrence in the result of the substitution.

In the same way, we say that a definition permits a substitution
provided the definiendum permits the substitution and no free
variables become formal parameters.

More precisely, for any term £ , any definition d and any
substitution S :

(1) if £ 1is of the form
Iz(uo, W poweer U )

1 n-1

then £ permits S iff each uy permits S ;

7

(ii) if £ 1is of the form

then T permits S iff each w, permits S , unless §

contains an assignment of the form
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X r easy
§xyr %) n-1

in which case it is also required that d permit the substitution

{xo “ug[S1, x; < w 181, ..., x g vu (813

(iii) the term

valof

end

permits S provided each definition ei permits the substitution
S gescribed earlier, and provided that S hnas no assignment of

the form

6(x0, X X ) <«a

17 e Xy
with 4§ occurring free in some ei and some local of £ occurring

free in a

(iv) the definition
Q(Uor gl’ -y gn—l) = b

permits S provided b permits the substitution S described

~

earlier and S does not contain an assignment of the form

é(xO, X X ) <a

17 77 Tpel
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such that §{ occurs free in b and «a has a free occurrence of

one of the formal parameters (., Yy, -« gn—l of d .

5. PROGRAM MANIPULATION RULES

With these technical matters taken care of we can proceed to
consider the program manipulation rules.

The rules we present here are all transformation rules; they
describe changes which can be made to a term without altering its meaning.
If the term has free variables, the value is preserved no matter what
value is assigned to those variables. This means that the rules can be
used in any context, i.e. can be applied to subterms. As a result, our
reasoning about programs can proceed as follows: we begin with the
program PO and then define a sequence P,, P_, P ... of derived

1 2 3’

P
programs, each ie1

’

the result of applying a rule to a subterm of Pi
until we arrive at a program Pn which more clearly has some desired
property. Since the transformations preserve meaning, PO must also
have the property. This stepwise or "incremental" approach +to reasoning
about programs closely resembles the approach mathematicians use in trying
to prove something about, say, a system of differential egquations.
Mathematicians do not simply derive a series of assertions about the
system; they transform the system itself, by adding new vaxiables,
eliminating ©ld ones, integrating parts into clecsed forms, expanding

power series, and so on. In logic itself most of the proof systems‘ (e.qg.
the natural deduction systems) proceed by taking assertions apart and

putting them together, but there is one system (Craig's Linear Reasoning

[4]) which is based on a transformational approach. 1In Craig's system
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one proves an implication by transforming the hypothesis into the
conclusion -

Another important characteristic of proofs in our system is
that they axre modular or 'nested' in that they follow the sScope structure
of the term to which they are applied. By this we mean that each
application of a rule involves only the body of a single phrase. (To
apply such rules we often have to use a rule for bringing definitions into
a phrase.) This means that one can concentrate one's attention on one
part of the program at a time, transforming its equations without
altering, or even taking into account, definitions in inner or enclosing
phrases.

The first of our rules, the <mport rule , captures the idea
that the definition of a variable applies to all free occurrences of the
variable inside inner phrases, i.e. the idea that scope propagates inward.
It says that we can add to any phrase a definition occurring (at the top
level) in the smallest enclosing phrase provided the variable defined is
not a local of the inner phrase, and is not a formal parameter of the
definition in whose right hand side the inner phrase occurs. For example,

the rule allows us to transform
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valof valof
a= p+gq a=p+ g
b=p-gq b=p-gqg
result = valof result = valof
b=a +1 into a=p + ¢q
result = 2 b=a + 1
end result = b2
end end
end

The calling rule expresses the idea that the definitions in a
phrase really are equations, i.e. that the right hand side is really
equal to the left hand side. It says that if a phrase contains the

definition

6(x0, X,r sver X ) = a

1’ n-1
then the substitution {6(x0,xl,...,xn_l) < a} can be applied to any
definition in the phrase, provided the subsitution is permitted, that is,

the free variables in a4 remain free variables of the definition after

substitution. For example, the rule allows us to transform

valof valof
2 2
flay == -y flay = x° - y2
into
y=p+3 y=p+3
result = f(3 + y) - F(p) result = ((3 + )2 - 42 - Fp)

end end
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Because of the way in which substitution works, this rule also captures
the idea that the definitions with formal parameters are definitions of
functions.

The local renaming rule expresses the idea that the local
variables of a phrase are just dummy variables, that the actual variables
chosen are not important, and that the enclosing phrases are 'shielded®
from the definitions in the phrase. It says that in a phrase whose locals

v we can choose any other

(other than result) are Vor vl, Vor wees -1

sequence W, wl, seey wmel of distinct variables (of corresponding

arities) and replace all free occurrences of VO’ Ul’ e ,vm 1 in the

definitions of the phrase by WO' W, eea, W

1 =1 ' provided the substitutions

are permitted,i.e. as long as no v; occurs where the corresponding wy
would be bound, and provided no wi is a free variable of the original

phrase. For example the rule allows us to transform

valof
a=3+~-qg(,1, 5‘)
flx) = x + valof
glx) = x2 -a
e = .’172
result = g(f(x)) + ¢
end |
g(r, s, t) = rz—a°r°s + ()
result = a

end
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into
valof \
b=3-%k(1, 1, 5
v &) =z + valof
glx) = xz -b
c = x2
result = gv(x)) + ¢
end
kK(r, s, t) = r2 - beres + v (%)
result =5
end

but we could not change f to g because the occurrence of f in the
inner phrase is in a context in which g is bound. Also we can not
rename the locals of the inner phrase to change ¢ to a because the
existing free occurrence of g in the inner phrase would become bound.

There is also a similar renaming rule for formal parameters,
which expresses the fact that they too are dummy variables . (The szvnal
parameter renaming rule .)

The amalgamation rule is so-called because it allows us to
amalgamate a term involving several phrases into a single phrase in which
result is defined to be an analogous term, for example to transform the
sum of two phrases into a phrase in which result is defined as a sum.

suppose then that € is any expression, that

veer V is a sequence of individual variables and that
1’ ' "n-1
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po, pl, e - r pn-—l is a sequence of phrases having (other than result )
no locals in common, and none of whose locals is a Vi or occurs free in
¢ . We define the phrase ¢ as that formeci by taking the definition
result = ¢  together with, for each i , all definitions in Py with

result replaced by V. - Then the term
eliv 1 <
[{ L€ Py | i < n}]

(the term involving the phrases) may be replaced in any context by g
provided all the substitutions indicated are permitted.

For example, suppose that the expression ¢ is a - bz ,
that n is 2 and Yo and Ul are a and b respectively and that Po

and p 1 are

valof valof
x =m+n r=m+%k
Yy = men and g =m-=-k%k
result = x2 -y result = res + 5
end end
Then the expression
valof valof
x=m+n r=m+ k
y =mm - s§=m-=-k *z
result = z° - y2 result = r*s + 5
end end

can always be replaced by
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valof

xr=m+n

Yy =mn
2

a=x" -y

r=m+2%Xk

s=m-=-%

b = res + 5

result = g - bz

end.

An interesting special case of this rule is obtained when n = 1 and
VO does not occur free in ¢ . The inverse of this rule+, which in this case we
shall call the result rule , tells us that we can replace any phrase of the

form valof

-
-

result = ¢

end

by e itself (the conditions of the general rule require that no local
of the phrase occur free in ¢ ).
We mentioned that mathematicians, in the course of manipulating

a set of differential equations, might introduce new variables and

+ In fact all the rules can be applied in either direction. This means
that from a term X we can obtain a term 4 by the "inverse of rule
A" provided that rule /£ could be applied to term A to yield

term t .
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discard old ones. There is exactly such a rule for USWIM. The additZion
rule allows us to add to a phrase any definition whatsoever provided
only that the variable being defined does not occur free in the phrase,
and is not already a local variable.

The inverse of the addition rule, called the deletion rule ,
allows us to eliminate a definition in the same circumstances. For example,

the addition rule allows us to transform

valof valof
flx, y) = x2 + asxey + y2 hiz, y) = x2 + y2 - flxe, y)
b=3-a into Fla, y) = x° + aray + y2
result = f(2, b) b=3-aqa
end result = £(2, b)
end
and the deletion rule allow us to transform
valof valof
a=3 ' b =4
into
b =4 result = z° - bez
result = z° - beg end |
end

Finally, there is a rule, the basis rule , which reflects the
fact that USWIM is, in a sense, an extension of an algebraic language - It

says that if the equation

is true in the algebra A (here Il and 12 are simple terms without
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phrases and the equation is considered to hold for all values of the free
variables) +hen in any term any occurrence of tl may be replaced by
tz . This allows us to carry over the laws of the data domain so that,

for example ,

valof valof

@+ b fla, b) a’ + 2eqh + B2

can become
f(3, 5) result

fla, B

result £(3, s)

end end

if the algebra A  consists of the integers with the usual Operations, in

which the eqguation
V 2 2
(@ +b)° =a° + 2:ab + b°

holds for all a and b .
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6. BINDING AND CALLING

If the language and rules of inference of the underlying
algebra A are fairly standard, for example dealing with numerical
quantities and interpreting the operation symbols in the usual way, then
the rules of inference of USWIM just given are sufficient to successively
transform any program (without free variables), whose value isg defined,
into a term without phrases denoting that value. This essentially
corresponds to 'executing' the program.

For example, consider the program

valof
fn) = if n < 0 then 1 else nf(n - 1)

f(3)

]

result
end.
Applying the calling rule we get

valof

fin)

result

if n

N

0 then 1 else nef(n - 1)

if 3

I

0 then 1 elise 3:f(3 - 2)

end.
Now applying the basis rule for properties of arithmetic we get

valof

fn)

result

if n <0 then 1 else n*f(n - 1)

3+7(2)

end.
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By repeating this process three more times we will get

valof

fn)

result

It

if n < 0 then 1 else nefin - 1)

6

end.

Now applying the result rule, this term becomes simply 6.

The rules can also be used to answer questions about function-
calling that in conventional programming languages are thought of
operationally and are settled by conscious design decisions. These are
the gquestions of the type of "parameter passing mechanism" used and
whether the "binding" of global variables of functions is static or
dynamic.

It is easy to see that the "parameter passing mechanism" is 7ot

call-by-value by considering the following program

valof

flxz, y) = if x < 0 then 0 else f(z-1, flx, ¥))

result = f(1, 0)

end.

If the calling "mechanism" were call-by-value, the value of this program

would be LI , since evaluation of f(1, 0) in turn requires evaluation
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of f(1, 0) . However, it is easy to see that the rules allow us to

generate the following sequence of equivalent programs:

valof

flx, y) if < 0 then 0 else f(z-1, fix, y))

result

feo, f(, o))

end
(by the calling and basis rules)

valof

flx, y) if x < 0 then 0 else fl(z-1, f(x, y))

result

.if 0 < 0 then 0 else F(0-1, F(0, £(1, 0)))

end
(by the calling rule)

valof
result = 0

end

(by the basis rule and the deletion rule)

(by the result rule).

Thus, the value of the program is 0 , not L .

As for the "binding" used, we can consider the following

program:



valof
a=1
flx) =2+ a
result = valof
a= 2
result = f(2)
end
end.

If the binding were dynamic, we would expect the value of this program
to be 4, since it would be the inner definition of @ that would be used
by the "call" of f(2) . There are two ways to see that this is not the
case. First, by the local renaming rule, we can rename the wvariable «
either in the outer phrase or in the inner phrase, and in both cases the
global variable of f will be the locél defined in the outexr phrase.
Second, we can actually "execute" the program. This involves applying
the calling rule to f(2) . However, the outer definition of result
(which is ‘the one, containing f(2) , which is in the phrase containing
the definition of f ) does not permit the substitution f(x) <« (x + a)
because the variable @ , which is free in "x + a" , becomes bound in
the resulting definition. Therefore we must first apply the local renam-
ing rule, eithér to the inner or outer phrase, so that the substitution
(which will have been changed if we renamed g in the outer phrase) is
then permitted. It is then straightforward to see that the program

reduces to 3.
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Thus USWIM uses "static binding", as in fact all languages do

which allow renaming of local variables.

7. INFERENCE RULES

The USWIM rules which we have described cannot by themselves be
used to prove assertions about programs because these rules apply only
to programs; they constitute a calculus of program transformations rather
than a logic of programs. If we want to manipulate assertions about
programs as well, we must extend our formal system by adding some class
of assertions together with a collection of rules for deriving assertions.
One way to do this is to take some existing logical system which already
deals with terms and 'embed' USWIM in it by expanding the class of terms

to include USWIM programs.

The most obvious choice for such a system is the first order
language L whose individual variables are the nullary USWIM variables
and whose operation symbols are taken from I . We generalize | to
the language L* by allowing a USWIM phrase whose free variables are
all nullary to appear in a formula anywhere an ordinary term is permitted.
In this 'extended' logic, assertions about programs are'asser.tions about
the values of programs and are just formulas in which the program appears;

for exampie,
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valof

sq(n) nen

result

8g (1-1) *sq (1+1)

end

There is no difficult in using the mathematical semantics of USWIM given
earlier to extend the semantics of L , i.e. to define what it means for
an L*-formula to be true in a given environment.

Program—equivalence assertions are just equations between
programs with their (common) input (free) variables universally quantified;

for example,

Ynvr
valof valof
fac(x) = if x < 1 then 1 hiz, y) = if * > y then 1
else x*fac(x-1) = else x*h(z+l, y)
result = fae(n)/(fac(r)*fac(n-r)) result = A(n-r+1, n)/h(1, r)
end end

There is, however, a serious problem with this appxoach, and
that is that while the operation symbols of A can be immediately
incorporated into L* , the relation symbols cannot, they are just
operations in A which happen to yield what A's interpretation of
if...then...else regards as truth values. 1In fact, since X is a
one-sorted signature it does not even make sense to talk about "relation

symbols" in X .
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We can, of course, define a many-sorted version of USWIM whose
parameter would be a many-sorted algebra, and we could require that bool
be one of these sorts and that A interpret it in some standard way -
Nevertheless we could still not use operations in I of (result) type
bool as relations in L* because the value of such operations could be
the 'undefined' element L of A . This is possible because A is
required to be a continuous algebra - and we cannot drop this requirement
because our definition of the meaning of a USWIM phrase requires the
existence of fixed-points of arbitrary recursive definitions.

There are two solutions to this problem. One is to distinguish
completely between tests used in a program and actual relations ovef the
universe of A (this involves using two ‘different forms for every basic
test in A , e.g. distinguishing between < and less-than , > and
greater-than , 2 and greater-than-or-equal in the same way as between
= and eq ). An alternate solution is to adopt a three-valued logical
system plus additional rules specifying circumstances under which
conventional two-valued reasoning méy be used. The first method is
formally simple but in practice is very cumbersome, whereas the latter
requires a more elaborate formal specification but is much easier to use
in practice. Here we shall use the latter method.

Because the use of full predicate logic involves complications
which we would rather avoid here, we will instead use as the basis of our
assertion language the equational algebraic system of signature I . We
extend it by allowing, as generalized assertions, universally quantified

equations between USWIM terms. More precisely, our assertions are of the
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form

on Vxl .o Vxn_l(tl = tz)

for some natural number n , some sequence xO’ X X of (for

1’ "7 “n-1

simplicity) individual variables, and some terms Il and 4‘22 - The above
assertion € 1is true in [ (in symbols }=E e ) iff the value of

tl in E' is the valué of T’Z in E' for any environment E' differing
at most from &€ in the values E' gives to some of the xi « The free
variables of € are those variables other than the xi which are free in
tl or 4*,2 . The assertion ¢ permits a substitutioﬁ S iff both tl
and i’z permit the substitution § obtained by removing from S all
assignments to any xi + provided no xi occurs free in any assignment

in S , and provided both tl and 12 permit S . When the

substitution is permitted the result OQ[S] is
on \'/x:L Vxn_l(/tl[S] = IZ[S])

In future we shall refer to such universally quantified equations
simply as "equations", and equations without quantifiers will be "basic
equations".

In proving equations from other equations we can use the
equational rules of substitution and replacement. More precisely,

(1) Substitution:

from any equation of the form

on Vxl .. ka_ld ,

with d any basic equation, infer the equation
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L Vyl Vym_ld[S]
for any permitted substitution § of the form

“
Dty + tgr Xy« Upreeer Xy Uy

and yo, yl, “eny gn—l any variables not free in the original
equation;
(ii)  Replacement:
from an equation of the form
on Vxl Vxn__l(/to[w—a] = tl[v <« al)
and an equation
Vyo Yy, ... Vym_l(a = b)

infer the equation

on Vxl Vxn_l(to[u « bl = /tl[v < b])

provided the substitutions are permitted and any xi appearing

free in 4@ or b is among the Y.

since we will be using other rules of inference as well, we

need an extra generalization rule which allows us to infer
Vyo Vyl ng_ld

from d whenever no yi occurred free in the assumptions from which

was derived. (Here d need not be a basic equation.)
These are exactly the ordinary equational rules except that

(i) the terms may contain USWIM phrases, and (ii) quantification is

explicit. In ordinary equational algebra all variables are implicitly
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universally <qguantified, but we have made quantification explicit in order
to avoid a distinction between variables in programs and variables in
assertions. We therefore need a third rule (which we will not formulate
precisely) allowing us to permute the order in which the variables are

quantified in an equation.

These rules are sound in the following sense: 1if we can, using
these rules, derive an equation ¢ from a set do, dl' eees dn—l of
equations, then ¢ is true in every E in which all the di are

true; in symbols,

dol dl’ veey dn—l Fe

Our program transformation system allows an extra rule which express
precisely the fact that transformed programs are equivalent. If our
transformation rules allows us to transform the term /tl into the term

1:2 we may infer the equation

on Vxl Vxn“l(tl =1,

|
&+

for any individual variables X_, X

0" 71" "7 Tn-l

The substitution and replacement rules are general because they
are sound no matter what the algebra A is. In studying a particular
instance of the USWIM family, however, it is possible to use particular
but very useful rules of inference valid only with reference to the
particular algebra. An important example is the mathematical induction
rule of the algebra N of natural numbers (with Q ¢ Z and N(@Q) =1 ).

To prove an equation Vv ¢ from a set of assumptions it is enough to

prove the equations
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e[{v « Q}] and e[{v « 0}]

from the assumptions, and also prove e[{v « v+1}] from the set of
assumptions with ¢ added (as the induction 71'1yrpot;hewsis) r,m;rovided v is
not free in any assumption in the set.

The problem that remains with the "embedding" approach just
described is that assertions about programs are just equations in which
the programs appear as terms, so that they are, in fact, assertions about
the values of programs. Programs are therefore treated as black boxes
whose input-output activity is all that can be discussed. Now it is
certainly true that, in the end, the goal of our reasoning is a statement
about the meaning of a whole program, i.e. about its value; but in the

course of working towards that goal we might want to make assertions about

parts of the program. For example in showing that

valof
d = al'b2 - az-bl
| e = cl°b2 - bz-cl
result = e/d
end

has a certain value we would naturally want to prove that (say) d = k+1
(and so is positive) inside the phrase. Since this is a statement about
the phrase's internal environment, we cannot do this literally, with the
'embedding' system. In such a system,the formalisation of reasoning about
the interior of a program involves taking the proéram apart and putting

it back together again, just as described in Section 5.
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Clearly, what is required is some system which allows modular,
local reasoning about a program in the same way that the transformation
rules given in Section 5 allow modular, local transformations of a
program. Imn reasoning about programs or in documenting them programmers
often "annotate" them with comments (written, say, to the right of the
text) which refer to the 'local' values of program variables. The
system we propose is simply a formalisation of this idea.

We first define two classes of syntactic objects, which we
respectively call amnotated terms and annotated definitions , as
follows:

Aan annotated term is either
(i) a constant in L together with an appropriate number of operands,

each of which is an annotated term;

(ii) a variable together with an appropriate number of actual parameﬁers,
each of which is an annotated term;

(iii) an annotated phrase, i.e. a set of annotated definitions,one of
which has result as its definiens and no two of which have the
same definiens, together with a set of universally gquantified
equations. (This set of equations is called the paraphrase of
the phrase, and its elements are called annotations .)

an annotated definition is similar to a definition (with the
definiens and definiendum defined accordingly) except that the definiendum
is an annotated term.

We will extend our concrete two-dimensional representation of

terms by writing annotations . .to the right of the phrase to which they are
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attached, with a vertical line between:

valof
b = 3¢k k = g+1
e = 2%k
result = valof
d=b%-aec b = 9-k
result = (=b + sqrt(d))/2 d = k2
end
end.

An annotated phrase has two 'values', its value as a term (a
'data' value), and its value as an assertion (a truth value). The data
value is simply the value of the term which results when the annotations
are ;thrown away',and the truth value is the conjunction of the annotations
in the phrase, each considered as referring to the local enviromment of
the phrase to which it is attached. The idea that annotations refer to
local environments can be made precise as follows. Given any annotated

term £ , any annotated definition d and any environment E
(1) if £ 1is of the form

RiUyr Uyr =vey w _q)

~

then < 1is true in E iff each ui is true in E

(ii) if £ is of the form

6(LLO,U.1, cees U o)

then £ 1is true in E iff each Uy is true in E ;
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(iv)

- formal parameters XO' X
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if £ is of the form

valof
e
0 po
¢, Py
e »
n m-1
end

let E' be the least environment which agrees with E (except
possibly for the locals of £ ) which satisfies the definitions
obtained by de-annotating the Q’i ; then £ is true in E iff

each Pj is true in E' and each e, is true in E' ;

’

if annotated definition d is of the form

PR = Qa
§Xg Xy raeer X 1)
then d is true in E iff 4 is true in every environment E°

which agrees with € except possibly for the values given to the

10 e X0 of d .

In future, we will drop the word "annotated", and when we want

to indicate the part of a phrase, term etc. without its annotation, we

will use the word "de-annotated".

Now, if programs are annotated, we cannot use the program

manipulation rules of Section 5 without first modifying them to take

account of annotations. We will not go through all these modifications

here, because they are all rather obvious. The general consideration is

that the free variables of a phrase now include the free variables of the
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annotation that are not locals of the phrase, and no changes to the
de-annotated phrase can be allowed which change the meanings of the
annotations . This usually means that the changes made to a dJe-annotated
phrase must also be made to its paraphrase (as, for example, in the local
renaming rule).

As well as the program manipulation rules, we now also have
rules that deal explicitly with annotations+-

The discard rule allows us to remove any annotation from any
paraphrase.

The consequence rule allows us to add to any paraphrase any
equation which is an A—consequence of the annotations already in the

paraphrase. In other words, if

dyr dys venr d

E e
and each di is in a particular paraphrase, then e may be added to the
paraphrase. ‘ In particular, if ¢ can be obtained from the di using
general or particular rules of inference, it may be added to the
paraphrase.

The definition rule allows us to add to a paraphrase the

equation

X ) = a)

valei.. Vxn_l(d(xo, Xpr eeen X o

whenever the phrase contains the definition

5(xo, Xpr eeer X0

(Alternatively, we could allow the calling rule to be applied to annotations

as well as to de-annotated phrases.)

T These inference rules, unlike the program manipulation rules, are not
invertible.
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The <Import rule allows us to add to the paraphrase of an inner
phrase any equation in the paraphrase of the immediately enclosing phrase
provided it has no free occurrences of variables local to the inner phrase,
or of the formal parameters of the definition containing the inner phrase.
(This rule is simply a version, for annotations, of the import rule for
program manipulation, so using the same name should not cause any
confusion.)

We can also generalise the amalgamation rule, so that we can
replace ¢ by Q[{vi “p; | i < n}] (or vice versa) in annotations as
well as de—annotated terms.

The export rule says that if we have annotation € ina
phrase p whose enclosing definition has formal parameters
, and the free variables of ¢ are not locals of the

X X

s e o F

1’ n-1

phrase (other than, possibly, result ), then we can add to the paraphrase

i

of the enclosing phrase the annotation

OI

VX, VX, ... ¥x o el{result « p}] .

The rules are sound in this sense: if an annotated term £' can
be obtained from an annotated term £ , then £' is true in any

environment in which £ is true.

The rules just described for annotated terms all have the property
that their use involves only a one-waqy flow of information from the
de-annotated program to the annotations. If X£' can be obtained from
£ using the rules of inference and the manipulation rules , the
corresponding de—annotated terms will have the same value, but

the de-annotated version of X£' could have been obtained from the
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de-annotated version of 4 using just the program manipulation rules.
The annotation rules described so far are useful for verification but not
for program transformation.

There is a rule which allows annotations to be used to change

the de-annotated program. The modification rule says (in its simplest

form) that if a paraphrase contains the basic equatign ;L =b ,

then certairn occurrences of term a in definienda in the phrase may be
replaced by term b . This simplest form of the rule would not allow us
to substituté b for a in contexts in which some of the free variables
of @ or b are formal parameters of a definition in the phrase (it
clearly would be incorrect to do so, since the assertion a=b can
not be referring to the formal parameters). A more general form of thé
rule allows us to substitute b for certain occurrences of a in

this situation if the paraphrase contains

VX ¥Xys VX a = b

cees X are the formal parameters of the definition in

where xo, X n-1

ll

question.

The restrictions on the occurrences of @ are not just those
necessary to avoid a clash of variables; it is also necessary to take the
dependencies of the various locals of the phrase into account, in ordexr
to avoid perturbing the least local environment of the phrase.

To understand the necessity of the restriction, consider a

program in USWIM(N) containing the definition
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fn) = if n < 1 then 1 else nf(n-1)
we might deduce the true annotation
Vn(if n <1 then 1 else n*f(n-1) = (n + (1-n))*Ff(n-1))

(recall that e.g. 1 -3 =0 in N ), and if we could apply this to the
program using the more general form of the modification rule, the

definition of f would become
fn)y = n + (L)) *fn-l) .

The problem now is that the factorial function is no longer the Ileast
solution of this definition; the least solution is the function whose
value is always L1 . Many and subtle examples of this phenomenon could
be given.

We see then that we can change the meaning of the program by
substituting equals for equals, because the new definition may have Zess
information than the old one. One way to ensure the correctness of a
substitution is to require that the equation to be applied is a
substitution instance of a more general equation, no free variable of which
depends (in the phrase) on the definiens of the definit_:_'.on to which it
is applied.

More precisely, suppose that )0 1is an annotated phrase

containing a definition of the form

»

§(Xgr Xyr eevr x 1) = aliv < £1}]

n-1

(where the substitution is permissible) and that the equation
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n-l(tl = 12)

VX, VX; ... WX
can be obtained from an annotation ¢ in the péraphrase of p by one
application of the substitution rule. Then the definition may be changed
to

f(xgr x = al{v « tz}]

ll .o rxn_l)
provided the substitution in permissible and there is no free variable W

of e such that <W, §> is in the transitive closure of the relation

{<y, 2> | y and z are locals of p and z occurs

free in the definition of y} .

The requirement essentially implies that the definition being changed
could not usefully have been used to derive the equation being used.

This requirement prevents the erroneous substitution mentioned
earlier because f occurs free in the equation and <f, §> is in the
transitive closure of the relation for the phrase. On the other hand, the

equation
Ynnef(n-1) = Ffn-1)+n)

can be applied if the annotation

Ya¥n(nex = x+n)

is first attached to the phrase.
We will illustrate our transformation and manipulation rules by
showing that the following inefficient USWIM(N) program to compute the

sum of the first n squares,
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valof

sum(m) = vaiof

sq(k) = if k < 1 then 0 else sqg(k-1) + (2°k-1)
b = sq(m) + sum(m-1)
result = if m < 1 then 0 else b

end
result = sum@n)

end,

is equivalent to the term ne*((n+l)e{(2*n+l) + 6 .
The first step is to use the definition rule to add the

equation

Yk (sq(k) = if k < 1 then 0 else sq(k-1) + (2+k-1))

as an annotation to the inner phrase. Next we use mathematical induction

to prove
¥i(sq(d) = i°)

by induction on 1 .

The 'base' steps,namely proving »sq(O) = 02 and sqg(Q) = 92 ,

are straightforward, and the induction step involves proving

8q (Z+1) = (i+1) 2

»

. . .2 , . .
from the assumption sg(z) =1 (notice that 1 does not occur free in
our other assumptions). To do this we substitute into the equation derived

from the definition of sg , giving
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8q(i+1) = 1f (i+1) < 1 then 0 else sq((i+1) - 1) + (2° (4+1) - 1) .

Replacements using equations like
VE((i+1) - 1 = 2)

give us

8q(i+1) = if (i+1) < 1 then 0 else sq(£) + 2+4+1 .
Replacing sg(Z) by 42 (i.e., by using the induction hypothesis)
we get

sq(i+1) = if (Z+1) < 1 then o0 else $2420441
and since
. 2 . . .2 .
(2+1)" = if (¢+1) < 1 then 0 else £+2¢7+1
is true in N , we can replace and get
. . 2
8q(1+1) = (Z+1)
as required.
The induction rule therefore allows us to add Vi sq (i) = 'L'2

to our annotations, and substitution gives sq(m) = m? and since m is
not a local of the phrase and sq 1is not defined in the phrase directly
or indirectly in terms of b , we can use the modification rule to
replace the occurrence of sg(m) by m2 in the definition of 5 . Then

we use the calling rule on the occurrence of b in the definition of

result giving
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valof

sum(m) = valof

sq(k) = if k < 1 then 0 else sq (k—1) + (2°k~-1)
b = m2 + sum(m-1)
result = if m < 1 then 0 else m2 + sum(m-1)

end
result = sumn)

end

(after discarding the annotations). In the inner phrase, &g and b

occur free at most in their own definitions; these definitions may

therefore be deleted, giving

valof
sum(m) ='valof

result = if m < 1 then o0 else m2 + sum(m-1)
end

result = sum(m)

end.

The next step is to use the result rule and_replace the entire

inner phrase by the definiendum of result , yielding

valof

if m < 0 then o else m2 + sum(m-1)

]

sum (m)

result = sumn)

end.
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We can now use annotations much as we did before to prove the equation
Vm(sum(m) = me (m+1) e+ (2°m+l) + 6)
by induction on m , then use substitution and modification to get

valof

if m < 0 then 0 else m2 + sum(m-1)

sum(m)

result

1

n *(n+l)e (2°n+l) + 6

end.

Discarding the definition of swn and using the result rule finally gives

the term #n°* (n+l)* (2+n+l) 6 . Since we have transformed the original
program P into this term, and since we did not use any assumptions

about »n , wevconclude
Yn(p = (n*(n+l) e+ (2°n+l) + 6)

is true in N

The USWIM rules do not in themselves make verifying programs
any easier mathematically (although they make it easier notationally) .
The real significance of the rules is that they allow the proofs derived
to be completely precise, i.e. broken down into a series of small steps
each of which is the application of a simple rule. Naturally this
degree of precision would be possible only with the aid of a mechanical
proof checker capable of 'interpolating' simple steps. Such a checkexr/
verifier based on USWIM would be no more complicated than many existing
systems, and would allow a user to perform sophisticated manipulation

with complete confidence.
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8. REASONING BY SCOTT INDUCTION

We have mentioned that the definitions in a phrase can be
thought of as true assertions about the locals, and two of the manipula-~
tion rules given can (as we pointed out) be considered as Jjustifications
of this way of thinking. Neither of these rules, however, make use of
the fact that the environment inside a phrase is the least one which
makes the equations true. The two rules given express the fact that the
values of the locals are a fixed-point of the equations, but they do not
express the fact that they are the Lleast fixed point.

This is not as serious a deficiency as it might seem, because
in very many cases the fixed-point is unique anyway. Sometimes, however,
there is more than one fixed-point, and,even when there isn't, it is
often easier to derive a particular result using minimality even when
minimality is not strictly necessary.

Proof rules which can be used to derive assertions about the
least (but not necessarily all) fixed points of a continuous function are
known as fixed-point induction rules, and several different ones are
known. We will describe a USWIM rule which is based on the "Scott
Induction" principle which has the useful property that it can be stated
without explicit reference to the approximation relation in the domain
in question.

The Scott rule is the following: given any cpo, any
continuous function T over the c¢po with least fixed point k , and any
property P : to show p(K) show p(L) and then show that p(a)

implies p(T(a)) for any O in the cpo. The rule is valid provided
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that p is "admissible" in the sense that the lub of a chain of elements
in the cpo possesses the property whenever every element in the chain
does.

The rule itself is a meta-rule, i.e. it refers to semantic
objects. The corresponding USWIM rule is an object rule in that it
refers to syntactic objects and gives conditions under which annotations
can be added to terms. Suppose then that £ is a phrase, that

V., Vi, eeey vn are any of the locals of the phrase, and that ¢ is

0 1 -1

some universally quantified equation about the Ui and other variables
which we wish to prove by inductioh on the vi . (¢ 1is bound to be
admissible.) We assume that I has nullary symbol §} which A
interprets as 1 , and that wo, wl, ey wn—l are variables which are

not local to the phrase and do not occur free in any annotation in the

phrase. Then in order to justify adding ¢ to the phrase we must

(i) be able to add ¢ to the paraphrase of the phrase X' formed by

changing the definition of each Ui to

vi(xo, X ceos xriﬁl) =0

ll
(where r, is the arity of Ui);

(ii) be able to add ¢ to the paraphrase of the phrase X" which

results from applying the substitution

coa « W, cee i <
{v, (xgr x PX ) S W, X rx_ ) | i<n}

ll
i i

to the definienda of the Ui » and adding as an annotation the

result of applying the above substitution to ¢ .
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As an example of the application of the rule, suppose that we

wish to add the annotation
Vn sum(n) = fib(n+2) - 1

to the phrase

valof
Fib(n) = if n < 2 then 1 else fib(n-1) + fib(n-2)
sum(n) = if n < 0 then 0 else fib(n) + sum(n-1)
result = sum(20)

end.

We must first show that we can add the given annotation to the

phrase
valof
fibn) = Q
sum{n) = Q
result = sﬁm(zo)
end;

and then show that the same annotation can be added to the annotated

phrase

valof
fibn) = if n < 2 then 1 else a(n-1) + a(n-2) Vn b(n) = an+2) - 1
sum(n) = if n < 0 then 0 else a(n) + b(n-1)
result = sum(20)

end
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(here a and b are the Wi ). The annotation already present is the
induction hypothesis, to be used in deriving the desired annotation.

The transformations are straightforward.

One interesting feature of the rule is that the subproofs may

involve any of the rules for deriving annotations; in particular, they

may also use the induction rule, so that inductions may be nested.
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Abstract

In this paper we consider a family of languages (USWIM) which
is based on Landin's ISWIM (the individual languages being determined by
appropriate continuous algebras of data objects and operations on these
objects). We give a simple mathematical semantics for USWIM, and also
give a system of program manipulation rules and a system of inference
rules for reasoning about USWIM programs, the latter using a system of
"program annotation" which allows inner, local environments to be

discussed. USWIM is the basis on which Structured Lucid is built.



The commonplace expressions of arithmetic and algebra have a
certain simplicity that most communications to computers lack.

[P.J. Landin, 1966]

0. INTRODUCTION

It is apparent that the goals of language designers and
logicians are quite similar: to develop systems for precisely specifying
objects and properties. In both cases this means the study and develop-
ment of the syntax and semantics of purely formal, as opposed to natural,
languages.

It is also apparent that logicians have been eminently more
successful. The logicians' languages, such as predicate calculus, are
simple, elegant and, above all, semantically well defined. Programming
languages, by contrast, are complex, clumsy and, above all, semantically
very poorly defined. It is often said that they are "illogical".

Furthermore, the languages of logicians were developed in
conjunction with rules of inference, so that reasoning about properties
of objects could proceed by simple finite manipulations completely within
the language itself. By constrast, formal reasoning about programs, to
the extent that it is possible at all, has to be carried out in a
separate formal system in which the manipulations are performed on
comments on, or a translation of, the original program.

The obvious conclusion is that logic (and mathematics in
general) could be usefully applied to the study and design of programming
languages. Few would dispute this; but there have always been two points
of view about the relationships between logic and computer science.

One point of view sees mathematics as playing primarily a
passive role, being used to describe, to model and to classify. The

other point of view sees mathematics as playing primarily an active role,



being used not so much to describe existing objects as to plan new
objects.

These two approaches, which we might call the descriptive and
prescriptive approaches [ 3], are well illustrated by two important papers
by Landin, "A Correspondence between Algol 60 and Church's A Notation"
and "The Next 700 Programming Languages" [7, 8].

In the first Léndin defines a translation from Algol 60 into the
A-calculus and so uses logic to describe Algol. In the second he begins
with A-calculus and develops a simple non-procedural language (ISWIM+),
with a naturally defined construct (the "where" phrase++) which introduces
local variables in a way similar to the Algol block, but which is actually

based on the A-calculus. Landin's first paper represents the descriptive

approach and the second represents the prescriptive approach.

It is clear that if we want to develop computer languages having
the elegance of mathematical languages it is the prescriptive approach
that we must adopt.

It has become almost accepted without question that computer
languages can not hope to have the simplicity we desire. For example,
Scott and Strachey [11] say that "computer oriented languages differ
from their mathematical counterparts by virtue of their dynamic character.
An expression does not generally possess one uniquely determined value ...

but rather the value depends on the state of the system at the time of

+ If you See What I Mean.

T+ We are using the term "phrase" rather than Landin's original "clause"
because we shall consistently use "phrase" to mean a compound
expression or term, and "clause" to mean a compound formula or
assertion.



initialization of evaluation ... . Therefore the "algebra" of equi-
valences of such expressions need not be as "beautiful" as the well-
known mathematical examples. This does not mean that the semantics of
such languages will be less mathematical, only an order more complex".
We feel that this attitude is a result of trying to mathematically
describe existing languages. By taking the prescriptive approach, and
basing new languages on existing mathematical languages, such as
mathematical logic, more positive results can be obtained, and equiva-
lences of expressions can be "beautiful".

Our goal here is to follow Landin's lead in the second paper
mentioned above and develop an uncompromisingly logical language which
has "facilities" for functions and scope.

The language, USWIMT, is in fact a minor variant of ISWIM.
Landin,vhpwever, gave no direct semantics (ISWIM is a syntactic variant
of a subset of the A-calculus), and neither did he give an inference
system for the verification of ISWIM programs. (He did give a system, of
sorts, for transforming programs, but it is not very useful.) Of course,
these omissions are not Landin's fault, because at that time semantics
and program verification were in their infancy. We intend to fill in the
gaps in Landin's treatment, and the fact that the semantics and transfor-
mation and inference rules turn out to be simple, natural and elegant is
a vindication of Landin's mathematicél approach to language design.

USWIM forms the basis of further development of Lucid [1], as
is considered in [ 2 ], but we feel that it is also an interesting

language in its own right.

i U See What It Means.



1. ISWIM AND USWIM

ISWIM is based on the where phrase, which is an expression
qualified by auxiliary definitions. For example

2 2
x” +y where =z

a+b

y=a-5>»

end

is a typical where phrase. Such a phrase is a term, i.e. has a value; in
the above example, it is the same as that of the term (a+b)2 + (a—b)2 .
These constructs can of course be nested, i.e. expressions occurring
anywhere in a where phrase may contain where phrases. The variables
defined by the equations in the right arm of the where phrase are the
locals: their definitions apply only to the right arm and to the left-
hand side expression of the phrase. In addition, functions are defined

with the formal parameter list on the left hand side, e.q.

fle, y) = 22 - peq where p=awy+Db

q =ax -Db
; end
The formal parameters may represent: functions, so "higher-type" functions can be
defined. ISWIM also has a "whererec" phrase in which circular (recursive)

definitions are allowed.

The main difference between USWIM and ISWIM is that the former
is based on a slightly different phrase, namely the valof phrase. A
valof phrase consists of a set of definitions (like those in the right
arm of a where phrase) called the body, enclosed by the 'brackets' valof
(i.e. "value of") and end . One of the variables defined in the body
must be result , whose purpose is to indicate the wvalue of the phrase.

Functions are defined as in ISWIM, except that the formal parameters may not

represent functions; there are no definitions of "higher-type" functions.



The following are legal valof phrases:

valof valof
x=a+b p= n® + 1
y =a-5=b q = n? -1
result = a? y2 fle, d) =1 + valof
end p = e - 4?
result = p2 + 2+peg
end
result = (3, q)
end

The most important difference between valof phrases and where
phrases is that in the former recursiveness is assumed, i.e. the valof
phrase corresponds to the whererec phrase of ISWIM. This eliminates one
of the most confusing features of ISWIM, namely the fact that the same

variable can refer to different things on the opposite sides of the same

equation. Apart from this, there is another reason for preferring valof
phrases to where phrases. USWIM is the basis of Structured Lucid [21,
and, while it would be possible to base a Structured Lucid on the where
phrases of ISWIM, it would then be necessary, as pointed out in [2], to
consider the terms E and E where end as having different values (the

second is a where phrase with an empty body) .



2. SYNTAX OF USWIM

Landin's goal in designing ISWIM was to achieve a clear
separation between two aspects of a programming language, the set of given
or primitive things and the ways of expressing things in terms of other
things. ISWIM is therefore not a single language but a family of
languages, each of which is, in Landin's words, "a point chosen from
well-mapped space". The coordinate of a point in this well-mapped space
is the set of chosen primitives. Since ISWIM and USWIM are based on
expressions, to specify the primitives we have to supply a domain of data
objects, a collection of operations on these objects, and a collection of
symbols used to denote the operations. In other words, a member of the
USWIM family is determined by an algebra A ; we will call the corres-—
ponding language USWIM(A) . The syntax of USWIM(A) is determined only
by the signature of A .

Suppose therefore that we are given an algebra A with
signature Y . That is, . 1is a collection of constant symbols of
various arities ("individual constants" being of arity O0).  We follow
the usual terminology of symbolic logic and refer to the elements of X
as "constant symbols", even though it is only those of arity O which
are what computer scientists usually refer to as "constants". This is
understandable when we realise that, for example, + , like 3, has the
same meaning in all contexts.

We also assume that we have available an unlimited number of

variables of various arities (these are what are usually called

identifiers). The set of variables is the same for all algebras A



The nullary variables will also be called "individual variables".
Strictly speaking, the constant symbols and variables should be typed to
indicate the number of arguments expected, but in practice we will omit
these types. Non-nullary constant symbols will often be called operation
symbols, and non-nullary variables will often be called function variables.

A USWIM program is simply a term, but to define the class of
terms we must also define the classes of definitions and phrases
simultaneously and inductively.

A term 1is either
(i) an n-ary constant gymbol together with a sequence of n terms as

operands (n will be zero if the symbol is an individual constant) ;
(ii) an n-ary variable together with a sequence of n tgrms as
actual parameters (n will be zero if the variable is an individual
variable) ;
or
(iii) a phrase.

A phrase consists of an unordered set of definitions, no two
of which have the same definiendum, and exactly one of which has has the
individual variable result .as its definiendum.

A definition consists of a definiens which is a term, and
of a term consisting of an n-ary &ariable 4 (the definieﬂdum) together with an
ordered set of n distinct individual (nullary) variables (the formal
parameters). (§ is called a Llocal variable of the phrase.)

All variables which are not local variables of a phrase are

called global variables of the phrase.



This, of course, is an abstract syntax of USWIM (in the sense
of Mgcarthy [ 2]), analogous to Landin's abstract syntax for ISWIM. In
our examples, (like those already given) we will use a fairly obvious
concrete linear (or, more realistically, two dimensional) representation
in which terms are written using infix notation, definitions are written
as equations (with the definiens on the ¥ight), and phrases are written as
sequences of equations enclosed by the keywords valof and end.T We
will not give a precise definition of the concrete syntax. Such a defini-
tion would clearly not be particularly complex, but it can not just take
the form of a context-free grammar because of the restriction that the
formal parameters in a function definition be distinct and the restriction
that no variable have two definitions in the same phrase.

In the metalanguage (i.e. when talking about terms in general)
we will use expressions like h(uo, ul, ceey un_l) to denote the term
consisting of the n-ary constant k  together with the n terms
uo,ul,...,un_l as operands. Similarly, we will use expressions like
6(u0, U, eoer U } to denote the term consisting of the n-ary variable

1 n-1

yeea U

-1 as actual parameters.

§ together with the n terms Uy rthy

t The order of the definitions in a sequence will not be important.
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3. SEMANTICS OF USWIM

The algebra A specifies not only the form of USWIM(A) but
also its meaning, because A specifies a universe of data objects and
assigns to each constant in X a meaning, which is an operation over the
universe of A . Since USWIM allows arbitrary recursive definitions, we
must, in assigning meaning to programs, be able to solve these
definitions over the data domain. We therefore assume that the universe
of A is a cpo and that the operations of A are continuous,T so that A
is what the ADJ [5 ] school calls a "continuous algebra™. The least
element of A is L1 , which intuitively will be the "result" of
non-terminating computations.

Suppose now that we have chosen a signature ¥ and a L-algebra

Even though we have settled upon the meaning of the basic
operations we still cannot in general conclude that such and such a term
has such and such a value, because the term may have free wvariables
(variables occurring in the term in positions at which there are no

relevant definitions). For example, to know the value of the term

valof
d=a’+ b
e = a® - b?
result = valof
result = geq + D
a = 5+d
g = Tee
end
end

+ Thus, for example, the "equality operation" must be continuous, and
will be denoted by eq to avoid confusion with the "equality relation”
= used in definitions.



- 11 -

we must know the values of the variables g and b .

Thus the value of a term depends on both the values of the
constant symbols (as represented by the algebra A ) and the values of
the variables. The latter we represent as an environment, by which we
mean a function which assigns to each n-ary variable §{ an n-ary function
over the universe of A .

These environments are exactly what logicians call "assignments",
a name which unfortunately already has other computer science connotations.
This coincidence is unfortunate because the word "environment" itself is
already widely used by computer scientists to refer to a wide variety of
much more complicated structures.

There are two ways to express the fact that the meaning (value)
of a term depends on the environment as well as on the algebra. One is
to say that given an algebra and an environment, a term has such and such
a value; and the second is to say that given an algebra, the value of a
term is such-and-such a function from environments to values. 1In formal
logic it is the first approach which is almost always used, whereas in
the "Scott/Strachey" semantics it is almost always the second. On this
question (as in most others) we choose the approach of the logicians over
that of the computer scientists; in this particular instance, because it
is notationally and conceptually simpler (avoids higher—type objects) , and
also because it avoids an unnecessary distinction between the algebra and
the environment. Of course it is only the 'mathematical' nature of USWIM
and the consequent simplicity of the notion of environment which allows

us to make the choice.
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For a given algebra A , the value of a term £ in an

environment € is defined inductively as follows:

a) If £ 1is an n-ary constant R together with n arguments

uO’ul""’un—l ;, the value of X in enviromment E is the result
of applying the operation which A associates with Rk to the values

of u_ ,u

or%qr-+-s% _; in the environment E .

b) If £ is an n-ary variable 4 together with n actual parameters
Ugr Ugr eeny un—l » the value of £ in the environment £ is the
result of applying the function associated with § (according to
environment E ) to the values of u_, ul, ceey U in the

0 n~1

environment E .

c¢) If L 1is a phrase the value of -£ in environment E is the value

of result in the leastT environment E' agreeing with E (except

possibly for the locals of X) which satisfies the definitions in £ .

An environment € satisfies a definition if, for all environ-
ments E' which differ from E at most in the values associated with
the formal parameters of the definition, the value in E' of the left
hand side ﬁerm éontaining the definiehdﬁm is the same as the value in
E' of the right hand side (definiens).

This, strictly speaking, is not a definition of the value of
£ in € since it assumes that least environments exist. However, if
the operations in the algebra A are continuous, least environments do
exist, so the above is a true statement about the value of £ in € .

Since a USWIM program is just a term, the above is an informal

T The partial order on the data domain induces an order on the
collection of environments.
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description of the complete semantics of the language. It is a
mathematical semantics rather than an operational one, that is, it does
not specify the way one would actually compute the value of a program.

If the data domain is reasonably simple (for example, the integers), it

is in fact relatively straightforward to specify an operational semantics,
using conventional Algol-like recursion-implementation techniques, that
agrees with, i.e. realises, the mathematical semantics. In other data
domains, especially those where the data objects are infinite, such as
that of Lucid [ 1], the mathematical semantics corresponds to completely

different operational concepts like iteration, data flow and coroutines.
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4. SUBSTITUTION

The semantics of USWIM just given is simple and concise but
cannot easily be applied directly in reasoning about programs. Instead,
we use the semantics to justify purely syntactic manipulation rules and
rules of inference. These rules, because they are purely syntactic
(involve only text manipulation) can be used confidently without:mfexnancg
to any semantic or mathematical notions. The rules will be given here
without proofs of their validity; such proofs exist, but it would be out
of place to include them here, since they tend to be repetitive and lengthy.

In common with all formal logical systems, in order to specify
rules of inference we must first define the concepts of free and bound
variables, the operation of substitution, and the conditions under which
substitution causes no clashes of scope.

The free occurrences of variables in a term are those which
refer to objects external to the term itself. The value of a term
depends only on the values of the objects referred to by these free
variables. Substitution is the operation of replacing such free variables
by terms. There are no clashes of scope caused by this operation prowvided
the free variables of the terms being substituted still refer to extermnal
objects, i.e. are still free variables.

Informally, a bound occurrence of a variable in a term is an
occurrence where the variable is a formal parameter of an enclosing
definition or is a local variable of an enclosing phrase. All occurrences

in the term which are not bound are said to be free.
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More precisely, given any term £ and any definition d , the
free ocourrences in £ and d are defined as follows:
(1) if £ is of the form

h(uo, Uy wewy W)

1’ n—1
then the free occurrences of variables in £ are those correspond-
ing to free occurrences in some ui ;

(ii) if £ is of the form

6(u0, u )

eeeyp U
1’ " Tn-1
then the free occurrences in £ are the initial occurrence of {
together with occurrences corresponding to free occurrences in some ui;

(iii) if £ is of the form

valof

d“

ﬁ@ SRR

end
(where the Qi's are definitions)
then the free occurrences are those corresponding to free occurrences,
in some ei , of variables which are not locals of £ ;
(iv) if d is of the form

X ) =a

6(x01 xlr ev oy n-1

then the free occurrences in d are the initial occurrence of {
together with those free occurrences in a of wvariables other

X of d

than the formal parameters X g o X5 .

or X

Any occurrence of a variable in a term 8r definition which is not a free occurrence

is a bound occurrence. BAny variable which occurs free in a term or definition is a

free variable of the term or definition.
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It is very common to want to talk about the result of replacing
all free occurrences of a variable in a term by some other term. Since
our variables are function variables, to do this replacement the
(substituted) arguments of the variable being replaced must in turn be
substituted into the term doing the replacing.

We say that the pair, consisting of the variable { to be

replaced (and individual variables X_,X_,.

0¥y "'xnel representing its

arguments) and the term £ to replace it (which usually contains free
occurrences of the argument variables), is called an assigmment . The

assignment will be denoted by §(x

veesX ) <« £ . A substitution

o' %yr n-1

is a set of assignments in which the variables to be replaced are all
distinct.

We specify the result Z£[S] of applying the substitution S
to the term X in the following informal manner. We work outwards from
the innermost terms of £ , and whenever we find a free occurrence of a

variable {4 to be replaced (say 6(XO, X X .) < a occurs in 8), if

1 e X1

the arguments of this occurrence are w., W_,

0 17 e un—l (after possible

substitution) then { together with ., WU,, ..., “

o 1 will be replaced

-1
by a after simultaneously substituting u, for X, o0 0 < i < n=l.
More precisely, given any term £ , any definition d and any
substitution S
(i) if £ is of the form
Rllgr Uyr weer
then Z£[S] is

Ruy[S1, u IS8T, «..p u _,ISD



(ii)

(iii)
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if &

is of the form

5(u0, U,y weer U )

1 n-1

then X£[S] is

§u 1S, w IS), «oey u L ISD)

unless S has an assignment of the form

) <a

ﬁ(xo, Xpooceeen X

Z[S] is

in which case

al{xy < uyIS1, x; < wIS], «.op x o < u ISI}] .

n-1
if £ 1is of the form
valof

e
0]

e
1

end

(where the Qi's are definitions)

then X[S] is

end

~

where S is the result of removing from S

the locals of £ .

all assignments to
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(iv) if definition d is of the form
9Wqr Yyr wo-r Y ) = b
then d[S] is
9Wqr Yyr +eer Y _y) = bIS]
o
where S 1is the result of removing from S any assignments to

the formal parameters Y ., Y;; ---r Y ; ©of d .

Example
In the term
x + valof
2=y +3
glx) = 1if 2 > y then z else g(y + x)
result = h(x + 2)
end
there are two free occurrences and two bound occurrences of x , three

free occurrences of y , four bound occurrences of 2z , two bound
occurrences of g , one free occurrence of % and one bound occurrence
of result .
If we apply the substitution
{x <3, hily) « glhly + 1)), y< (x + 2)}

the result is

z + valof
z=(c+ 2) + 3
gl =1f 2 > = # 2 then zeedse gl + 2) +4)
result = g(h((z + 2) + 1))

end.
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This substitution has several undesirable effects. After
substitution, the two free occurrences of & become occurrences of 23 ’
but they refer to different objects, since the second is a local variable
of the phrase. Similarly the three free occurrences of Y become
occurrences of "x + 2" but again they refer to different objects, since
the x in the second and third is a formal parameter. These are examples of free
occurrences of variables in the term doing the replacement becoming bound
occurrences in the result of substitution. Another example of this is
the substitution for % , where the free occurrence of the variable ¢
becomes bound, since g is a local of the phrase.

We say that a term £ permits a substitution S if none of
these effects occur, i.e., if no free occurrence in a term being
substituted becomes a bound occurrence in the result of the substitution.

In the same way, we say that a definition permits a substitution
provided the definition permits the substitution and no free
variables become formal parameters.

More precisely, for any term £ , any definition d and any
substitution S :

(1) if £ is of the form
k(uo, Upr eeer U o)

n1

then £ permits S iff each Uy permits S ;

7

(ii) if £ is of the form

U s Uy oweey U )
0 1 n-l

then £ permits S iff each ui permits S , unless S

contains an assignment of the form
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(iv)
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6(x0, Xpv eeer X0

in which case it is also required that d permit the substitution

{xo < u 81, x; w81, ..oy x _ <u  IS1}
the term
valof
e
0
e
1
e
n
end

permits S provided each definition Qi permits the substitution
§ described earlier, and provided that § has no assignment of

the form

§gr Xyr v X

with { occurring free in some ei and some local of % occurring

free in a .

the definition

9Yqr Yyr oeor Y

N
permits 8 provided b permits the substitution § described

N
earlier and S does not contain an assignment of the form

B Xpreeer Xy
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such that { occurs free in b and a has a free occurrence of
one of the formal parameters Y, Yyr --«r Y _y of d that is not ©ne
§of the arguments xm, Xy aeer Xp g of the assignment.

5. PROGRAM MANIPULATION RULES

With these technical matters taken care of we can proceed to
consider the program manipulation rules.

The rules we present here are all transformation rules; they
describe changes which can be made to a term without altering its meaning.
If the term has free variables, the value is preserved no matter what
value is assigned to those variables. This means that the rules can be
used in any context, i.e. can be applied to subterms. As a result, our
reasoning about programs can proceed as follows: we begin with the

program PO and then define a sequence P, P, P of derived

1 2 3" "7

programs, each Pi the result of applying a rule to a subterm of Pi ’

+1
until we arrive at a program Pn which more clearly has some desired
property. Since the transformations preserve meaning, PO must also

have the property. This stepwise or "incremental" approach to reasoning
about programs closely resembles the approach mathematicians use in trying
to prove something about, say, a system of differential equations.
Mathematicians do not simply derive a series of assertions about the
system; they transform the system itself, by adding new variables,
eliminating old ones, integrating parts into closed forms, expanding

power series, and so on. In logic itself most of the proof systems (e.g.
the natural deduction systems) proceed by taking assertions apart and

putting them together, but there is one system (Craig's Linear Reasoning

[4]) which is based on a transformational approach. In Craig's system
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one proves an implication by transforming the hypothesis into the
conclusion.

Another important characteristic of proofs in our system is
that they are modular or 'nested' in that they follow the scope structure
of the term to which they are applied. By this we mean that each
application of a rule involves only the body of a single phrase. (To
apply such rules we often have to use a rule for bringing definitions into
a phrase.) This means that one can concentrate one's attention on one
part of the program at a time, transforming its equations without
altering, or even taking into account, definitions in inner or enclosing

phrases.

The Rules

a) The first of our rules, the <mport rule , captures the idea
that the definition of a variable applies to all free occurrences of the
variable inside inner phrases, i.e. the idea that scope propagates inward.
It says that we can add to any phrase a definition occurring (at the top

level) in the smallest enclosing phrase provided the free variables of the

| B}
definition are locals of the inner phrase, and|are not formal parameters of the
- | . - - S

definition in whose right hand side the inner phrase occurs. For example,

the rule allows us to transform



valof valof
f(x)=x2—y2 fy = z? < y?
into
result = £(3 + ) - f(p) result = (3 +° - 3% - Fip)
end end

Because of the way in which substitution works, this rule also captures
the idea that the definitions with formal parameters are definitions of
functions.

c) The local renaming rule expresses the idea that the local
variables of a phrase are just dummy variables, that the actual variables
chosen are not important, and that the enclosing phrases are 'shielded!

from the definitions in the phrase. It says that in a phrase whose locals

(other than result) are UO’ Ul, U2, . vm—l we can choose any other
sequence wo, wl, ooy mel of distinct variables (of corresponding
arities) and replace all free occurrences of VO, Ul’ ""Vm—l in the
definitions of the phrase by w., W., ..., W , provided the substitutions

6] 1 m-1

are permitted(i.e. as long as no Vi occurs where the corresponding wi

would be bound) and provided no Wi is a free variable of the original

phrase. For example the rule allows us to transform

valof
a=3_q(l, lr 5)
flx)y = x + valof
g(x)=x2—a

2

c = X
result = g(f(x)) + ¢
end

g(r, s, t) = r'2 ~a*r*s + (1)

result

Il
Q

end
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valof valof
a=p+gq a=p +q
b=p-gq b=p-gq
result = valof result = valof
b=a +1 into a=p+gq
result = p2 b=a+1
end result = »2
end end
end
b) The calling rule expresses the idea that the definitions in a

phrase really are equations, i.e. that the right hand side is really
equal to the left hand side. It says that if a phrase contains the

definition

6(xo, X

then any definition of the form

dE{h(xo,xl,...,xn_l) “ flagzys.. ) E]

e
*“n-1

(where the substitution is permitted) can be replaced by
+
d[{h(xo,xl,---,xn_l) g}]

provided this latter substitution is permitted, that is, the free variables

of a that are not formal parameters of the first definition remain free
variables of the result of shbstituting in d. (This notational device, using
the dummy variable 7% , allows us to "call" some occurrences of [ and not

others.) For example, the rule allows us to transform
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into
valof
b=3-k(1, 1, 5)
v(x) = « + valof
glx) = x2 - b
c =.’L‘2
result = g(v(x)) + ¢
end
k(r, 8, 1) = P2 < beres + v(E)
result = b
end

but we could not change f to g because the occurrence

inner phrase is in a context in which g is bound. Also

rename the locals of the inner phrase to change ¢ to «a

existing free occurrence of @ in the inner phrase would

a) The formal parameter renaming rule is a similar

for formal parameters, which expresses the fact that they

variables.
e) The amdlgamation rule is so-called because it
amalgamate a term involving several phrases into a single
result

sum of two phrases into a phrase in which result

Suppose then that ¢ is any expression, that

n-1

in the

of f
we can not
because the
become bound.
renaming rule
too are dummy

allows us to

phrase in which

ig defined to be an analogous term, for example to transform the

is defined as a sum.

|
. | s . . . . .
is a sequence of élstlnct individual variables
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po, pl, ..oy Pn—l is a sequence of phrases having (other than result )
no locals in common, and none of whose locals is a Vi or occurs free in
¢ . We define the phrase ¢ as that formed by taking the definition
result = ¢ together with, for each i , all definitions in pi with

result replaced by v, - Then the term
e[{v, < p, | i <n}]
i i

(the term involving the phrases) may be replaced in any context by ¢
provided all the substitutions indicated are permitted.

For example, suppose that the expression ¢ is a - bz ,
that n 4is 2 and VO and Vl are «a ‘and b respectively and that po

and pl are

valof valof
x=m+n r=m+k
Yy =men and s=m-=-%k
result = x® - Yy result = res + 5
end end
Then the expression
valof ‘ valof
x=m+n r=m+k
y =m'n - s=m-k * 3
result = x2 - y2 result = r*s + 5
end end

can always be replaced by
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valof
x=m+n
Yy = men
a = x2 -y
r=m+k
s=m-k
b = res + 5
result = g - bz
end.

An interesting special case of the inverse+ of this rule, which we

. shall call the result rule, is obtained when n =1 or n = 0. This tells

'us that we can replace any phrase of the form

valof

.

result = e

end

by ¢ itself (the conditions of the general rule require that no local
of the phrase occur free in ¢ ).
f) We mentioned that mathematicians, in the course of manipulating

a set of differential equations, might introduce new variables and

+ In fact all the rules can be applied in either direction. This means
that from a term £ we can obtain a term 4 by the "inverse of rule
A" provided that rule 2 could be applied to term 4 to yield
term t .
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discard old ones. There is exactly such a rule for USWIM. The addition
rule allows us to add to a phrase any definition whatsoever provided
only that the variable being defined does not occur free in the phrase,
and is not already a local variable.

The inverse of the addition rule, called the deletion rule ,
allows us to eliminate a definition in the same circumstances. For example,

the addition rule allows us to transform

valof valof
2 2 2 2
Flx, y) =x" + arzy +y hix, y) =x" +y~ - flz, y)
b=3-aqa flx, y) = 22 + aexey + y2
into ! Y Y
result = f(2, b) b=3-aq
end result = f(2, b)
end
and the deletion rule allow us to transform
valof valof
a =3 b =4
into 5
b =4 result = x° - bex
2
result = 2° - bex end
end
g) Finally, there is a rule, the basis rule , which reflects the

fact that USWIM is, in a sense, an extension of an algebraic language. It

says that if the equation

is true in the algebra A (here tl and tz are simple terms without
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phrases and the equation is considered to hold for all values of the free
variables) then in any term any occurrence of tl may be replaced by
Iz . This allows us to carry over the laws of the data domain so that,

for example,

valof valof

(a + b)2 fla, b) a2 + 2ca*b + b2

can become
f(3, 5) result

fla, b)

result f3, 5

end end

if the algebra A consists of the integers with the usual operations, in

which the equation
2 2 2
(a + b)" =a" + 2*a*b + b

holds for all a¢ and b .
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6. BINDING AND CALLING

If the language and rules of inference of the underlying
algebra A are fairly standard, for example dealing with numerical
quantities and interpreting the operation symbols in the usual way, then
the rules of inference of USWIM just given are sufficient to successively
transform any program (without free variables), whose value is defined,
into a term without phrases denoting that value. This essentially
corresponds to 'executing' the program.

For example, consider the program

valof
fin) if n < 0 then 1 else n*f(n - 1)

F(3)

result

end.

Applying the calling rule we get

valof

fn) if n < 0 then 1 else nef(n - 1)

result

A

if 3 < 0 then 1 else 3+f(3 - 1)

end.

Now applying the basis rule for properties of arithmetic we get

valof

if n < 0 then 1 else n*f(n - 1)

fn)

result

3+7(2)

end.
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By repeating this process three more times we will get

valof

fn)

result

il

if n < 0 then 1 else n*f(n - 1)

6

end.

Now applying the result rule, this term becomes simply 6.

The rules can also be used to answer questions about function-
calling that in conventional programming languages are thought of
operationally and are settled by conscious design decisions. These are
the questions of the type of "parameter passing mechanism" used and
whether the "binding" of global variables of functions is static or
dynamic.

It is easy to see that the "parameter passing mechanism" is #not

call-by~value by considering the following program

valof
fx, y) = if x < 0 then 0 else f(x-1, flz, y))
result = f(1, 0)
end.

If the calling "mechanism" were call-by-value, the value of this program

would be L , since evaluation of [(1, 0) in turn requires evaluation
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of f(1, 0) . However, it is easy to see that the rules allow us to

generate the following sequence of equivalent programs:

valof

Flxe, y) if x < 0 then 0 else f(x-1, f(z, y))

result

f, £, o))

end
(by the calling and basis rules)

valof

flx, y) if x < 0 then 0 else f(z-1, f(x, y))

result

if 0

IA

0 then 0 else f(0-1, f(0, f(1, 0)))

end

(by the calling rule)

0

(by the basis rule and the result rule).
Thus, the value of the program is O , not 1 .

As for the "binding" used, we can consider the following

program:
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valof
a=1
flx) =a + a
result = valof
a=2
result = f(2)
end
end.

If the binding were dynamic, we would expect the value of this program
to be 4, since it would be the inner definition of «a that would be used
by the "call" of f(2) . There are two ways to see that this is not the
case. First, by the local renaming rule, we can rename the variable ¢
either in the outer phrase or in the inner phrase, and in both cases the
global variable of f will be the local defined in the outer phrase.
Second, we can actually "execute" the program. This involves applying
the calling rule to f(2) . However, the outer definition of result
(which is the one, containing f(2) , which is in the phrase containing
the definition of f ) does not permit the substitution f(x) < (x + a)
because the variable g , which is free in "x + a" , becomes bound in
the resulting definition. Therefore we must first apply the local renam-
ing rule, eithér to the inner or outer phrase, so that the substitution
(which will have been changed if we renamed ¢ 1in the outer phrase) is
then permitted. It is then straightforward to see that the program

reduces to 3.
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Thus USWIM uses "static binding", as in fact all languages do

which allow renaming of local variables.

7. INFERENCE RULES

The USWIM rules which we have described cannot by themselves
be used to prove assertions about programs because these rules apply
only to programs; they constitute a calculus of program transformations
rather than a logic of programs. In this section we will present rules
for proving assertions about programs. These rules are in no sense an
axiomatic semantics of Lucid; they are justified by the formal semantics
given earlier.

If we want to manipulate assertions about programs, we must
extend our formal system by adding some class of assertions together
with a collection of rules for deriving assertions. One way to do this
is to take some existing logical system which already deals with terms
and 'embed' USWIM in it by expanding the class of terms to include USWIM

programs.

The most obvious choice for such a system is the first order
language L whose individual variables are the nullary USWIM variables
and whose operation symbols are taken from I . We generalize L to
the language L* by allowing a USWIM phrase whose free variables are
all nullary to appear in a formula anywhere an ordinary term is permitted.
In this 'extended' logic, assertions about programs are assertions about
the values of programs and are just formulas in which the program appears;

for example,
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valof

sq(n) = n'n 2
Vi =17 = 277 ¢+ 1 .
result = sq(Z-1) *sq(<+1)

end

There is no difficult in using the mathematical semantics of USWIM given
earlier to extend the semantics of L , i.e. to define what it means for
an L*-formula to be true in a given environment.

Program—-equivalence assertions are just equations between
programs with their (common) input (free) variables universally quantified;

for example,

Yn¥r
valof valof
fac(x) = if x < 1 then 1 hix, y) = if 2 > y then 1
else x-fac(x-1) = else x*h(x+l, y)
result = fac(n)/(fac(r)*fac(n-r))/ result = Z(n-r+1, n)/h(1, r)
end end

There is, however, a serious problem with this approach, and
that is that while the operation symbols of A can be immediately
incorporated into L* , the relation symbols cannot, they are just
operations in A which happen to yield what A's interpretation of
if...then...else regards as truth values. In fact, since I is a
one-sorted signature it does not even make sense to talk about "relation

symbols" in L .
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We can, of course, define a many-sorted version of USWIM whose
parameter would be a many-sorted algebra, and we could require that boo]
be one of these sorts and that A interpret it in some standard way .
Nevertheless we could still not use operations in I of (result) type
bool as relations in L* because the value of such operations could be
the 'undefined' element L of A . This is possible because A is
required to be a continuous algebra - and we cannot drop this requirement
because our definition of the meaning of a USWIM phrase regquires the
existence of fixed-points of arbitrary recursive definitions.

There are two solutions to this problem. One is to distinguish
completely between tests used in a program and actual relations over the
universe of A.(this involves using two different forms for every basic
test in A , e.g. distinguishing between < and less-than , > and
greater-than , > and greater-than-or-equal in the same way as between
= and €q ). An alternate solution is to adopt a three-valued logical
system plus additional rules specifying circumstances under which
conventional two-valued reasoning may be used. »The first method is
formally simple but in practice is very cumbersome, whereas the latter
requires a more elaborate forma} specification but is much easier to use
in practice. Here we shall use the latter method.

Because the use of full predicate logic involves complications
which we would rather avoid here, weé will instead use a simpler logical
system. (Unavoidably this will not be as expressive and powerful as
predicate logic.) We will use as the basis of our assertion language
the equational algebraic system of signature X . We extend it by
allowing, as generalized assertions, universally quantified equations

between USWIM terms. More precisely, our assertions are of the
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form

Vg Y eee WX (8 = L)

for some natural number n , some sequence xo, X . X of (for

1’ n-1

simplicity) individual variables, and some terms tl and 12 . The above
assertion ¢ 1is true in € (in symbols FE ¢ ) iff the value of

tl in E' is the valué of tz in L' for any environment E' differing
at most from E in the values E' gives to some of the X, - The free
variables of @€ are those variables other than the Xi which are free in
tl or IZ . The assertion ¢ permits a substitution S iff both il

and Iz permit the substitution § obtained by removing from S all
assignments to any xi , provided no Xi occurs free in any assignment

in § , and provided both tl and 12 permit S . When the

substitution is permitted the result ¢[S] is
on Vxl cen VXn_l(tl[S] = £2[S]) .

In future we shall refer to such universally quantified equations
simply as "equations", and equations without quantifiers will be "basic
equations".

In proving equations from other equations we can use the
equational rules oinnstantiation* énd replacement. More precisely,

(i) Instantiation: i

from any equation of the form

Uxg VX, ... vx L do,

with d any basic equation, infer the equation

%
In equational theories, instantiation is usually called substitution,

but we have already used this term.
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Vyo Vyl - Vym_ld[S]
for any permitted substitution S of the form
<~
D+ gr Xp € Upreeer X < Uy )

and yo, yl, ceer Y | any variables not free in the original
o

equation;
(ii)  Replacement:
from an equation of the form

X, Vxl Vxn__l (to[w—a] = tl’[v <~ al)

and an equation

VYo VY, - VY

m—l(a = b)

infer the equation

Vi VXg ... WX (2 v+ b1 = £ [v < b])

provided the substitutions are permitted and any X, appearing
i

free in a4 or b is among the Y

Since we will be using other rules of inference as well, we

need an extra generalization rule which allows us to infer
Yy VY, .- Vym_ld
from d whenever no Y, occurred free in the assumptions from which d

was derived. (Here d need not be a basic equation.)

These are exactly the ordinary equational rules except that

(i) the terms may contain USWIM phrases, and (ii) quantification is

explicit. In ordinary equational algebra all variables are implicitly
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universally quantified, but we have made quantification explicit in order
to avoid a distinction between variables in programs and variables in
assertions. We therefore need a third rule (which we will not formulate
precisely) allowing us to permute the order in which the variables are

quantified in an equation.

These rules are sound in the following sense: if we can, using
these rules, derive an equation ¢ from a set dO' dl, ey dn—l of
equations, then € is true in every E in which all the di are

true; in symbols,

dyr dys «eer d

n-1 Fe -
Our program transformation system allows an extra rule which express
precisely the fact that transformed programs are equivalent. If our

transformation rules allows us to transform the term tl into the term

12 we may infer the equation

on \1xl Vxn“l(tl = 222)

for any individual variables X X

o' "1’
The substitution and replacement rules are general because they
are sound no matter what the algebra A is. In studying a particular
instance of the USWIM family, however, it is possible to use particular
but very useful rules of inference valid only with reference to the
particular algebra. An important example is the mathematical induction
rule of the algebra N of natural numbers (with Q € I and N(Q) = L ).

To prove an equation Yv ¢ from a set of assumptions it is enough to

prove the equations
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ef{v « QH and e[{v « 0}]

from the assumptions, and also prove e[{v < v+1l}] from the set of
assumptions with ¢ added (asVtﬁeriﬁéuééiégihypothégis), provided v is
not free in any assumption in the set.

The problem that remains with the "embedding"” approach just
described is that assertions about programs are just equations in which
the programs appear as terms, so that they are, in fact, assertions about
the values of programs. Programs are therefore treated as black boxes
whose input-output activity is all that can be discussed. Now it is
certainly true that, in the end, the goal of our reasoning is a statement
about the meaning of a whole program, i.e. about its value; but in the

course of working towards that goal we might want to make assertions about

parts of the program. For example in showing that

valof
d = al°b2 - az'bl
e = cl'bz - b2-cl
result = ¢/d
end

has a certain value we would naturally want to prove that (say) d = k+1
(and so is positive) inside the phrase. Since this is a statement about
the phrase's internal environment, we cannot do this literally, with the
'embedding' system. In such a system,the formalisation of reasoning about
the interior of a program involves taking the program apart and putting

it back together again, just as described in Section 5.
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Clearly, what is required is some system which allows modular,
local reasoning about a program in the same way that the transformation
rules given in Section 5 allow modular, local transformations of a
program. In reasoning about programs or in documenting them programmers
often "annotate" them with comments (written, say, to the right of the
text) . which refer to the 'local' values of program variables. The
system we propose is simply a formalisation of this idea.

We first define two classes of syntactic objects, which we
respectively call annotated terms and annotated definitions , as
follows:

An annotated term is either
(i) a constant in X together with an appropriate number of operands,

each of which is an annotated term;

(ii) a variable together with an appropriate number of actual parameters,
each of which is an annotated term;

(iii) an annotated phrase, i.e. a set of annotated definitions,one of
which has vresult as its definiendum:and np two of which have the
same definiendum together with a set of universally quantified
equations. (This set of equations is called the paraphrase of
the phrase, and its elements are called awnnotations .)

An annotated definition is similar to a definition (with the
definiens and definiendum defined accordingly) except that the definien8
is an annotated term.

We will extend our concrete two-dimensional representation of

terms by writing annotations to the right of the phrase to which they are
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attached, with a vertical line between:

valof
b = 3k k= g+1
c = 2-k2
result = valof
d=1%-1ec b2 = 9+k
result = (-b + sqrt(d))/2 d = k2
end
end

An annotated phrase has two 'values', its value as a term (a
'data' value), and its value as an assertion (a truth value). The data
value is simply the value of the term which results when the annotations
are 'thrown away',and the truth value is the conjunction of the annotations
in the phrase, each considered as referring to the local environment of
the phrase to which it is attached. The idea that annotations refer to
local environments can be made precise as follows. Given any annotated

term £ , any annotated definition d and any environment E :
(1) if %t is of the form

R(u., u )

or Mar e U

~

then £ is true in E iff each uy is true in E

(ii) if £ is of the form

6(uo, Upr e un_l)

then £ is true in E iff each Uy is true in L ;



(iii)

(iv)
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if X is of the form

valof
eo po
ey Py
e pm_l
end

let E' be the least environment which agrees with E (except
possibly for the locals of £ ) which satisfies the definitions
obtained by de—annotating the ei ; then £ is true in E iff

each pj is true in E' and each e, is true in E' ;

I

if annotated definition d is of the form

5(x0,xl,..., xn_l) =a

then d is true in E iff 4@ is true in every environment E'
which agrees with € except possibly for the values given to the

formal parameters X , X X of d

1’ Tt Tp-l :

In future, we will drop the word "annotated", and when we want

to indicate the part of a phrase, term etc. without its annotation, we

will use the word "de-annotated".

Now, if programs are annotated, we cannot use the program

manipulation rules of Section 5 without first modifying them to take

account of annotations. We will not go through all these modifications

here, because they are all rather obvious. The general consideration is

that the free variables of a phrase now include the free variables of the
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paraphrase that are not locals of the phrase, and no changes to the
de-annotated phrase can be allowed which change the meanings of the
annotations. This usually means that the changes made to a de-annotated
phrase must also be made to its paraphrase (as, for example, in the local
renaming rule).

As well as the program manipulation rules, we now also have
rules that deal explicitly with annotationsT-
T. The discard rule allows us to remove any annotation from any
paraphrase.
II. The consequence rule allows us to add to any paraphrase any
equation which is an A-consequence of the annotations already in the

paraphrase. In other words, if

and each di is in a particular paraphrase, then ¢ may be added to the
paraphrase. In particular, if € can be obtained from the di using
general or particular rules of inference, it may be added to the
paraphrase.

ITI. The definition rule allows us to add to a paraphrase the
equation

ceeyr X ) = a)

VXOVxl.. . VXn_l(ﬁ(xO, X 1

l’
whenever the phrase contains the definition

ceer X ) =a .

6(XO' X n-1

l’
(Alternatively, we could allow the calling rule to be applied to annotations

as well as to de-~annotated phrases.)

+ These inference rules, unlike the program manipulation rules, are not
invertible.



- 45 -

Iv. The <mport rule allows us to add to the paraphrase of an inner
phrase any equation in the paraphrase of the immediately enclosing phrase
provided it has no free occurrences of variables local to the inner phrase,
or of the formal parameters of the definition containing the inner phrase.
(This rule is simply a version, for annotations, of the import rule for
program manipulation, so using the same name should not cause any
confusion.)

v. We can also generalise the amalgamation/result rule, so that we can
replace ¢ by Q[{Vi < pi l i < n}] (or vice versa) in annotations as
well as de-annotated terms.

VI. The export rule says that if we have annotation ¢ in a
phrase p whose enclosing definition has formal parameters

X ceer X , and the free variables of ¢ are not locals of the

X n-1

OI l’

phrase (other than, possibly, result ), then we can add to the paraphrase

2

of the enclosing phrase the annotation
LLON E PR - Y e[{result < p}] .

The rules are sound in this sense: if an annotated term £' can
be obtained from an annotated term £ , then X' is true in any

environment in which £ is true.

The rules just described for annotated terms all have the property
that their use involves only a one-way flow of information from the
de-annotated program t¢¢ the annotations. If £' can be obtained from
£ using the rules of inference and the manipulation rules , the
corresponding de-annotated terms will have the same value, but

the de-annotated version of £' could have been obtained from the
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de-annotated version of £ using just the program manipulation rules.
The annotation rules described so far are useful for verification but
not for program transformation. Without rules for information flow in
the opposite direction, we are restricted, as we are by existing veri-
fication techniques, to being unable to modify programs, on the basis of
properties already proved, in order to ease the proofs of subsequent
properties.

VII. There is a rule which allows annotations to be used to change
the de-annotated program. The modification rule says (in its simplest
form) that if a paraphrase contains the basic equation a = b,

then certain occurrences of term a in definieng§ in the phrase may be
replaced by term b . This simplest form of the rule would not allow us
to substitute b for a in contexts in which some of the free variables
of a4 or b are formal parameters of a definition in the phrase (it
clearly would be incorrect to do so, since the assertion a=b can
not be referring to the formal parameters). A more general form of the
rule allows us to substitute b for certain occurrences of @ in

this situation if the paraphrase contains

(LA LS ceelVX @ = b

X

where X ceey X 1 are the formal parameters of the definition in
n-

0’ l’

guestion.

The restrictions on the occurrences of «d are not just those
necessary to avoid a clash of variables; it is also necessary to take the
dependencies of the various locals of the phrase into account, in order
to avoid perturbing the least local environment of the phrase.

To understand the necessity of the restriction, consider a

program in USWIM(N) containing the definition
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fn)y = if n < 1 then 1 else n*f(n-1)
we might deduce the true annotation
Yn(if n < 1 then 1 else n*f(n<l) = @ + (1-n))*Fn-1))

(recall that for example, 1 - 3 =0 in N ), and if we could apply

this to the program using the more general form of the modification rule,

the definition of f would become

fn) = n + A=) *fn-1) .

The problem now is that the factorial function is no longer the ILeast
solution of this definition; the least solution is the function whose
value is always 1 . Many and subtle examples of this phenomenon could
be given.

We see then that we can change the meaning of the program by
substituting equals for equals, because the new definition may have Zess
information than the old one. One way to ensure the correctness of a
substitution is to require that the equation to be applied is a
substitution instance of a more general equation, no free variable of which
depends (in the phrase) on the definiendum of the definition to which it
is applied.

More precisely, suppose that J0 1is an annotated phrase

containing a definition of the form

§(Xgr Xp0 veer X __3) = al{v « t;}]

n—-1

{(where the substitution is permissible) and that the equation
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on Vxl Vxn_l(tl = 12)

can be obtained from an annotation ¢ in the paraphrase of J0 by one
application of the instantiation rule. Then the definition may be changed
to

6(x0, X x .y = a[{v =< t2}]

ll.--, n—-1
provided the substitution in permissible and there is no free variable W

of e such that <w, §> is in the transitive closure of the relation

{<y, 22 | y and z are locals of p and 2z occurs

free in the definition of y} .

The requirement essentially implies that the definition being changed
could not usefully have been used to derive the equation being used.

This requirement prevents the erroneouslmodification mentioned
earlier because [ occurs free in the equation and <4, 4> is in the
transitive closure of the relation for the phrase. On the other hand, the

equation
Ynnef(n-1) = f(n-1)-n)

can be used to modify the program if the annotation

VaVn(nex = x*n)

is first attached to the phrase.
We will illustrate our transformation and manipulation rules by
showing that the following inefficient USWIM(N) program to compute the

gum of the first n squares,
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valof

sum(m) = valof

sq(k) = if k < 1 then 0 else sg(k-1) + (2+k-1)
b = sq(m) + sum(m=-1)
result = if m < 1 then 0 else b

end
result = sum(n)

end,

is equivalent to the term n*(n+l)*(2'n+l) * 6
The first step is to use the definition rule to add the

equation

Vk(sg(k) = if k < 1 then 0 else sq(k-1) + (2°k-1))

as an annotation to the inner phrase. Next we use mathematical induction

to prove
Vi(sq (@) = %)

by induction on <

2
The 'base' steps,namely proving 8q(0) = O2 and sqg(f) = Q ,

are straightforward, and the induction step involves proving
. . 2
sq(1+l) = (1+1)

. . .2 . . .
from the assumption sg(z) = 7 (notice that % does not occur free in
our other assumptions). To do this we instantiate the equation derived

from the definition of sqg , giving



- 50 -

sq(i+1) = if (i+1) < 1 then 0 else sq((i+1) - 1) + (2°(i+1l) - 1)

Replacements using equations like
VL ((Z+1) - 1 = 1)
give us

8q(i+1) = if (Z+1) < 1 then 0 else sg(Z) + 2+4+1

Replacing s8g(Z) by 72 (i.e., by using the induction hypothesis)

we get

sq(i+1l) = if (Z+1) < 1 then 0 else 12420441
and since

. 2 . . .2 .
(z+1)° = if (4+1) < 1 then 0 else 77+2+7+1
is true in N , we can replace and get
. . 2
8q(1+1) = (1+1)

as required.
. . . . .2
The induction rule therefore allows us to add VY7 sq(Z) =<

. . } ) . 2 . .
to our annotations, and instantiation 9gives sq(m) =m . Since mM is
not a local of the phrase and 8qg 1is not defined in the phrase directly
or indirectly in terms of b , we can use the modification rule to

2 s

replace the occurrence of sq(m) by m  in the definition of » . Then

we use the calling rule on the occurrence of ) in the definition of

result giving



- 51 -

valof

sum(m) = valof

sq(k) = if k < 1 then 0 else eq(k-1) + (2+k-1)
b= m2 + sum(m-k)
result = if m < 1 then 0 else m2 + sum(m-1)

end
restult = sum(n)

end

(after discarding the annotations).

The next step is to use the result rule and replace the entire

inner phrase by the definiens of vresult , yielding

valof

sum (m) if m < 0 then 0 else m2 + sum(m-1)

result

I

sum (n)

end.
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We can now use annotations much as we did before to prove the equation
Ym(sum(m) = me (m+l)* (2¢m+l) + 6)
by induction on m , then use substitution and modification to get

valof

if m < 0 then 0 else m2 + sum(m-1)

sum (m)

result = n « (n+l) e (2*n+l) + 6

end.

Using the result rule finally gives

the term #°* (n+l)°*(2*n+l) £ 6 . Since we have transformed the original
program [ into this term, and since we did not use any assumptions

about 7 , we conclude
¥Yn(p = (ne (n+l) e+ (2°n+tl) + 6)

is true in N .

The USWIM rules do not in themselves make verifying programs
any easier mathematically (although they make it easier notationally).
The real significance of the rules is that they allow the proofs derived
to be completely precise, i.e. broken down into a series of small steps
each of which is the application of a simple rule. Naturally this
degree of precision would be possible only with the aid of a mechanical
proof checker capable of 'interpolating' simple steps. Such a checker/
verifier based on USWIM would be no more complicated than many existing
systems, and would allow a user to perform sophisticated manipulations

with complete confidence.
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8. REASONING BY FIXPOINT INDUCTION

We have mentioned that the definitions in a phrase can be
thought of as true assertions about the locals, and two of the manipula-
tion rules given can (as we pointed out) be considered as justifications
of this way of thinking. Neither of these rules, however, make use of
the fact that the environment inside a phrase is the least one which
makes the equations true. The two rules given express the fact that the
values of the locals are a fixed-point of the equations, but they do not
express the fact that they are the least fixed point.

This is not as serious a deficiency as it might seem, because
in very many cases the fixed-point is unique anyway. Sometimes, however,
there is more than one fixed-point, and,even when there isn’'t, it is
often easier to derive a particular result using minimality even when
minimality is not strictly necessary.

We will describe a USWIM rule which is based on the "Fixpoint
Induction" principle (see [10]) which has the useful property that it
can be stated without explicit reference to the approximation relation
in the domain in question.

The Fixpoint Induction rule is the following: given any CPpo,
any continuous function T over the cpo with least fixed point k , and
any property [ : to show p(k) show p(L) and then show that p(a)

implies pP(T(0)) for any 0o in the cpo. The rule is valid provided
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that jp 1is "admissible" in the sense that the lub of a chain of elements
in the cpo possesses the property whenever every element in the chain
does.

The rule itself is a meta-rule, i.e. it refers to semantic
objects. The corresponding USWIM rule is an object rule in that it
refers to syntactic objects and gives conditions under which annotations
can be added to terms. Suppose then that £ is a phrase, that

V o, Vs eeey Un are any of the locals of the phrase, and that ¢ is

0] 1

some universally quantified equation about the Vi and other variables

-1

which we wish to prove by induction on the Ui . (q 1is bound to be
admissible.) We assume that X has nullary symbol § which A
interprets as 1 , and that wo, wl, ceay wn—l are variables which are

not local to the phrase and do not occur free in any annotation in the

phrase. Then in order to justify adding ¢ to the phrase we must

(i) be able to add ¢ to the paraphrase of the phrase 1' formed by

changing the definition of each Vi to

vi(xo, X ooy xrivl) =Q

ll
(where ri is the arity of Ui);

(ii) be able to add ¢ to the paraphrase of the phrase " which

results from applying in £ the substitution

ceeer X_) |1 < n}
X

‘ o o @ +‘ : - ’
v, Kgr X0 ' xri) Wy X Xy :

to the definiens of the Vi , and adding as an annotation the

result of applying the above substitution to ¢q .
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As an example of the application of the rule, suppose that we

wish to add the annotation
Vn sumn) = fibn+2) - 1

to the phrase

valof
fib(n) = if n ¥ 2 then 1 else fib(n-1) + fib (n-2)
sum(n) = if n < 0 then 0 else fib(n) + sum(n-1)
result = sum(20)

end.

where the algebra in question consists of the integers (plus 1) and

the usual operations.

We must first show that we can add the given annotation to the

phrase
valof
fibn) = Q
sunm(n) = Q
result = sum(20)
end;

and then show that the same annotation can be added to the annotated

phrase

valof
fibm) = if n < 2 then 1 else a(n-1) + a(n-2) Yn bn) = an+2) - 1
sum(n) = if n < 0 then o else a(n) + b(n-1)
result = sum(20)

end
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(here a and b are the wi). The annotation already present is the
induction hypothesis, to be used in deriving the desired annotation.
The transformations are straightforward.
One interesting feature of the rule is that the subproofs may
involve any of the rules for deriving annotations; in particular, they

may also use the induction rule, so that inductions may be nested.

8. CONCLUSION

The language we have specified, and for which we have given
semantics, rules of inference and manipulation rules, is similar to
Landin's USWIM. It is based upon expressions (terms) and the semantics
of these expressions is not "an order more complex" than for mathematical
expressions. 1In fact the "algebra" of equivalences of these expressions
is as "beautiful" as those of A-calculus or predicate calculus, for
example.

The semantics of USWIM is given in a way which separates the
data aspects of the language from the computational aspects. This fits
in well with current work in, for example, abstract data types [6].
Using well thought-out data structures, like arrays or the streams in
Basic Lucid [1], gives languages of considerable practical power.

USWIM is a spartan language, in the sense that it has only
one basic "mechanism", recursion. It is known that recursion is more
powerful than iteration, for example, and it is appropriate to extend
USWIM by adding constructs, and possibly modifying the semantics, in

order to add less powerful "mechanisms", so that simple algorithms can
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can be expressed in a simple way. An example of this can be seen in

the paper "Structured Lucid" r23.

In summary, we feel that USWIM is a way of expressing communi-—

cations to computers that possess Landin's "certain simplicity".
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