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Abstract

The family of languages, whose syntactic monoids are R-trivial, is considered. Languages
whose syntactic monoids are J-trivial correspond to a congruence which tests the subwords of
length n or less that appear in a given word, for some integer n. It is shown that in the R-
trivial case the required congruence also takes into account the order in which these subwords
first appear, from left to right. Characterizations of the related automata and regular expres-

sions are presented. Dual results for L-trivial monoids are also discussed.

The family of G-trivial monoids, a generalization which includes both R-trivial and L-
trivial monoids, is investigated. Similar characterizations, in terms of congruences, automata

and regular expressions are provided.

Finally, the relationship between the above families and some other well-known families

of languages are considered.
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CHAPTER 1 INTRODUCTION

1.1 Preliminaries

Let A be a finite non-empty alphabet, A* the free semigroup generated by A, and A the
free monoid generated by A, with unit element 1 (the empty word). The cardinality of A is
denoted by #A and the length of x ¢ A is denoted by IxI; note that |11 = 0. The product (con-
catenation) of two words x and y in A is denoted by xy. The "alphabet" of a word x ¢ A is

alx) = {a ¢ A|x = uav for some u,v ¢ A}.

A word u is a prefix of x ¢ A if and only if x = uv for some v ¢ A. Similarly v is a suffix
of x if and only if there exists u ¢ A such that x = uv. The front of length 7 of x is defined to
be

x iflxt<n
Salx) = u if IxI > n and u is the prefix of length n of x.

The tail of length n of x, ¢,(x), is defined analogously. The reverse x? of a word x is defined

by induction on Ixl: 1° = 1 and (xa)? = ax.

Subsets of A are called languages. If X,Y € Athen X = A — X, XUY, and XNY denote
the complement of X, the union of X and Y, and the intersection of X and Y, respectively.

The product of two languages is XY = {w|w =xy, xeX, yeY}). Also X'= (J X" (where

n20

X0 = {1}) is the submonoid of A generated by X. The reverse of X is X? = {x? | x ¢ X].

For any family F of languages FB is the smallest family containing F and closed under
complementation and finite unions. Similarly FM is the smallest family containing FU {{1}}
and closed under concatenation. Thus FB and FM are the Boolean algebra and monoid gen-

erated by F, respectively.
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The syntactic congruence =, of X C A is defined as follows. For all u,v,xy ¢ A
x =y y if and only if (uxv ¢ X if and only if uyv € X).
The quotient monoid M = A/ =, is the syntactic monoid of X, and the syntactic morphism of
X is the natural morphism mapping x € A onto the equivalence class of =, containing x. For

convenience, x is used to represent the equivalence class of =, containing x.

If ~ is any congruence on A then X is defined to- be a ~ language if and only if X is a
union of congruence classes of ~. Thus X is a ~ language if and only if for all x, y € A
x ~ y implies (x ¢ X if and only if y € X).
Since ~ is a congruence, x ~ y implies uxv ~ uyv for all &, v ¢ A Thus X is a ~ language if
and only if
x ~ y implies x =,y (ie.x=y).

The congruence class of ~ containing x is denoted by [x]_.

A semiautomaton is a triple 8§ =- <A, Q, o>, where A is the input alphabet, Q is a finite
set of states, and o :QxA—Q is the transition function. A (finite) automaton is a system
A= <A, Q, gq F, o> where A, Q, and o are as above, gq¢ Q is the initial state, and F € Q
is the set of final states. The domain of o is extended to QxA in the natural way. That is,
a(q, 1) = gand o(g,ax) = o(a(qa),x) forall g€ Q, x ¢ A, and a ¢ A. The language accepted
or recognized by an automaton is {x ¢ A|o(gq¢,x) € F}. An automaton is reduced if and only if

for all distinct p,q € Q there exists x € A such that o(p,x) ¢ F and o (g,x) ¢ F or vice versa.

In any semiautomaton define the relation — as follows. For p,g €Q
p —q if and only if o(p,x) = q for some x ¢ A.
S (or A) is partially ordered if and only if the relation — on Q is a partial order. A semiauto-

maton is a chain reset if and only if — is a total order.

The direct product of two semiautomata S = <A, Q, o> and T = <A, P, r> is the

semiautomaton SxT = <A, QxP, n>, where n({(g,p).a) = (o(g,a), r(pa)). The cascade
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product of S = <A, Q, o> and T = <C, P, r> with connection w: QxA—C is the semiauto-
maton S T = <A, QxP, n> where 1((g,p),a) = (c(g,a), 7(p,w(ga))). If A=C and

w(g,a) = afor all a ¢ A then S - T reduces to SxT.

An initialized semiautomaton is a semiautomaton with an initial state. Let
S=<A,Q, o> and T = <C, P, r> be two semiautomata. T is a subsemiautomaton of S if
and only if C € A, P € Q, and r is the restriction of o to PxC. If S and T are initialized
semiautomata with initial states gy and p, respectively, then T is an initialized subsemiautoma-
ton of S if it is a subsemiautomaton of S and q¢ = po. The initialized semiautomaton S is a
homomorphic image of the initialized semiautomaton T if and only if C = A and there exists a
surjective mapping  : P—Q such that ¢ (py) = g and ¢ {(v(p,a)) = o (¥(p),a). S is covered by

T if and only if S is a homomorphic image of an initialized subsemiautomaton of T.

An initialized semiautomaton S = <A, Q, g, > is connected if and only if for each
g € Q there exists x ¢ A such that o(gg,x) = g. The connected initialized subsemiautomaton of
S is <A, Q, g, o'> where Q = {q ¢ Q| there exists x ¢ A such that o{gg,x) = ¢q} and o' is

the restriction of o to Q'XA.

The transformation monoid of a semiautomaton S = <A, Q, o> (or of an automaton
<A,Q, g0, F,0>) is the set of all transformations of Q into itself of the form
(g1, . . .. g)—(o(gqy,x), . ..,0(q,x)) for some x ¢ A. It is well-known that if A is a reduced
automaton recognizing the language X € A, then the transformation monoid of A is isomorph-

ic to the syntactic monoid of X.

Let M be any monoid. The cardinality of M is denoted by #M. An element e ¢ M is said
to be idempotent if e = ¢2. M is idempotent if and only if e is idempotent for all ¢ e M. For
feMlet Py ={geM|fecMgM} and M, = P,. Then M, is the submonoid of M generated by

the elements g with which fcan be written (f ¢ MgM).



1.2 Background

The family of regular languages over an alphabet A is the set of all languages X C A
which can be built up from the languages {{a}|a ¢ A} using Boolean operations, concatenation
and the star operator. In 1956, Kleene [18] proved that the languages recognized by automata
are regul;u' and that any regular language is recognized by some automaton. A theorem due to
Myhill [25] states that a language X € A is regular if and only if it is a ~ language for some

congruence ~ over A of finite index if and only if its syntactic monoid is finite.

The family of star-free languages over A is the set of all languages X < A which can be
built up from the languages {{a}]a ¢ A} using only Boolean operations and concatenation.
There are many different characterizations of star-free languages. A language X is star-free if
and only if its syntactic monoid M is finite and group-free (i.e. every subgroup of M contains
only one element), or; alternatively, if and only if M is finite and aperiodic (i.e. there exists
n > 1 such that f"= f"*! for all feM). It is necessary and sufficient for the reduced automa-
ton A = <A, Q,qo, F, o> accepting X to be permutation-free (i.e. for all P C Q, x ¢ A,
{o(p,x) |p ¢ P} = P implies o(p,x) = p for all p¢P). A reset is an initialized semiautomaton
<C, {pa.1), po» 7> such that for each c e C either 7(pg,c) = 7(p1,c) or (py,c) = po and
7(py,¢) = p;. X is star-free if and only if A can be covered by a cascade product of resets. The
proofs of these and other characterizations can be found in [1], {111, [14], [19], [20], [21],

[26], and [27].

Various subfamilies of the star-free languages have also proved interesting. Consider the

families By € B; € B, € - - where By={{a}|ac AJMB and B,,; = BMB for all i/ > 0.

Clearly |J B; is equal to the family of all star-free languages over the alphabet A. This se-
=0

quence of Boolean algebras is known as the dot-depth hierarchy and was introduced and first

studied by Cohen and Brzozowski [11]. It is easily seen that By is equal to the set of finite and

10
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cofinite languages over A. If #A = 1 then B, is also a monoid and thus is equal to the family
of star-free languages over A. However, for #A > 1, the dot-depth hierarchy is infinite [7].

In [4], an excellént survey of this material can be found.

The well-known Green relations are fundamental in the theory of monoids [9,15]. They

are defined as follows. Let M be a monoid and f,g ¢ M; then

fJg if and only if MfM = MgM
fLg if and only if Mf = Mg
fRg ifandonlyif fM=gM
fHg ifandonlyif fLg and fRg

Clearly J, L, R, and H are equivalence relations. If p is an equivalence relation on M, we say
that M is p-trivial if and only if fpg implies f=g. In 1965, Schiitzenberger [26] showed that a
language is star-free if and only if its syntactic monoid is finite and H-trivial. In 1972, Simon
[28,29] characterized the languages corresponding to finite J-trivial monoids. This latter family
of languages plays a key role in the structure of B,;. J-trivial and H-trivial monoids and the

dot-depth hierarchy are also treated in [12].

Here, the languages corresponding to finite R-trivial and L-trivial monoids are studied, as
well as the set of languages of G-trivial monoids, which is a generalization of both of these.
Characterizations are given in terms of congruences, monoids, automata, and regular expres-

sions. The relationship of these families to the dot-depth hierarchy is also considered.



CHAPTER 2 LANGUAGES OF R-TRIVIAL MONOIDS

2.1 Languages of J-Trivial Monoids

Simon, in [28] and [29], provides many characterizations for languages with J-trivial syn-
tactic monoids as is summarized in the following theorem. An additional property, M3, is taken

from [5].

Theorem 1 Let X C A be a regular language, let M be its syntactic monoid, and let
A = <A, Q, q¢, F, 0> and A® be the reduced finite automata accepting X and X", respective-
ly. The following conditions are equivalent.
M1. M is Jtrivial.
M2. M is R-trivial and L-trivial.
M3. ‘For all idempotents e e M, eM, U M,e = e,
M4. There exists an 7 > 0 such that for all £geM, (/fg)"= (fg)f = g(/3)"
MS3. Theré exists an n > 0 such that for all f,geM, f*= f* and (fg)" = (g/)".
X1. X is a ~ language for some n > 0.
El. X ¢ {A2A| a < A]MB.
Al. A and A” are both partially ordered.
A2. A is partially ordered and for all ¢ €Q, xy € A, o{g,x) = o{(g,xx) = o(g,xy) and
o(gy) = olgyy) = a(q,yx) imply o(gx) = o(gy).

A3. A can be covered by a direct product of chain resets.

The congruence mentioned above, is defined in terms of the subwords of length less

o
n b

than or equal to » that a given word contains. More precisely we have:

Definition 2 Lét x,y ¢ Aand n > 0. Then

(@) x is a subword of y if and only if there exist x,, ...,X,ug, ...,U, €A such that

12
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X=Xy - X,and y = ugx(uy * * * Xy,
(b) the n-contents of y, denoted by w,(y), is the set {x | x is a subword of y and Ix! < n}

(¢) x ~ yif and only if u,(x) =, ().

It is straightforward to show that ~ is a congruence of finite index for any n 2> 0. See
[28, pages 67-68]. There Simon also proves three results which are needed for the next sec-

tion.

Proposition 3 Let x,y ¢ Aand n 2> 0. Then
(a) x" ~ xn+1,
(b) ()" ~ (x)"x, and

© )"~y
Proposition 4 Let x,y ¢ A and n 2 0. Then x ,,~ y implies x ~ y.

Lemma 5 Let u,v ¢ A and n > 0. Then u ~ uv if and only if there exist uy, ..., u, ¢ A such

that u = uy - - -y, and a(u;) 2 aluy)) 2 -+ 2 aly,) 2 a(v).

One additional definition is required.
- n .
Definition 6 Let x ¢ A and n > 0. Then x is n-full if and only if u,(x) = |J (a(x))" Thatis, x
i=0 :

contains as a subword every word over the alphabet a(x) of length at most n.

Clearly, x is n-full if and only if x ~ xy for all y ¢ (a(x)) " which, by Lemma 5, is true if
and only if there exist x|, ...,X,€A such that x = x; * - ' x, and a(x) = - - = a(x,) =

a(x). Every word is 1-full and any (n+1)-full word is also a-full.



2.2 The ~ Congruence

The congruence . is defined to be a refinement of .~ in which the order of appearance

(from the left) of the subwords in a word is also taken into account. More formally:

Definition 7 Let x,y ¢ Aand n > 0. Then x ~ y if and only if
(a) for each prefix u of x there exists a prefix v of y such that 4 ~ v, and

(b) for each prefix v of y there exists a prefix u of x such that u ~ .
Note that if Ix| < n, x ~ yif and only if x = y.

The two equivalence relations ~ and .~ are closely related and satisfy many similar pro-

perties.

Proposition 8 Let x,y ¢ Aand n > 0.
(@) If x 7~ ythen x -~ y.
(b) x ~ xyif and only if x ~ x.

’

(c) If xy 7 x'y' and x ~ x', then x - x'.

Proof:

(a) Since x is a prefix of x there exists a prefix v of y such that x ~ v. Thus
pa(e) = pn,(v) C u,(y). Similarly, u,(y) S p,(x); so u,(x) = u,(y). Therefore x ~ y.

(b) Assume x ~ xy. Any prefix of x is also a prefix of xy. Let v be any prefix of xy. Then ei-
ther v is a prefix of x or x is a prefix of v In the second «case
Bnlx) € u,(v) C pu,(xy) = pu,(x) so that x ~ v. Therefore x -~ xy. The converse fol-
lows from (a).

(¢) Let u be a prefix of x. Since u is also a prefix of xy there exists a prefix «' of x'y’ such that
u ~ u'. Now either u' is a prefix of x' or x’' is a prefix of u'. In the second case

pa(x) C u,(u) =p,(u) S pp(x) =pn,(x), so that u ~ x'. Similarly, for each prefix «’

14



15

!

of x', there exists a prefix u of x such that u ~ u'. Therefore x ~ x'.

Proposition 9 Let x,y € Aand n > 0. Then
(a) x = xn+l

(B ()" ~ (o)"x
Proof: Immediate from Propositions 3(a) and (b) and 8(b).
Proposition 10 Let x,y ¢ Aand n > 0. Then x , 1 y implies x ~ ».
Proof: Follows from Proposition 4.

Lemma 11 Let uveA and n > 0. Then u ~ v if and only if there exist uy,uy, ..., u, ¢ A

such that u = u; - - -y, and a(uy) 2 - -+ 2 aly,) 2 aly).
Proof: Follows from Lemma 5 and Proposition 8.

In the remaining part of this section some additional interesting properties of  are

presented.

Lemma 12 Let n>0, xyx.y'cA, and aecA. If xay ~ xay’ and a ¢a(y) U a(y) then

’

x n-1R x.

Proof: Let wuep,  (x). Then wuaecu,(xa) C u,(xay) =pu,(xay). Since ac¢a(y),
ua € w,(xa). Now ue€p,1(x); hence p,_;(x) C m,—i(x). Similarly p,—;(x) S w,—(x).

!

Therefore x ,_~ x’ and, by Proposition 8(c), x , 5 x"

Lemma 13 Let n >0, x€ A, and a € A. Then x 2 xa if and only if there exists a prefix ua of

xsuch that u | _—~ x.

Proof

(=) Suppose x ;4 xa. Since n >0, a(x) = a(xa) and thus a ca(x). Let x = uav where
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a¢a(v). Then uav = x ~ xa = (uav)al so, by Lemma 12, u , ~ uav = x. Hence
u ,_+~ x by Proposition 8(a).
() If wep,(xa) then either wepu,(x) or w = va where veu,_1(x) = um,_;(u). Thus
w=vaeu,(ua) C u,(x). Hence u,(xa) C u,(x). But p,(x) € u,(xa); therefore

x ~ xa. From Proposition 8(b) it follows that x ~ xa.
Lemma 14Let n 2 0, x<€ A, and a,b ¢ A. If x 7 xaand xb ~ xbb then xb —~, xba.

Proof: If n =0 then the result is trivially true since y 53 z for all y,z ¢ A. Therefore assume
n > 0. By Lemma 13 there exist u,v € A such that ua is a prefix of x, vb is a prefix of x5,
u,mx and v, —xb. But vb is a prefix of xb, so v is a prefix of x; hence
Baa1 (V) © ey (x) © ppey(xb) = p,_;(v). Thus xb , +~ x , o  and, since ua is a prefix of

xb, it follows by Lemma 13 that xb ~ xba.
Lemma 15Let u,v,v' ¢ Aand a,b ¢ A. If a  band uav ~, ubv'then either u ~ uaor u ~ ub.

Proof: Suppose a = b and uav ~ ubv’ Then there exists a prefix u’of ubv’'such that ¥’ ~ ua.
If u’is a prefix of u then u,(4) S u,(u) G p,(ua) = u,(u) so u ~ ua

Otherwise ub is a prefix of u’so that w,(ub) C u,(u) = u,(ua). If z ¢ u,(ud) then ei-
ther z eu,(u) or z=2z%b where z' ¢ u,_;(u). But z = zb e u,(ua) and a = b imply z e u,(u).

Thus p,(ub) € p,(u) and, since u,(u) S u,(ub), u ~ ub.

Lemma 16 Let uveA abecA,and n>i>0. If w,_,(u) = p,_;(ua) and u,(v) # u;(vd)

then u,(uav) # u,(uavb).

Proof: Suppose p,—;(u) # p,_,(ua) and w;(v) # wu,(vd). Then there exist u,v’ ¢ A such that
uaep, (ua) —p,_;(u) and vb e u;(vd) —u,;(v). Clearly u'avh e u,(uavb).

If u'av’b € u,(uav) then there exist r,s € A such that uav = rs, ua is a subword of r, and
v’ is a subword of s. Since ua € u,_(ua) =, (u), it follows that ua is a prefix of . Hence s

is a suffix of v. But if v’b is a subword of s, then v’ is a subword of v, contradicting the fact
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that vbep;(vb) —u;(v). Therefore wuavheu,(uavd)—p,(uav) and thus u,(uav) =

w, (uavd).
Proposition 17 —~; is a congruence of finite index for all n > 0.

Proof: Let n 2> 0 and let x,y € A be such that x 4 y. LetacA.

Suppose u is a prefix of xa. Then either u is a prefix of x or u = xa. In the first case, be-
cause x ;% ), there is a prefix v of y such that u ~ v. If 4 = xa then from Proposition 8(a)
X 7~ y, and since ~ is a congruence u = xa ~ ya. By symmetry, for each prefix v of ya there
exists a prefix u of xa such that u ~ v. Therefore -, is a right congruence.

Suppose u is a prefix of ax. Then either u = 1 or u = qu’' for some prefix u’ of x If
u =1 then u is also a prefix of agy. Otherwise, since x  y, there exists a prefix v’ of y such
that u’ ~ v'. But ~ is a congruence so ¥ = gu’ ~ av'. Similarily for each prefix v of ay there
exists a prefix w of ax such that u ~ v. Hence .-, is a left congruence.

The fact that ~; is of finite index can be obtained from a counting argument using the

fact that ~ is of finite index.

One nice property of ~, which is not shared by ~, is that each congruence class has a

unique shortest element.

Theorem 18 Every congruence class of ;~ contains a unique element of minimal length. Furth-
ermore, if a;,...,a,€A then a;---a, is minimal if and only if wu,(1) Su,la) &

l"'n(alaZ) G - gtu'n(al o am)~

Proof: By induction on k, the minimum length of elements in a given % class. Note that
minimum length elements exist because length is a function from A to the nonnegative integers
which form a well ordered set.

For k = 0 the lemma is true since 1 is the only word of length 0. Let k > 1 and assume

the lemma is true for all % Classes containing elements of length less than k. Suppose there
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exists a ~ class containing minimal elements x and y of length k.

Since k > 1, x = ua for some ucA, acA. Now ,u.,,(u)C po(x) and u ~ x implies
u 74 x by Proposition 8(b); so u,(u) # u,(x). Employing the induction hypothesis (since
lul < k) [u];.R has a unique element of minimal length. Call this element w. If w = u then
Iwl < lul and hence Iwal < Ix|. But w ~ uand ~ is a congruence, so wa ; ua = x contrad-
icting the minimality of x. Therefore ¥ = w. By the induction hypothesis u = a; - - - a,, where
wrla) & -+ G u,(a;---a,) and thus x = a;---a,a where u,(a)) S - &
malay -+ an) Quglay - apa).

Because x —~;, y there exists a prefix v of y such that u ~ v. By Proposition 8(c) u ~ v
Also, v is a proper prefix of y since w,(v) = u,(u) Gu,(x) = u,(y). Then v = u since oth-
erwise |yl 2 1 + vl > 1 + lul = x| contradicting the minimality of y. Therefore y = ua’ for
some a'¢A. Now u,(u) Gu,(ua); hence there exists a word za e¢u,(ua) — u,(u). But
wolua) = u,(ua’), so za ¢ u,(ua") — u,(u). That being the case, a = a’ and thus x = y.

By induction, every congruence class of ~ contains a unique element of minimal length

and, if a;,...,a,¢cA are such that a, - - - g, is minimal, then u,(1) G u,(a) & -+ &

walay -+ ay).

Finally, suppose x = a, - - - a, where a;,...,a,¢A and ux,(1) € u,(a) G - &
wnlay---a,). Let ug=1, uy=ay,..., uy,=a,- - a, be the prefixes of x and let y be
the unique minimal element of [XJ;T Since x ; y there exist prefixes vy, vy, ..., v, of y

such that u;, ~ v; for 0 < / < m. Because u,(v) =, (u) # w,(u) = p,(v;) for all i = j,
the v,’s must be distinct. Thus Iyl 2 m. But x| = m ; therefore, by the uniqueness of the

minimal element, x = y.

Definition 19 Let n = 0. Then

(a) the function x, : A — A is defined by x,(x) = the unique minimal element of [x]..R ,

(b) the length of the longest minimal element is A g (A, n) = max{ix,(x)! | x ¢ A}, and

(c) the set of all longest words which are the minimal elements in their .~ classes is
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Ag(A, n) = {x,(x) | xeAand Ix,(x)| = Ag(A, n)}.

Furthermore, for #A > 1 and

(n+# A)
Proposition 20 Let n 2 0. Then Agz(A, n) = n -1

n>0, xecAg(A, n) if and only if x = x,a, - - - xya,x,a, where g, ¢ A and x, e Ag(A—{q]}, /)

fori=1,...,n

Proof: By induction on #A.

If #A =1, say A = {a}, then the result is clearly true since Az(A, n) = {a”} and

n+l
Ar(A,n) =n= ( n ) — 1. Now assume the proposition is true for all alphabets with cardi-

nality #A — 1, where #A > 1.

Because 1 is the only word of length 0 and x 5 y for all x,y ¢ A, Az(A,0) = {1} and

: (0+# A) . ,
Ar(A,0) =0 = 0 — 1. It remains to consider the case n > 0.

Let x = x,a, - - - xja, where a;¢ A and x;¢ Ag(A—{a;}, ) for i=1,...,n Clearly
@y Qi €ppoip1(Xa, - xa) for i=1,...,n However, since x,¢(A—{a,})",
a,épy(x,). Assume a, - a4 €p,—;(x,a,  * - x4) where 1< i< n—1. Then, because
xie(A={a]D", a, " @110 ¢ppis1(X,a, - * * X;41@11%). By induction it follows that
@yt Q€ Ry (X8 -+ Xi8) — gy (X4, - - - x) and hence w,—i(x,a, - x)
Hneis) (Xn@y * -« X)),

Consider any prefix ua of x where uc¢A and acA. If u =x,a, - x; and a = g, for

some i, 1<i<n then, from above and Proposition 4, w,(ua) # u,(u). Otherwise
U=X,a," " X4 a4 v Where veA, va is a prefix of x, and 1</<n Since
x;€ Ag(A—{a}, i), it is the minimal element of its ~ class; so u;(v) G u,;(va) by Theorem
18. For i < n, it follows from the preceding paragraph and Lemma 16 that w,(z) = u,(ua).
And when i =n, u =v. Thus p,(u) = u,(ua) for any prefix ua of x Theorem 18 implies
that x is the minimal element of its ~, class.

Now let y e Ag(A, n). Then y = x,(y) is n-full and a(y) = A. Otherwise there exists

a € A such that u,(y) = u,(ya). Since y is the minimal element of M“k , it follows from
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Theorem 18 that ya is the minimal element of [ya]_.k . This contradicts the fact that

yeAg(A, n).

Decompose y into y,a, - yja\yg where yjeA and a(y) &= a(y;a) =A for
i=1,...,n Since y,a, - ya, is nfull, y,a, - - y\ay 75 yaa, - -~ y1a19 and therefore
yo=1.

Suppose for some i, 1< i< n, that y; # x,(y;). Then, by Theorem 18, there exist
a € A—{a;} and u,v € A such that y, = ugvand u ~, ua. Let w e u,(y,a, - * * ¥,41a,414a). Now
w = ww"” where w'is a subword of y,a, - - - y;+14;4+; and w"is a subword of wa. If Iw"l < i
then w” e u;(ua) = w;(u) so that w e w,(y,a, * - * ¥,+19;414). Otherwise let wy, w, € A be such
that wy=4(w") and w=wyw, Since y,a, Y3+ I8 (n—i)-full and
Iwyl = |wl—lwyl € n—i, wy is a subword of y,a, - - * y;;18;.;. But w, is a suffix of w”so w, is
a subword of ua. As above, wyeu,;(¢), and thus w = wywyeu,(y,a, * * * ¥i+18;+14). There-
fore it follows that w,(,a, - * yis1@) = w,(a, - yi18,+14a), which contradicts
Theorem 18 since y = x,(y). Hence x, = x,;(x;) fori=1,...,n

If Iyl < Ag(A—{a.}, k) for some 1 < k < nthen

Iyt = ﬁ[iyilﬂl < ZHLIAR(A—{ai}, )+1] = f:[ix,.l+1] = |x|

i1 i=1 i=1
contradicting the fact that y € Az (A, n). Therefore y, e Ag(A—({a;}, i) for i =1,...,n This

also implies that Az (A, n) = ix|. Hence, by the induction hypothesis and [17, page 2121,

Ag(A, n) = x| = iAR(A—{a,}, i)+1

i=]

- 3 (

==l

n+#A4
(") <

i+#A-T
i i )

The following is an algorithm for finding the minimal element of a congruence class of ~
given any word x in the class. A SNOBOL4 program which implements this algorithm can be

found in the Appendix.



21

Algorithm 21 Determine x,{(x) given x.
Find the shortest prefix wa of xsuch that u € A, a € A, and u —~ ua. If none exists then
x = ai " ay where u, (1) Gu,la) Gu,laa) € - Quyla; -+ a,) and x,(x) = x
Otherwise x = uav for some veA Since u ~ ua implies u ~ ua and —~ is a
congruence, uv -~ uav = x. Thus x,(x) = x,(uv). Note that uv is shorter than x and so the al-

gorithm always terminates.

Example Let x = abccheac and n = 2.

prefix u of x woy(u)

1 1

a l,a

ab 1,a,b,ab

abc 1,a,b,ab,c,ac,bc

abcc 1,a,b,ab,c,ac,bc,cc
abcch 1,a,b,ab,c,ac,be,cc,ch, bb
abccbe 1,a,b,ab,c,ac,bc,cc,ch, bb

Since wy(abecd) = uy(abecbe), abech 5+, abeche and hence abecbac 54 abecheac = x. Re-

place x by abcchac.

abccba 1,a,b,ab,c,ac,be,cc,ch,bb,aa, ba,ca

abcchac 1,a,b,ab,c,ac,be,cc,ch,bb,aa, ba,ca

Since w,(abccha) = wy(abeebac), abeeba 5= abecbac. Now py(1) G uqa(a) G uqlad) &
molabe) G uqlabee) G polabeeh) G uylabecha); therefore x,(x) = abecha.
To construct u,(ua) from w,(u) it is only necessary to add those elements wa such that

" .
w €, (u) but wa ¢u,(u). The number of elements in u,(u) is bounded by 3 m’, where m
i=0
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is the cardinality of the alphabet. Thus for a fixed n and a fixed alphabet, x,(x) can be found
in O(lx!) steps. By employing the algorithm twice, O(lx! + ly!) steps suffice to determine

whether x ~ ».
The algorithm motivates the following definition:

Definition 22 Let x,y e Aand n > 0. Then x ;—ER y if and only if x = rus and y = ruvs for some

r,s,u,v € A such that u ~ uv. Let = be the symmetric transitive closure of ;—1-}.

One verifies that x = x for all xeA since 1"=1~1=1"1, x=x(1"1, and
x = x(1")1. Hence = is an equivalence relation over A. It is easy to see that = is the smal-

lest congruence satisfying u = owv for all u,v € A such that u o~ uv.
Proposition 23 Let n > 0 and x,y € A Then x = yif and only if x 7 ».

Proof: If x ﬁ ythen x ~ y by Proposition 8(b); thus x =, y implies x ~ y since ;5 is transi-

tive. If x 7 y then by Theorem 18, x,(x) = x,(y). From Algorithm 21 it follows that

x = Xa(x) and y = x,(). Hence x = ».



2.3 R-Trivial Monoids

Four equivalent characterizations of finite R-trivial monoids (from [28] and [5]) are

presented. These monoids are then related to the congruences ~, %, and =,

Theorem 24 I;et M be a finite monoid. The following conditions are equivalent.
1. M is R-trivial.
2. Forall f,gheM, fgh = fimplies fg = f.
3. For all idempotents e c M , eM, = e.

4. There exists n > 0 such that, for all f,geM, (fg)"f = (fg)™

Proof?
(1>2) Let f,g,h ¢M be such that fgh = £, Then /M 2 fgM 2 fghM = M. Since M is R-

trivial, f = fg.

(2=3) Let e ¢ M be an idempotent and let f¢P,. Then e e M/M so there exist g4 € M such
that e = gfh. Since e = ¢ = e(gfh) = eg(fh) = e(gf)h, e = egand e = e(gf) =

(eg)f = ef. Thus eP, = eand hence eM, = ¢(P,) = e.

(34) Since M is finite there exists an n >0 such f” is idempotent for all fe¢M. Now let

fgeM. Because e=(fg)"¢eMfM is idempotent, fe¢P, & M,. Hence

B)f = (/)"

PR

(4=>1) Let n >0 be such that (hk)” = (hk)"h for all hk ¢ M. Suppose M = gM. Then there
exist A,k ¢ M such that f = gk and g = fh. Thus f = gk = fhk = f(hk)™ for all m >0

and hence f = f(hk)" = f(hk)"h = fh = g.

Lemma 25 Suppose M is a finite R-trivial monoid and ¢ : A — M is a surjective morphism. Let

n = #M and let u,v € A Then u ~ uvimplies ¢(u) = ¢ (uv).

23



24
Proof: Suppose u ~ uv. By Lemma 5, there exist uy, ..., u,¢ A such that u .= uy* - u, and
au) 2 -+ 2 alu,) 2 a(v). Let ug=1. By the choice of n, the elements ¢{ug), ¢ (ugu;)
oo, ®(uguy, . .., u,) cannot all be distinct. Hence there exist jand j, 0 < i < j € n, such
that f = ¢ug - u) = dlug- - u - w) = foluyy - u) = fou )by - - - ).
Since M is R-trivial, f = fé(u;,). If a(u,) = @ then v =1 and there is nothing to prove.
Thus suppose a(u,) = @. Since a(u;,;) 2 alu,) #= @, u;.; = azfor some a e a(u;, ), z€A.
Then f = fé(az) = fd(a)d(z) and f = fp(a). Consequently f = fé(a) for all @ € a(u;,y) .
Because u;.; - - - u,v € (a(u;,;)) " it follows that ¢(u) = ¢(ug - - - u,) = fdluy - - u,) =

SOy - - u,v) = duv).

Theorem 26 Let M be the syntactic monoid of X g A . Then M is finite and R-trivial if and

only if X is a ~, language for some n 2> 0.

Proof: Assume M is finite and R-trivial. Let # = #M and let x,y ¢ A. Suppose x ;:'-7{ y . Then
x = rus and y = ruvs for some rsuveA such that u ~ uv. By Lemma 25, u = uv and
X = rus = ruvs = y . Since = is the symmetric transitive closure of = , it follows that x = y
implies x = y . By Proposition 23 x ~ y if and only if x =7 Thus x ;< y implies x = y;
i.e. X is a ;~ language.

By Proposition 9, for all xyeA, ()"~ ()" . If X is a ; language then
(xp)" = (xy)"x . Since the syntactic morphism is a surjective function from A onto M, it fol-
lows that for all £,geM, (fg)"= (fg)"f . Because ~ is of finite index, M is finite and it is

R-trivial by Theorem 24.



2.4 Partially Ordered Automata

In this section the automata associated with R-trivial monoids and ~ languages are con-

sidered.

Lemma 27 Let S = <A, Q, o> be a semiautomaton, let xc A and let C € A. Then

o(gxa) = o{gx) forall a €C, g €Q if and only if o(g,xy) = o(g,x) forall y eC", g €Q.
Proof: Obvious.

Proposition 28 Let S = <A,Q,0> be a semiautomaton and let M be its transformation monoid.
The following are equivalent.
1. M is R-trivial.
2. There exists n > 0 such that for all xy ¢ A, x nfull and a(x) 2 a(y) imply
a(g,x) = a(g,xy) for all g € Q.
3. For any x ¢ A, a(g,x) = o(gxx) for all ¢ ¢Q implies o{g,x) = o(g,xa) for all

7€Q,acalx).

Proof:

(1=2) This follows from Lemma 25, the comment following Definition 6, and the fact that the
syntactic morphism is surjective.

(23) Let n >0 be such that for all xyeA, x nfull and a(x) 2 a(y) imply
o (gx) = a(qxy) for all ¢ € Q. Suppose x ¢ A satisfies o(g,x) = o(g,xx) for all g €Q.
By induction it follows that o{g,x) = o(g,x"”) for all geQ and » > 0. Let ¢ ¢Q and
acalx). Since x” is nfull and a(@) € alx) = a(x’), olgx) = o(gx") =
o(gx"a) = o(o(g,x",a) = a(c(gx),a) = o(g,xa).

(3#1) Let e ¢ M be idempotent and let g € P,. Let £, ¢ M be such that e = fgh. Since M is
the transformation monoid of S there exist x,y,z ¢ Asuch that x = f, y = g, and z = A.

Let w = xpzso that w = xyz = fgh = e

25
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Since e'is idempotent w = e¢ = ¢2 = w? s0 o (q,w) = o (g,ww) for all g ¢ Q. There-
fore a(q,wa) = o(q,w) for all a e x(w), geQ . Because a(y) C a(w) it follows by
Lemma 27 that o(q,wy) = o(g,w) forall ¢ Q . Thus eg = wy = w =eso eP, = ¢ .

But eP, = e implies eM, = ¢ ; hence M is R-trivial.

Definition 29 Let S = < A, Q, o> be a semiautomaton. Thén II(S) is defined to be the
semiautomaton <A, Q,, o>, where
Q; = {g € Q| there exists x ¢ A and g’ ¢ Q—{q} such that o (g',x) = q}
and o is the restriction of o to Q; X A. Note that Q, is the set of all states that have nontrivi-
al predecessors. I1"(S) can be defined inductively by:
') =S

and I1%(S) = II(II""(S)) for n > 0.

The semiautomaton <A, Q,, o,> will be used to represent [1"(S). Clearly, for every S

there exists a smallest integer nsuchthat Q = Q2 Q; 2 -+ 2 Q, = Qu41-

Recall the definition of partially ordered semiautomata given in Sectiqn 1.1. For any
semiautomaton S = < A, Q, o>, — is clearly a preorder on Q since o{(g,1) = g for all ¢ €Q
and o(p,x) = g and o(q,y) = r imply o (p.xy) = r for all p,g,r €Q and x,y ¢ A. Thus to prove
that a semiautomaton is partially ordered it is sufficient to show that — is an antisymmetric re-
lation on the state set.

Property 2 in the following proposition is from [28].

Proposition 30 Let S= < A, Q, o> be a semiautomaton. The following conditions are
equivalent.

1. S is partially ordered.

2.Forall g €Q, xy ¢ A, o(g,xy) = g implies o (g,x)=q.

3. There exists an integer n > 0 such that II7(S) has an empty state set.



Proof:

(1=2)

2=3)

(3=1)
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Suppose x,y € A and ¢ € Q are such that o(g,xy) = q. Let p = o(gx). Then ¢ — p.
Now ¢q = o{(qxy) = o(p,y), therefore p — q. Since — is a partial order, p = ¢ and
thus o(g,x) = q.

Suppose that o (g,xy) = ¢ implies o (g,x) = g for all ¢ € Q, x,y € A, but that [I"(S) does
not have an empty state set for any n > 0. Let n be such that Q, = Q,,; and let
m=#Q,. Because Q, # @ there exists ¢,¢Q,. Since ¢,¢Q,,, there exists
g2€ Q—{q,} and x; ¢ A such that ¢(g,,x;) = q;. Repeating this argument a total of m
times, one has ¢y, ...,¢n+1€Q, X, ..., %X, €A where o(g,,,x) =g, & g+ for
i=1...,n But m+1 > #Q,; therefore there exist iand jsuchthat 0 < /i < j < n
and ¢; = ¢;4;. Then o (g;,1,x;(_; - - - X)) = ¢; = g4, so that a(g;1,x;) = g;+;. This
contradicts the fact that ¢; & g;,,. '

Suppose S is not partially ordered. Then there exist p,q € Q such that p — ¢, ¢ — p,
and p = ¢. Let x,y € A be such that o(p,x) = gand o(g,y) = p. From the definition of
I, if p,g €Q; then p,q € Q;,;. Since p,g € Q = Qq it follows by induction that p,g € Q,
for all n > 0. Thus there does not exist an integer n > 0 such that I1"(S) has an emp-

ty state set.

The two families of automata described in Propositions 28 and 30 are actually the same.

Proposition 31 If there exists n > 0 such that for all x,y € A, x n-full and a(x) 2 a(y) imply

a(g,x) = o(gxy) for all ¢ € Q then o(g,xy) = g implies o(g,x) = gforall g cQ, xy ¢ A

Proof: Suppose o (g,xy) = q. Then o (g, (x3)™ = ¢q. Now (xp)"is n-full and a((xy)" 2 a(x),

so ¢ =a(g, ()™ = o(g, ()x) = a(a{g, C¥)M,x) = (g,x).

Proposition 32 Let S = <A, Q, o> be a partially ordered semiautomaton. Then the transfor-

mation monoid, M, of S is R-trivial.
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Proof: Suppose f,g,h € M are such that fgh = f. Since M is the transformation monoid of S
there exist x,y,z ¢ Asuch that x =f, y =g and z =h . Now xyz = fgh = f = xand S is par-
tially ordered. Thus o(g,x) = o(g,xyz) = a(o(g,x),yz) and, by Proposition 30, o(gx) =

a(a(gx),y) = o(qxy) for all g € Q. Therefore f = x = xy = fg.

Three additional properties of partially ordered semiautomata, mentioned in [21], [28],

and [31], are now presented.

Proposition 33 If T is a semiautomaton which is covered by some partially ordered semiautoma-

ton S then T is partially ordered.

Proof: Assume S is partially ordered. Since any subsemiautomaton of a partially ordered
semiautomaton is clearly partially ordered it is sufficient to prove the result when T is a
homomorphic image of S.

Suppose T = <A,P,7> is a homomorphic image of S = <A,Q,0>. Then there exists a
surjective map ¢ : Q— P such that r(¥(g),x) = ¢(0(g,x)) for all x ¢ A.

Now suppose t(p,xy) = p where peP and xy ¢A. Let Q ={gqeQ|wlq) =p}. Note
Q' = @ because ¥ is surjective. Consider the map y:Q—Q’ defined by y{(g) = o(g,xy). Be-
cause ¥ (o(gxy)) = r(W(qg),xy) = 7(pxy) = p, v(q) is indeed an element of Q" for each
q¢Q.

Let ¢’ Q’, and let n = #Q’. Since {y%(¢) =q', ¥'(g), ¥*(g), ...,v"(g)} € Q, there
exist 0 < i < j € nsuch that y'(g") = y/(q'). From the definition of vy, y/(g") = o(q’, ()9
= g(y(g"), (xy)/~). Since S is partially ordered, o(y'(¢"),x) =v'(g’). Thus r(px) =

r(W(y(g")),x) = ¢ (o(v'(¢g"),x)) = ¢(y(¢))) = pand hence T is partially ordered.
Proposition 34 The cascade product of two partially ordered semiautomata is partially ordered.

Proof: Suppose S = <A, Q, o> and T = <C, P, > are partially ordered and w:QxA—C is

a connection function. Let (g,p) e QX P and x,y ¢ A be such that n((g,p),xy) = (¢,p). Say
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xX=xy " "x,andy =y -y, where n,m =2 0 and x,,y, € A.

Then (gp) = nlap).x) = (o(g0),7(pwlg.x) - wlg,x)o(guLy) -
@(@yimVm))) where gy =gq, g, =0(g,x) for i=1,...,n~1, and g, = o{(gy.;,y) for
i=0,...,m=1. Thus ¢ = o(gqxy) and p = 7(p,w(q,x;) - wlgux,)a(g, .y
m(q,,+m»ym)).

But S and T are partially ordered; thus o (g,x) = gand 7(p, w{q1,.x) - - w(g,x,)) = p.
Hence 7n((g.p).x) = (o(gx),7(pwlgux) - - @(g,x))) = (gp) so that S T =

<A,QXxP,n> is partially ordered.
Corollary 35 The direct product of two partially ordered semiautomata is partially ordered.

Let A=<A, Q, gp, F, 0> and C= <A, P, p;, G, 7> be automata and let

<A,QxXP,n> = <A, Q, o> x <A, P, r>. Then the union of A and C is
AUC = <A, QxP, (gq, po), FXP U QxG, n>,

the iniersection of Aand Cis

| ANC = <A, QxP, (g9, po), FXG, 7>,
and the complement of A is

A= <A, Q, g9, Q-F, o>.

Because the definition of a partially ordered automaton does not depend on the set of fi-

nal states it follows that if A and C are partially ordered then AUC, ANC, and A are also.

Hence the set of all partially ordered finite automata with alphabet A forms a Boolean algebra.

Definition 36 A graph G is tree-like if and only if the graph G’, obtained from G by removing all
trivial loops, is a tree. (A trivial loop is an edge from a vertex to itself.) The height of G is de-

fined to be the height of the tree G'.
Clearly any initialized semiautomaton whose state graph is tree-like is partially ordered.

Proposition 37 Let n 2 0. The state graph of the initialized semiautomaton
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o> is tree-like.

Proof: [1]_.72 is clearly the root since cr([l].k, x) = [x].TQ for all x ¢ A For any node

[x]__R € A/, the fact that there is a unique path from [1]..;a to [ka which contains no trivi-
n n n

al loops follows directly from Theorem 18. Thus the state graph is tree-like.

Another way partially ordered automata can be characterized is in terms of certain sequen-

tial networks.

Definition 38 For n > 0, an- n-way fork is an initialized semiautomaton <A, {go.qy, - - - , @),
gp, o> where A=Ag U A; U --- U A,, the A’s are pairwise disjoint and, for i/ > 0, are
non-empty, o{gy, a) = g¢; for all ac A;, and o(q;, a) =g, forallaeA, i=1,...,n. See

Figure 1. A half-reset is a one-way fork.

Figure 1| An n-wéy fork

Proposition 39 If a semiautomaton can be covered by a cascade product of half-resets then it is

partiaily ordered.
Proof: Immediate from Propositions 33 and 34 and the fact that a half-reset is partially ordered.

In [21] and [31] it is proved that any partially ordered finite automaton can be covered by

a cascade product of half-resets. Introducing n-way forks is a convenient intermediate step.
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Proposition 40 Any n-way fork is isomorphic to the connected initialized subsemiautomaton of a

cascade product of n half-resets.

Proof: By induction on n. The case n = 0 is degenerate. For n = 1 the result follows from the

definition of a half-reset. Assume the result is true for n 2 1. Consider the n+1-way fork

F,+; illustrated in Figure 2(a).

Figure 2

Let F, = <A, Q, gy, o> be the n-way fork of Figure 2(b) and let the half-reset in Fig-
ure 2(c) be denoted by T = <{bg,b,}, P, pg, 7>. Define the connection w as follows:

by if ¢g=qo and acA,y,
w(g,a) = b, otherwise

Let R = <A, R, (qq.20), 1> be the connected initialized subsemiautomaton of F,<T.
Note that R = {(gg,00), (@1.00) » - - -» (@u.09), (gn.p1)} since these are the only states which
are accessible from (qq,p) . Except for (gg,pe) each is a terminal state (i.e. n(r,a) = r for all
aeA, reR - {(poqe)}). Itis clear that F,, is isomorphic to R.

By the induction hypothesis F, is isomorphic to the connected initialized subsemiautoma-

ton of a cascade product of » half-resets; therefore F,,; is isomorphic to the connected initial-
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ized subsemiautomaton of a cascade product of n+1 half-resets. Thus the result is true for all

nzl.

Proposition 41 Any initialized semiautomaton whose state graph is tree-like is isomorphic to the

connected initialized subsemiautomaton of a cascade product of forks.

Proof: By induction on the height of the graph.

If the graph of an initialized semiautomaton is tree-like of height 0 or 1, then the semiau-
tomaton is a fork. Assume the result is true for all initialized semiautomata whose graphs are
tree-like of height less than 4, where # > 1.

Let S = <A, Q, qo, o> be an initialized semiautomaton whose graph is tree-liké of
height 4. Let {q,, . 4.} = {g€Q —{qq} | o(gg,a) = q for some a ¢ A} be the set of chil-
dren of gg. For 1 € i < n, let §; = <A, Q,, ¢, o,> be the subsemiautomaton of S initial-
ized at ¢;. Since g, # qq, the height of the graph is less than 4 ; thus S, is isomorphic to the
connected initialized subsemiautomaton of S, = <A, Q/, ¢;,, o;/>, a cascade product of
forks.

Define T, = <C,;,Q,, q;, 7/> as follows. If there exists an g ¢ A such that o,'(g,a) = ¢
forall geQ,letC, = Aand v,/ = o, . Otherwise let C, = A U (e}, where e ¢ A, and let =/
be such that for g €Q;, c €C;

oi'lgc)  ifceA
q if c=e

7,'(g,c) =
Note that if T, is an n-way fork, then T, is an n-way fork too. Also, applying the transforma-
tion to the cascade product of two semiautomata gives the same resuit as applying it to the two
semiautomata separately and then taking the cascade product. Hence T, is still a cascade pro-
duct of forks.

Let T, = <A, P, po, 7o > be the n-way fork where P = {py, py, . . ., p,)} and

p if p=pg and a(gpa) =g

7olp.a) = p otherwise

Inductively define T,=T,;oT,/ for i=1,...,n where the connection
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w; :PxQ'x -+ xQ-{ XA — C,isgiven by

a ifr=1(,, q1 ...

w;(r.a) = otherwise

Ci

where 7,'(¢q,¢;) = qforall g ¢Q,’ .

» qi-—l)

It is a straightforward proof by induction to show that the set of states of T, accessible

from the initial state (pg,q;, ..., q,) is

R, = {(po.q1, - - .. a)} U-{(pqy, . ..

and that the following équations hold:

7';((170, ql: s ey qi): a) = (pk’ ql’ .

7 ((pr, 41 - - oy Q1> & Gre+is - - -

(e g1, ..., 4, @) = (b, q4, .

Now consider the bijection ¢ : Q — R, defined by

(pO’ 41, -« - qn)

Yy(g) = (. q1, -

» Qe—1:D Qi +15 - -

’ qi)y a) had (pk) Qb .

< s Gi-1s lp,(Q), qiv1s - -

) 1 qeQ, 1€ k<)

., g) for all a € A such that a(gp,a) =¢q,, 1 < k < |,

<5 Qr-1» Tkl(qta): Qie+1s « + « » q,)

forgeQ,,1 € k < i,and

..,q)fori <k <n.

if g=qy
. gy if geQ

where ¢, : Q; — Q' is the isomorphism from S, to the connected initialized subsemiautomaton

ofS,f..LetaeAandqu. If g €Q;, then

y(o(g,a)) = ¢ (o;(g,a))

= (p;, qi» - -5 qi-, 'sbi(a'i(q;a)). div1s - - -
= (g, @ .-., qi-, o'W, (q), @), g1, . ..
= (pi: qiﬁ LR Qi—l, Ti'(lpi(q)l a)' Qi“l'l’ ..

=7, @5 - ..
=7,(¢(q), a)
and, if ¢ = g and o (gg,a) = g, then
Yla(ga)) = y(g)
= @ -y G-, (@), Gis1, - - -

= (pi: Gis -+« Qi—-l, QI', giv15 + + <> qn)

= Tn((pODQIJ . e :qn): a)

» i-1, ¥;(q), Qis1s 9n)s

, )

» dn)
s 4a)
s )
a)
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= T,,('IJ(QO), a) .
Thus ¢ is an isomorphism between S and the connected initialized subsemiautomaton of T ,; so

the resuit is true for S . It follows by induction that the proposition is true.

Corollary 42 Any partially ordered initialized semiautomaton is the homomorphic image of the

connected initialized subsemiautomaton of a cascade product of half-resets.

Proof: Any partially ordered rootéd graph can be transformed into a tree-like graph by splitting
nodes (see Figure 3). The desired homomorphism is the obvious one which maps a node in the
tree-like graph to the node in the original graph from which it was produced. The result then

follows by Proposition 41.

Figure 3



2.5 R-Expressions

Definition 43 Let A be a finite alphabet. An R-expression is a finite union of regular expres-
sions of the form Aya A - - - a,A, where m 20, ay,...,a,¢€A, and A,_; C A—{aq,} for

1€ism

The relationship between partially ordered semiautomata and R-expressions is mentioned in

[21].

Proposition 44 Let X G A be the language denoted by some R-expression. Then the reduced

automaton rec_ognizing X is partially ordered.

Prooft Because of the remarks following Corollary 35 we may assume the expression is of the
form AgaA] © * * GpApy v?here m 2> 0and A,_; € A—{a;} for 1 € i € m, without any loss of
. generality.

Consider the automaton A = <A, Q, qg, {¢n), o> where Q = {qq, ..., q¢m, g} and &
is defined as follows:

q; if ace A,‘
o(g,a) ={ g if a=ay
s if aeA—(A;U{a ]

o(gga) =q; forallacA
It is straightforward to show that A is partially ordered and recognizes X.
Since the reduced automaton recognizing X is a homomorphic image of A, it follows from

Proposition 33 that it, too, is partially ordered.
Proposition 45 Every ~, language can be denoted by an R-expression.
Proof: It is sufficient to show the result for every congruence class of ;. The only 5 class is

the language denoted by A. Therefore assume n > 0. Let x be the minimal element of its

35
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congruence class. If | x | = 0 then, since n > 0, x =1 = {1} which can be denoted by @".
Otherwise x =a,---a, for some a;...,a,cA. Let Ayg=2 and let A, =

—a,---a}for1 <i< m Since xis minimal, u,(1) Su,(a) S -

{aeAla; - aga ;

G palay--a_) Gup,(ay---a_a) S - &G wmpla;"-a, by Theorem 18. Hence
a;¢ A,y for 1 € i € mand thus Aya A, - * - a,A, is an R-expression. From Proposition 23 it
easily follows that if y € Aga;A; * * * @A, then yex Now let yexand, for i =1,...,m, let
¥; be the shortest prefix of y such that u,(y) = pu,(a; - - - a). Let yo = 1. Each y, is a proper

prefix of y,; and ay---a em,{a; - a4) —pma(a; - a). Thus there exist

Vo1, .., Vm €A such that y,, =yva, for i=0,...,m—1 and y = y,v, =
VoC1V1 * * * Yyn—1CmVm. Note that, from the definition of y;, vo = 1 and, since a, - - - a;v; =~ y;v;
i Yigar a, vieAfori=1,...,m Also,

ay- - @ epglay - ayy) —play - a)

=, Gvicip)) — 1,0
=y (yici-f-l) ~ K, (V,)

sothat ¢;,; = a,,; fori=0,...,m—1. Hence y € Aya,A] - * GpAp.

With this result, Theorem 26, Proposition 32, and Proposition 44, the languages defined
by the congruences —~, R-trivial monoids, partiaily ordered automata, and R-expressions are
seen to be the same. Since the set of partially ordered automata over a given alphabet forms a
Boolean algebra, the set of R-expressions (over the same alphabet) also does. This result is

used in the following theorem.

Proposition 46 Let A be an alphabet and let D = {C'a |C € A—{a}]M. Then (DUDA)B is

equal to the set of R-expressions over the alphabet A.

Proof: Note: It is convenient to consider elements of D as ‘words’ over the alphabet
{C'a|C € A-{a}}. This is reflected in the notation below.

(Q) Let weD. If w=1 then w and wA can be expressed by the R-expressions @° and A
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respectively. Otherwise w = Aja, ' -+ A4, where m > Oand g, ¢A, for 1 < i< m In
this case w=Aya, - A,2,8" and wA= A, - A,a,A which are both R-
expressions. Since the set of R-expressions forms a Boolean algebra it contains
(DUDA)B.

(2) Suppose w = Aya; * * - a,An,, Where m > 0and A,_; € A—{q;} for 1 < i £ m Clearly,
if A,=2 then weD, and if A, =A then we DA, so suppose @ = A, GA. Let
w' = Agay - Ap_1@y € D.

Claim: w=wAnN U whA
‘ bEA-A,,

Let x ¢ w. Clearly x e w'A. Now a; - - * a,,b is a subword of all words in wb A but, if
beA,, ay' - aybis not a subword of x. Therefore x ¢ wbA for b < A—A,, that is

xe |J wbA Thusw S wAN |J wbA
bEA-A, bEA-A,

Let xe w'AN |J wbA. Since x ¢ w'A, x = yz where y ¢ w’ and z ¢ A Now sup-
bEA-A,, ‘

pose a(z)N(A—-A,) = @. Then z = ubv where ucA,, bea(z)N(A—A,), and v € A.

But this implies x = yubz ¢ w'A,,bA = wbAC |J wbA which is a contradiction.
BEA-A,,

Therefore z € A, so x¢ w'A,, = w. Thus w' AN |J wbdA C w, and hence the claim is
bEA-A,,

true.

Now for be¢A—A,, whbeD and thus w=wA N |J wbAe (DUDAB. Since
bEA-A,

(DUDA)B is a Boolean algebra it follows that every R-expression is in (D UDA)B.

It is now possible to relate the family of languages corresponding to finite R-trivial
monoids to the dot-depth hierarchy. This hierarchy is defined as foilows:
By={{a} | a <« AIMB
and B;,; = BMB fori > 0.
Since the family of languages {{a}|acAM = (@'a|acA]M C {Ca|C € A—{a}}M = D,

By={l{a}|acAJ]MB C DB C (DUDA)B. Thus all languages in B, have finite R-trivial
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monoids.
Any ~ language is also an ~ language. However, the family B, is incomparable with
the family of languages with R-trivial monoids. The language Aa ¢ B, where #A > 1, has a

reduced automaton which is not partially ordered. See Figure 4. In [28, page 116], Simon shows

that for # A > 2 the language denoted by the R-expression a ‘bA is not in B,.

Finally, for any A; GA, A, = |J AaA¢B), so that any R-expression denotes a
BEA-A;

language in B;MB = B,.




2.6 Other Congruences

and = other congruences can be used to characterize the languages

Besides —~ =

corresponding to finite R-trivial monoids.

Definition 47 Let x,y ¢ A. Then x ~y and x ~5,, y if and only if for each decomposition

x = x'ax" with a € A, there exists a decomposition y = y'ay” such that x’ ~ y’ and vice versa.

Definition 48 Let x,y ¢ A. Then x <y ,and x < _ yif and only if for each decomposition
x = x'ax", with a ¢ A, there exists a decomposition y = y'ay” such that x' < y' and vice

versa.

Definition 49 Let x,y e Aand n > 1. Then x &, ¥ if and only if there exist u,v,2y,2,€ A such

]

that x = zyuz, , y = zjuvzy, uis n-full, and a(u) 2 a(v) . = is the symmetric transitive clo-

sure of = -

Note that E is the smallest congruence satisfying u 5w for all u,v € A such that u is n-full

and a(u) 2 a(v).

Definition 50 Let x,y € A and n > 1. Then x = y if and only if there exist u,v,z;,z;¢ A such
that x = zyuz, , y = zyuvz,, uis nfull, and a(u) = a(v) . =, is the symmetric transitive clo-

sure of =, .

Similarly =, is the smallest congruence satisfying u =, uv for all u,v ¢ A such that u is n-full

and a(u) = a(v).

Proposition 51 Let x,y ¢ A and n > 0. Then x ~,, y implies x % y- However x —,, y does

not imply x , 1% »

Proof: Suppose x 7., y. Let u be a prefix of x. If 4 =1 then u is a prefix of y. Otherwise

u = x'a for some x' ¢ A. Since x =5, y there exists a prefix y'a of y such that x’ ~Jy'. But ~

39
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is a congruence so ¥ = x'a ~ y'a. Similarly for every prefix v of y there exists a prefix u of x
such that ¥ ~ v. Therefore x ~ ». |
Let x = (ab)"ab and y = (ab)"ba. Then x +5, y since (ab)" ~ (ab)"b and

(ab)"a ~ (ab)". However x , 7 ».

Proposition 52 Let x,y ¢ A and n > 0. Then x = implies x — y. However x = y does not

imply x 5, .

Proof: 1t is sufficient to show that if x = uv, y = uav, and u ~ ua, where 4,v ¢ Aand a €A,
then x «5 y.

Let x = x'bx" be a decomposition of x. If x'b is a prefix of «, let y' = x'. Otherwise
x'b = uzb for some z € A. Let y' = uaz. Note that ua .~ uso y' = uaz ~ uz = x'. In both
cases y'b is a prefix of y such that y' ~ x'. By Proposition 4, y' ,_~ x'.
Now let y = y’'by” be any decomposition of y. If y'b is a prefix of u let x' = y'. If
" y'b=uazb for some z<¢A, let x' = uz Since ua ~ u, y' = uaz ~ uz = x'. Otherwise
y'b = ua. Since u ~ ua, there exist u;, ..., u, €A such that u = u; - - - ﬁ,, and a(u;) 2

2 alu,) 2 ala) = {a}. Thus acalu,), so u, = u',au”, for some u',,u", ¢ A Let
x'=uy- - u,_u', Now, from Proposition 5, uy - ty—y ,_7= Uy * " Uy, = u = y' and
Uy Uy ,,_T-. Uy u,_qu', = x' hence x' ,_— y'. In all three cases x'b is a prefix of x
such that y' ,_—~ x'.

Therefore x —; .

For n =0 note that a 5 b but a « 5. Now consider » > 0. Let x = (ab)""'a and

y = (ab)"'aa. Clearly x = y. Lety' = (ab)"'a. The only prefix of x ~ congruent to y'is

x itself, so there does not exist an x’ such that x = x'ax"” and x' .~ y'. Therefore x %, y.
Proposition 53 Let x,y e Aand n > 0. Then x < yimplies x ~ y.

Proof: By induction on n.

For n = 0 the result is trivial since x 5~ y for all xy ¢A Let n > 0 and assume the
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result is true for n. Suppose x <, y.
Let ueu, (x). Either u=1eu,(y) or u=u'a for some u'cA, acA. In this
second case there exists a prefix x'a of x such that u'eu,(x’). Since x <, y, there exists a
prefix y'a of y such that x' < y'. By the induction hypothesis x' ~ y'. Therefore

u E/-L,,(X) = I"'n(y) Then u = u'a el“n*—l(y a) ,u'n-H.(y) Hence /"‘n+l(x) /"‘n+l(y)

By symmetry p,41(¥) © pn41(x). Therefore x , ;~ y.
Proposition 54 Let x,y e Aand n > 0. Then x < yif and only if x — y.

Proof: For n > 0, x < yimplies x «3 yis an 1mmed1ate corollary of Proposition 53. From the
definitions it is clear that x <y if and only if x ~ y.

Let n > 0 and assume x 5., y implies x < _, y for ail x,y ¢ A. Suppose x ~ y. Let
x = x'ax" be any decomposition of x. Then there exists a decomposition y = y'ay” of y such
that x' | _~— »".

From Proposition 51, x ~5 y implies x , ;% ». Since x’ is a prefix of x, y' is a prefix of y,

!

—~
n—lRy’

and x' |_r~ y', it follows by Proposition 8(c) that x' , ~ »'. But x' , —~ y' implies x’
which implies x' ., y' by Proposition 52, which implies x' < _, y' by assumption.
Similarly, for every decomposition y = y'ay” there exists a decomposition x = xax” such

that x” < _ y' Hence x < y. By induction it follows that x —; y implies x < yforall n = 0.
Proposition 55 Let x,y ¢ Aand n > 1. Then x =, yif and only if x =V

Proof:
(=) Obvious.

(=) Suppose u,v ¢ A are such that u is #-full and a(u) 2 a(v). Then there exist uy,..,u, € A

such that u = u; - - - u, and a(uy) = -+ = a(u,). Since aly,) = a(u) 2 a(v), alu,v)
= a(u,) = alwu,). Therefore u=wu; - -u, = u; - u,(vu,) and w =
uy s g (uyv) % ouy - u,(w,v)u, so that u = wv. But = is the smallest

congruence satisfying » = wuvfor all u,v e A such that uis n-full and e(u) 2 «(v). Hence
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x = yimplies x = yfor all xy € A

\

Proposition 56 Let x,y e Aand n > 1. Then x =, y implies x =3 y. However x = y does not

imply x =

n+l R

Proof The proof of x 5, v implies x =) follows immediately from the fact that if u is »-full

and a(u) 2 a(v) then u 7~ uv. Now let x = a"and y = a"*! where a ¢ A. Then a" =, a"*!

n

but a” =t a"*!since a"*' e p iy (@) ~p 1 (a").

Proposition 57 Let x,y e Aand n > 1. Then x =, v implies x ~— y. However x = y does not

imply x 5, J.

Proof: Since x = implies x = from Proposition 56, and x = implies x ~5 y by Proposi-
tion 52, it follows that x = implies x —; y.
Let x = g” and y = a"*!. Clearly x = ). Consider the decomposition y = y'ay” of y

where y' = a" and y” = 1. Since the only prefix of x whose n-contents equal u,(y") is x itself,

there does not exist a decomposition x = x'ax” such that x' ~ y'. Hence x 4., ).
n +1

Lemma 58 Let n,/ > 1 and suppose uy, ..., u,v € A are such that a{u;) 2 - 2 a(y) 2

a(v) and > (n=1) (#a(u)~#a(v)+1). Thenu; - u 5 uy -+ wzforall ze (a(v)) ",

Proof: Let m; = #a(u) for i=1,...,L Then #a(up) =m 2 --- 2 m =2 #a(v). If for
each integer m, #a(v) € m < #a(uy), there are at most n—1 elements of the sequence

my, ...,m with value m, then ! < (n—=1)(#alup)—#a(v)+1). Thus there exists k,

0K k < I-nsuchthat me,; = -+ = m,,. Thisimplies a(ue,) = -+ = aliu,,).

Let xg=uy - - (xg=1 if k=0), let x,=u.,; for i=1,...,n—1, and let
Xy = Uy - 4. Also let ze (a(v))" Since a(up,,) 2 altppr) 2 -0 2 aly) 2 a(v)
2 a(z) it follows that a(u,,) = alu,, - ) 2 alz). Thus alx)) = - = alx,) 2

a(z) and hence u = xox; - - * X, =, XoX| * * X2 = uz
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Proposition 59 Let x,y e A, m = # A, and n > 1. Then x in-ym iR ¥ implies x = y.

Proof: Let | = (n—1)m+1. It is sufficient to show that x = y implies x =, ».

Suppose x == y. Then there exist uv,zy,z,€ A such that x = zyuz,, y = zyuvz, and
u 7~ uv. Without loss of generality we may assume v # 1 since otherwise x = y.

By Lemma 5 there exist uy, ..., ¢ A such that u =u; -- -y and a(u;) 2 -+ 2
a(y) 2 alv). Now #a(u)) <m and #alv) 21, so that [=(=1)m+l >
(n~1)(#a(u))—# a(v)+1) and hence, by Lemma 58, u 5 wv. But = is a congruence, thus

X = z\uz; = 7Uvzy = J.

Proposition 60 For m = #Aand n 2> 1, x ,_,~ y does not imply x =, y.

Proof: Suppose A = {ay, ... ,a,}. Now a; 33 1 but a; # 1; thus the result is true for n = 1.
Assume n > 2. For i=1,...,m define x, = (a, -+ - a)""!. Let x = x,x,,_; ' - - X; and
» = xa,. Since each x; is n—1-full and a(x,) 2 -+ 2 alx;) = {a,}, it follows by Lemma 11

that x (= ».

If x = y then there exist z;,z;,u € A such that x = z;uz,, u is n-full, and a(u) # 2.
Since a,, only occurs n—1 times in X, it is clear that g, ¢ a(u). Assume a,, ..., a;,; ¢ a(u)
forsome i1 € i € m—1.

¥ x, - x4 =vu'vy for some vy,v,u'c¢A such that a(u’) C alu) then
u'=aa;, - aga, for some j, k where 1 € j < k < i Note that none of these words are
n-full. Since t;(x, * * * X;4) = @, ¢ a(u), it follows that x; - - - x; = z',uz, for some suffix z’,
of z;. But x; - - - x; contains only n—1 occurrences of g;; therefore a; ¢ «(«). By induction,
a;¢au) fori = mm—1,...,1.

Because w ¢ A, a(u) = @, which is a contradiction. Therefore [x]=R = {x} so that

X # Y.

Lemma 61 Let uvv'eA and n > 1. If a(v) =a(v) and u , ~ ua for all aca(v) then

1

uv 5 uv'.
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Proof: Suppose xay is a decomposition of uv.
If xa is a prefix of u, say u = xaz, let x'=x and y'=zv'. Then x 2 X and
x'ay' = xazv' = uv'.
Otherwise u« is a prefix of x, soO x=uz and v =zay for some ze¢A Since
aca(v) = a(v'), v'=z'ay’ for some z',y'¢ A. Let x' = uz' so that x'ay’ = uz'ay’ = uv' and
)

~ uz' = x'.

x"”zn-i‘“n—l

Therefore for every decomposition xay of uv there exists a decomposition x'ay’ of uv’
t

such that x |, ~ x'.

By symmetry it follows that uv —; uv'.

This lemma is not true if —; is replaced by ~. For example, let u = ab, v = ab, and
v'=ba Then a(v)=al(v), u=ab{ aba =ua, and u = ab ~ abb = ub. However

uv = abab +, abba = uv'.

Definition 62 Let x,y € A. The longest common prefix of x and y, lep(x,y), is the longest u € A

such that x = ux' and y = uy' for some x',y' € A.

Proposition 63 Let x,y ¢ A, m = # A, and n > 2. Then x «— y implies x

(n-1)m+1 n% V.

Proof: By induction on x| + Iyl — 2ilcp(e,p)!.
Let /= (n—1)m+1. Suppose that x~y and if x', y'eA are such that
xl +1y1 = 2llep(x’.yM < Ixl + Iyl = 2llcp(x,y)l, then x' — y' implies x’ =, ¥'- There are
four separate cases to consider.
1. Ixt + Iyl = 2llcp(x,y)1 = 0 if and only if x = y. In this case the result is triviaily true since
=, is reflexive.
2. Suppose x is a proper prefix of y; that is, y = xz for some z ¢ A™.
(@) If #a(z) =1 then z =a’" for some acA, r > 1. Since y = xz = xaa’~! there exist
uveA such that x = uav. and u ,_;~x Lemma 5 implies that there exist

uy, ...,y €Asuchthat w =u; - - w_jand a(u)) 2 -+ 2 aly_) 2 alav). Let
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u=av. Now a(y) 2 a(z) and / = (n=1)m+1 > (n—=1)(#alu))—#a(z)+1) so, by
Lemma 58, x =, X2 =, as required.

(b) Otherwise #a(z) > 2. From Proposition 51 x , 3 ¥ = xz so, employing Lemma 11,
there exist uy, ..., w_ye Asuch that x = u) -+ - y_;and a(uy) 2 -+ 2 aluy_y) 2
a(z). Since n 22, #alw)<m and #alz) 22, -1 = (-)m >
(n=1)(#alu)—#alz)+1) so x =, X2 = y by Lemma 58.

3. If y is a proper prefix of x the result follows from 2 and the fact that — and =, are sym-
metric.

4. Otherwise let # = Icp(x,y). Then x = uav and y = ubw where v,;v €A abecA, and a & b.
Since x <7y there exist X1,X2,¥1,¥2 € A such that y = y1ay;, X =x1bx;, y| 7 u, and
x| - U
(@) If y,a is a prefix of « then by Lemma 13 u 7% ua, so from Propositions 23, 52 and 59

u+-ua and u 5, ua. Since -7 and =, are congruences, uv <7 uav =x -7y and

uv = uav = x. Now luvi + 1yl — 2llcp (uv,y)! < Ix| + Iyl — 2llcp (x,¥)! so by the in-
duction hypothesis uv =, ¥, and hence x = V.

(b) If x,bis a prefix of u, then using the same arguments as above, x =

(c) Otherwise ub is a prefix of y, and ua is a prefix of x,;, say y1 = uby; and x; = wax;.
Since # 7~ yy = uby; and u _~ x| = uaxy, u ;- uax3by;. By Lemma 5, there exist
uy, ..., u-jeAsuchthat w = uy---u_jand auy) 2 -+ 2 aly_) 2 alaxsbyy).
Now . #alax3by;) 22, and n 22, and #a(u) <m so I-1 = (n=)m >
(n=1)(#alu)~#alax;by;)+1). Hence, by Lemma 58, u 5w for  all
z ¢ (alax;byy) "

Let x' = ubxiax,. Since bxia,ax;b ¢ (a(ax;by;))”, ubx;a =, 4 5, uax;b, so that

x = uaxibx, =, ubxiax; =x'. Now afax;b) =a(bx;a) and wuc _~u for all
c ealax;b) since u ,_~ uax;by;, so by Lemma 61 uaxyb ~— ubxja. Therefore x =
uax;bx, ~subxiax, = x'.

But x =y, so x'=y Since llep(x',y)l > llep(x,y)! it follows that



46
Ix + Iyl = 2llep(x’ . p)! < Ixi+ Iyl = 2llcp(x,y)!. Hence by the induction hypothesis

x' = yand thus x = ». .

Note that the above result is not true for n = 1. For example, ab — ba but ab Z ba.

Also, x +g,_;,, ¥ does not imply x = ». Otherwise from Propositions 23, 52, and 53, it fol-

lows that x ,_,== » implies x nmlmwildr y implies x 7 _,m ¥ implies X =y implies

x =, y, contradicting Proposition 60.

The relationships between the various congruences can be conveniently summarized in

the following diagram:

m= #A

———— valid for n20
valid for n 2|
reeeeseeee Valid for n22

s 000 c0ssemre shses sea0 2 ve v

X(n-Dm+l Y DX Y

Figure 5

There is one further congruence which shouid be mentioned. In [5] Brzozowski describes
a congruence @. which he proves characterizes the family of languages of R-trivial monoids
over a two-letter alphabet. It is routine to verify that, in this case, x =, y implies x &; y, and
that x @, y implies x =, y for all x,y ¢ A. However, for an alphabet of three or more letters,

& no longer ‘works’.
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Proposition 64 Let # A 2 3. There does not exist n 2> 1 such that x & y implies x , y for all

Xy €A

Proof: Consider x = (ab)”" and y = (ab)"c. From the definition of & it follows easily that

x ©; y. However it is clear that x 4, ysince a(x) # a(y).



2.7 Summary

Theorem 65 Let X C A be a regular language, let M be its syntactic monoid, and let
A = <A,Q,qq,F,0> be the reduced automaton accepting X. The following conditions are
equivalent.
MI1. M is R-trivial.
M2. For all f,g,h €M, fgh = fimplies fg = f.
M3. For all idempotents e e M, eM, = e.
M4. There exists an n > 0 such that for all fgeM, (fg)"f = (fg)".
X1. X is an - language for some n 2 0.
X2.Xisan = language for some n 2 0.
X3. X is an «, language for some n = 0.
X4. X is an < language for some n 2 0.
X5. X is an =, language for some n > 1.
X6. X is an =, language for some n 2 1.
El. X can be denoted by an R-expression.
E2. Xe(D U DA)Bwhere D ={C'a |C C A - {a} M.
Al. A is partially ordered.
A2. For all x,y € Aand for all ¢ €Q, o(q,xy) = ¢ implies o(g,x) = q .
A3. II"(A) has an empty state set for some n 2> 0.
A4. There exists an n > 0 such that for all x,y € A, x n-full and a(x) 2 a(y) imply
a(g,x) = a(gxy) forall g Q.
AS. For all x € &, o(g,x) = o{g,xx) for all ¢ € Q implies o(g,x) = o(g,xa) for all g €Q,
a e a(x).

A6. A is covered by a cascade product of half-resets.
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CHAPTER 3 LANGUAGES OF L-TRIVIAL MONOIDS

The L-trivial property is dual to that of R-trivialness. As a result, characterizations analo-
gous to those in Theorem 2.65 hold.

Definitions for the corresponding congruences are formed by using .sufﬁxes in place of
prefixes. More precisely if x,y € A and n > 0 then x -7 v if and only if for each suffix u of x
there exists a suffix v of y such that ¥ ~ v and vice versa. The five other congruences ( =5
., %, 5.ad = ) have similarly modified definitions.

If A is the automaton of a language X with an L-trivial syntactic monoid then A®, the au-
tomaton recognizing X?, is partially ordered. However it is possible to describe these automata

more directly.

Proposition 1 Let S = <A, Q, o> be a semiautomaton and let M be its transformation monoid.
The following are equivalent.
1. M is L-trivial.
2. There exists an n > 0 such that, for all subsemiautomata T = <C, P, pg 7> of 8§
which are connected and all n-full words w with a(w) = C, (p,w) = 7{(p’,w) for all
g,p' eP.
3. There exists an n >0 such that for all x,y € A, x nfull and a(x) 2 a(y) imply
o(gyx) = o(g,x) forall g €Q.
4. If xeA then a(gx) = a(gxx) for all ¢ ¢Q implies o(g,x) = oc(gq,ax) for all

g€Q, acalx).

Proof:
(1=2) Suppose M is L-trivial. By the dual of Lemma 2.25 there exists an n > 0 such that for
all x,y € A, x -~ yximplies x = yx. Let T = <C, P, p, 7> be a subsemiautomaton of

S which is connected, let p,p’' ¢ P, and let w be an n-full word with a(w) =C .
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Since T is connected there exist 4,v ¢ C" such that 7(pg,u) = pand 7(py,v) = p'.
Now wis n-full and u,v € (a{w))* so uw ~ wand vw ~ w . This implies that uw = w
= ywand thus 7(p,w) = r{pg,uw) = o (po,uw) = o (py,vw) = 1(pg,yw) = 7(p’, w).
(2%3) Let n > 0 be such that, for all subsemiautomata T = <C, P, p, > of S which are
connected and all #full words w with a(w-) = C, r(p,w) = r(p’,w) for all pp'¢P.
Suppose x is ~full and a(x) 2 a(y). Let g ¢Q. Consider the subsemiautomaton
T = <C,P, g, 7> of S where P is chosen so that T is connected. Since a(x) 2 a(y),
7(q,y) € P. And, because x is n-full, it follows that o {(gyx) = (g yx) = r(r(q,y), x)
= r(g,x) = a(g,x).

The proofs of (3 = 4) and (4 = 1) are the dual of those in Proposition 2.28.

Proposition 2 Let S = <A, Q, o> be a semiautomaton and let M be its transformation monoid.
If M is L-trivial then for all x,y e A, ¢¢Q, o(gx) = o(gxx) = olgxy) and o(gy) =

a(gyy) = a(qyx) imply o(g,x) = o(g.y).

Proof* Suppose M is L-trivial. Let xy ¢ A, Vq € Q, be such that a(g,x) = o(gxx) = o(g,xy)
and o(q,y) = o{(qyy) = o(g,yx). Then o(q, (xy)") = a(g,x) and o (g, ()x)") = o (g,y) for all
n > 0.

Since M is L-trivial, it follows from Proposition 1 that there exists an n > 0 such that for
all x,y € A, x nfull and a(x) 2 a(y) imply o(g,yx) = o(g,x) for all g ¢ Q. Now (xy)" is n-
full and «((y)M 2 a(y) so o(gx) = o(q (Y)Y = algy(x)) = o(g Ox)"y) =

olo(g x)", y) = a(o(gy), y) = olqyy) = a(qy).

Note that these automata do not satisfy the property that for all x,y ¢ A and all ¢ €Q,
o (g,yx) - q implies o(gx) = g4 For example, consider the semiautomaton
<{a,b}, {40,91,92}, o> illustrated in Figure 1.

It is easily verified that this automaton satisfies a(g,yx) = o(g,x) for all ¢ ¢ Q and all

x,y € A such that x is 2-full and a(x) 2 a(y). However a(gg,aba) = g9 = q, = o(gq.a).
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Figure 1

The final theorem, analogous to Theorem 2.65, summarizes the characterizations of

languages with L-trivial monoids.

Theorem 3 Let X C A be a regular language, let M be its syntactic monoid, and let A = <A,
Q, 99 ,F, o> and A’ be the reduced automata accepting X and X” respectively. The following
conditions are equivalent.
MI1. M is L-trivial.

M2. For all figheM, hgf = fimplies_gf = f

M3. For all idempotents e M, M,e = ¢ .

M4. There exists an n > 0 such that for all f,igeM , g(fg)"= (f3)".
X1. X is an ~ language for some n > 0. |

X2. X is an = language for some n = 0.

X3. X is an - language for some n > 0 .

X4. X is an =, language for some n = 0.

X5. X isan = language for some n 2> 1.

X6. X is an = language for some n > 1.

»

El. X can be expressed as the finite union of regular expressions of the form Aya A * * * g,A,



52
wherem >0, a1, ...,a,cAand A, C A-{glforl <i<m
E2.Xe(D U AD)Bwhere D ={aC’ |CC A-{a}]IM.
Al. A? is partially ordered.

A2. There exists an » > 0 such that for all subsemiautomata T = <C, P, py, 7> of A
which are connected and all n-full words w with a(w) = C, r(p,w) = 7(p’,w) for all
p, p'eP.

A3. There exists an n >0 such that for all x,y € A, x nfull and a(x) 2 a(y) imply
a(gyx) = a(g,x) forall q €Q.

A4. If x € A then a(g,x) = o(g,xx) for all ¢ ¢ Q implies a(g,x) = o(g,ax) for all g €Q,
acalx) .

AS. A” is covered by a cascade product of haif-resets.



CHAPTER 4 LANGUAGES OF G-TRIVIAL MONOIDS

4.1 Basic Congruences

In order to produce a congruence which is a generalization of the congruences in the pre-
vious two chapters, it is necessary to make both prefixes and suffixes significant in its defini-

tion.

Definition 1 Let x,y e Aand n > 1. Then x =y if and only if there exist z;,z,,4,v,w € A such

that x = zyuwz,, y = zjuvwz,, u and w are n-full, and a(u) = a{w) 2 a(v). £ is the transi-

tive closure of =, and = is the symmetric transitive closure of 5.

Note that 3 is the smallest congruence satisfying uw 5 wwwfor all uvwe A such that u

and ware n-full and a(u) = a(w) 2 a(v).

Definition 2 Let x,y ¢ Aand n > 1. Then x = y if and only if there exist z;,z5,4,v,w € A such
that x = zyuwzy, y = zyuvwz;, u and w are n-full, and a(z) = a(w) = a(v). = is the sym-

metric transitive closure of .

Similarly = is the smallest congruence satisfying uw = uvw for all u,v,we A such that u

and ware #-full and a(u) = a(w) = a(y).

Definition 3 Let n > 1. Then =%, is the smallest congruence satisfying u =; uvufor all u,v ¢ A

such that # is #-full and a(u) 2 a(v).

If uis (n+1)-full then it is also n-full. Hence x no55 ¥ implies x = y, x , = » implies

x = y,and x | == yimplies x =, yforall xy e Aandall n > 1.

Proposition 4 Let n 2> 1 and u,v € A be such that a(u) 2 «(v). Then

(a) uZn = U2"+1,
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2n — ,,2n,,,,2n
() u" = uvu,
n oo +1
(¢) u" = u", and

d) u” =, u™vu”
nG

Proof* (a) and (d) follow immediately from the fact that u” is »-full. Since u?" = u"u” =

ny2n,,n LYY DY Ny, RGN NPT N L 2n,,,,2n R oo AR == gy fy2e0 A+l n+l o~ o+l
WUTUT R uTUTUTUT = utuTUU T T uttvu andunGuunGuuu===u u U,

(b) and (c) hold.

These three congruences are closely related. In fact, the families of languages {X | X is a
5 language for some n > 1}, {X | X is a = language for some n > 1}, and {X |X is a =

language for some n > 1} are the same.
Proposition 5 Let x,y ¢ Aand n 2> 1. Then x 3 yif and only if x = ».

Proof: Clearly x = y implies x 3 ), S0 suppose x = y. Then there exist z;,z,,4,v,w € A such
that x = z;uwz,, y = zjuvwz,, u and w are n-full, and a(u) = a(w) 2 a(v). Now a(u) =
a(w) = a(uv) = a(vw) and vwis n-full, so x = zjuwz, = zju(uv)wz, and y = zju(vw)z, =
zyuu(vw)z,. Therefore x =.y. Since =, is the symmetric transitive closure of %, it follows

that x = yimplies x = y.
Proposition 6 Let x,y ¢ Aand n > 1. Then x ,=; y implies x =, y.

Proof: Suppose u,v € A are such that u is 2#-full and a(u) 2 «(v). From the remark following
Definition 2.6 there exist u, ...,u;, €A such that u = u; - - uy, and a(y) = --- =
aluy,). Letu' = uy---u,and u”" = u,,| - - Uy, Then u' and u" are n-full, u = w'u", and
a(u) = a(u") = a(u"w'). Thus u = u'u" = u'(u"vu)u" = wvu. Since ,=; is the smallest
congruence satisfying » ,=, wvu for all u,v € A such that u is 2s-full and a(u) 2a(v), it follows

that x ,=% y implies x = yforall x,y ¢ A.

Proposition 7Let x,y ¢ Aand n > 1. Then x = y implies x =% ».
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Proof* Let u,v,w € A be such that x and w are n-full and a(u) = a(w) 2 a(v). Since a(u) 2

a(wuww), u =% uwuvwu.  But u = ouwu, w 5 owuw, and =, is a congruence; thus

uw = uwuywuw =< uvw. Since = is the smallest congruence satisfying uw = uvw for all
u,v,w € A such that 4 and w are n-full and a(u) = a(w) 2 «(v) it follows that x = y implies

x = yforall xyeA

Like . and -, every congruence class of = has a unique element of minimal length.

This is now shown.

Lemma 81f n > 1 and x,x",x" ¢ A are such that x = x" and x' & x", then there exists x; ¢ A

such that xo % xand xp % x".

Proof: Suppose xx'.x"e¢A are such that x = x" and x' 3 x"”. Then there exist
wu',vv' ,w,w',z21,2'|,27,2'; € A such that x = zjuwz,, x' = z';u'w'z'y, zyuvwz, = x" = z'\u'v'w'z',,
a(u) = a(w) 2 a(v), a(u) = a(w) 2 a(v), and 4, u', w, and w’' are r-full.
The proof proceeds by considering various cases.
1. z'yu' is a prefix of z;u.
1.1 zyuvis a prefix of z'iu'v'.
Here z;u = z';u'r and wz, = sw'z’, for some r;s ¢ A Then z'\u'v'w'z’; = z;uvwz, =
z'1u'rvsw'z’; so that v’ = rvs. Let xo = x'. Since a(u’) = a(w') 2 a(v) 2 a(rs), xo =

!

zhu'w'z'y & z'\u'rsw'z'y = zjuwz; = x. And, since % is reflexive, xo % x'.
1.2 z'1u'v’ is a prefix of z;uv.
1.2.1 z';u'v' is a prefix of zyu
Since u is n-full, there exist uy, ..., u, € A such that u = u; - - * u, and a(uy;) =
<o+ = a(u,). If z/; = z;q for some ¢ ¢ A, then z,qu'v' = z';u’v' is a prefix of
z;u in which case a(u’) € a(u). Otherwise z; = z';q for some g ¢ A. Hence, if

zyuy = z'iqu; is a prefix of z'\u'v'w’, then a(u) = a(u)) C a(u'v'w) = alu).

Thus a(u) € a(u') and a(u”) € a(u) imply that z'\u'v'w' is a prefix of zqu;.
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1.2.1.1 z'yu'v'w' is a prefix of z,u;.

There exists 7' € A such that z';u'v'w'r’ = ziuyand z'; = r'uy - - - u,ywz,.

1.2.1.1.1 z';u'v' is a prefix of z;.
Let s'c A be such that z; = z'u'v's’ and s'u; = w'r’, let r; =
z'\u's’, and let ry = u;. Then z';ju'w'r' = z' u's'uy = ryr, and
a(fz) == a(ul).

1.2.1.1.2 z; is a prefix of z';u’.
Let s'c A be such that z'ju’ = z;5’ and s'v'w'r’ = uy, let r| = z,,
and let r, = s'w'r’. Then z'\u'w'r' = z;s'w'r’ = r,r, and, since
a() € aw), alry) = al(s'w'r) = a(s'v'w'r) = alu).

1.2.1.1.3 z; is a prefix of z'ju'v' and 2’|’ is a prefix of z,.
Let 5,5' € A be such that z; = z'\u’s, u; = s'w'r’ and v' = ss', let
ry = z'yu', and let ry = w'r’. Then z'\u'w'r’ = r,r, and, since
a(s) € a(v) C a(w), alry) = a(w'r) = al(s'w'r) = aluy).

In all three cases there exist 7,7, € A such that z';u'w'r’ = r;r; and a(r,) =

a(u;). Note that ryu, - - - u, is n-full and a(ryuy - - - u,) = a(uy - - - u,)
= a(u) = a(w). Let xo = z\u'wr'uy---u,wz,, Then x4 =
Ziu'w'r'uy - uywzy B oz WV'W Uy s ugwzy = zjuwz; = x and xo =
Zhu'wr'uy o uawzy = rrqup o ugwzy & rinuy o ugywz; =
Zu'w'r'uy - - upywzy = 2 u'w'z'y = x'.

1.2.1.2 a(u) = a(u).
1.2.1.2.1 z'iu’v'w' is a prefix of z;.
This is a special case of 1.2.1.1.
1.2.1.2.2 zyuis a prefix of z'ju'v'w'.
Since z'ju’v'is a prefix of z,u, there exists p € A such that z'ju'vp =

zyju and wZz'y = pywz,. But zyu is a prefix of z'juv'w} thus pis a

prefix of w' Let xo = z'ju'wz,. Now ﬁ(p) C alw) = au) =
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a(w), so that a(vp),a(pv) C a(u’). Hence x, = z'ju'wz, =
Zuvpwz, = zyjuwz, = x and x, = z'|u'wz, = Zupwwz; =
Zuwz, = x.
1.2.1.2.3 z; is a prefix of z';u'v'w’ which is a prefix of z;u

In this case there exist rsec¢A such that ir =z uvw),
z'iu'v'w's = ziu, and z’; = sywz,. Therefore z;rs = z;u so that a(s)
C au) = a(w) = a(u’). Let xq = z';u'wz,. Then x4 = z’ u'wz,

1’ (Yws)wz; = ziuwz; = x and xo = Zuwz, %

=
21 (wWsv)wzy = Zju'w?y = x.
1.2.1.3 a(u) G alu).
This implies that u'v'w’ does not contain any y; as a contiguous subword. The
four subcases below consider the possible relationships between u'v'w’ and
the u;’s.
1.2.1.3.1 z'yu'v'w' is a prefix of zju;.
This is just case 1.2.1.1.
1.2.1.3.2 There exists i/, 1 € i < n, such that z'| = zju;- - u_yr, 2’y =
Sty - v c UyyWZy, and u; = ru'v'w’s for some r,s € A.
Let xq=zjuy - W_jruwsu.; -+ * u,wzy. Since a(u’) = a(w’)

2 a(v) it follows that a(ru'ws) = a(ruvws) = alu).

Therefore Uy W ruwsuy - - u, is n-full and
aluy -+ - wyruwsu - - - u,) = oa(u). Now this implies
that X = Zyuy W rUWSU Ly U, W, =
ZyUy U TUY WSy U W2y = ZyUy Ul U, W2y
= ziuwz; = x and Xo = ZyUy - U lUWSU U W2y
Zyly o W rU WUy U, yWZy = Zu'wZy = X

1.2.1.3.3 There exists /, 1 < i < n—1, such that wu,., = ruvws, z'; =

zyuy - wyr, and 2, = Su;.; -+ -+ u,vwz, for some r,s € A.
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Let xo = zjuy =+ * Ui ruwWsu;y -+ - u,wzs.
1.2.1.3.3.1 u; = uv'w'; and u;.,; = w';s where w' = w'iw';.

Since a(v) € a(u), alruw') = alruvw') = al(y,).

In  addition, a(w’y) = aluLy). Hence
Uy« W ru'w'su,, -+ u, is n-full.
1.2.1.3.32 u; = ru'y, u; = u'yv'w's, and ' = u'ju',.

The proof is analogous to that of case 1.2.1.3.3.1.
1.2.1.3.3.3 u; = ru'v'l, U = V’z, and v’ = Vllvlz.

Since a(u) 2 a(v) 2 alvy), alru) = a(ruv') =

a(y;). Similarly, a(ws) = a(w,y). Thus
uy -+ ui_lm/w’sdi+2 -+ - u, is n-full
In all three cases, w; - - - w_yruwsu;., -+ u, is n-full. Clearly
aluy - - - w_yru'w'su;,, - - - u,) = a(u) = a(w). Therefore
Xo = Zyly " U FUWSUy C 0 UpWEy

Bz U UV WS U W2y
= (Ut U Uil Uy U W2 TR 2 UWZY R X
and xg = zyUy * c U FUWSU g 0 * 0 U W2
B ozjUy U TU WSl U, VWY = 2 uWZ ) = X

1.2.1.3.4 u'v's is a suffix of u,, for some prefix s of w) and wz’, = svwz,.
Since u'v’s is a suffix of u, there exists r ¢ A such that u, = ruvs
and z';y = zyu; -+ - Up—yr. Since a(s),a(v) C a(w) = a(u),
a(ru’) = alruvs) = a(u,). Hence u, - - u,_ ru’is nfull and
aluy -+ - up_yru’) = al(w). Let xg = zju; - - * u,_yru'wz,. Then
Xo = ZyUyccc Uperuwzy E ozt (sV)wz, = Zu'wz)

’

= x| since al(sv) € a(w) Uealy) < alw). Also x

= zyuy - Upruwzy, F njuy ot (Vs)wzy =

ZuUy C t UgoUgWZy = Z|UWZ, = X, since a(v’s) C a(w) C a(w).
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1.2.14 a(u) Gau).
Since z'ju'v' is a prefix of z;u, vwz, is a suffix of w'z’,. The result then fol-
lows by symmetry from case 1.2.1.3.
1.2.2 zyu is a prefix of z'ju'v'.
Here there exist r,7'¢ A such that r' i§ a prefix of v/, ris a suffix of v, z;u =
zha'r', r'vwzy = v'w'z'y, zyuv = z'\u'v'r, and rwz; = w'z';. Let y"' = zjurwz, =
z'yu'r'w'z,, Now x = = y',x = y", and z'ju’r’ is a prefix of z;4, so that the resuit
follows from case 1.2.1.
2. zyuis a prefix of z'ju’'.

This case is completely symmetric to case 1.

Proposition 9 Suppose n 2 1 and x x =0 If x is an element of 1ts class with minimal length,

then x = ».

- Proof: If x = then there exist m‘ > 1and zy, 2y, ...,2, €A such that x = z;, y = z,, and,
fori=1,...,m, either z;_; Bz 002z & Ziy

The proof proceeds by induction on m. If m = 1 then either x Zyory £x In the
latter case, since x is minimal, x = y. Hence x $ ». Assume the result is true for m—1.

If z_,; =z for i=1,...,m, then x é y by definition. Otherwise there exists k,
0 < k < m—1, such that x % z but z, % z,;. Note that from the proof for m = 1, x % z,
sok 2 1.

Since zi4; 3, 7 and z_; X %, it follows from Lemma 8 that there exists z';_; € A such
that z'y_y & z4; and 24, % z-;. Continuing inductively for /i=k-2,...,0, since

Z'im % Zi+1 and z; = 74, there exists z'; ¢ A such that 2’ i B z';4 and 2'; i Bz

Letz', =z, fori=k,...,m—1. Nowz, 2 zo = xand x is minimal, so z’y = x. Thus

z', 2'y,...,2' y—y are such that z'y=x, 2’ =12, =y, and, for i =1, ...,m—1, either

z'i1 & z'jor z'; = z';_;. By the induction hypothesis, x £ .
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Corollary 10 Every congruence class of s, n 2 1, contains a unique element of minimal

length.

Proof: Suppose n > 1 and x,y ¢ A are such that x =y and x and y are both elements of

minimal length. Hence x| = iyl and by Proposition 9 x ,% y. From Definition 1, if z,z' ¢ A

then z = z' implies Izl < 12’l, with equality if and only if z = z'. Since "é is the transitive clo-

G o

sure of =, it follows that x = y.

The following is an algorithm which, given x, transforms it into the unique minimal ele-

ment of [x]= .
nG

Algorithm 11 Find the unique minimal element of [x] =

for each C C a(x) such that C = & do
for each decomposition x = z,yz, such that y is 2n-full, a(y) = C, t,(z;) ¢ C, and f,(z,) ¢C
(note that 1 ¢C) do
let u be the shortest prefix of y such that u is n-full and a(u) = a(y).
let w be the shortest suffix of y such that wis #-full and a(w) = a(y).
let v € A be such that y = uvw.

Replace x by zjuwz,. Note that since uw % wvw =y, zyuwz; % x.

By Lemma 8, the order in which ‘pieces’ are removed from a word is irrelevant. Also, it
is clear that if x = zyz; = z'\y'z’; where a(y) = a(y) and 1(z), fi(zs), 1,(Z'),
fi1(z'y) ¢ a(y), then either z'\y’ is a proper prefix of z;, y'z’; is a proper suffix of z,, or z; = z'y,
y=y',and z; = z',.

To prove the correctness of the algorithm it remains to be shown that if x = z,uvwz, can-
not be written in the form z'ju'v'w'z’y, where u’ and v’ are n-full and a(u) = a(u) = a(w)
2 a(v) # 2, then neither can z;uwz,.

Suppose x cannot be written in the above form but z;uwz, can. That is, zjuwz, =
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z'\u'v'w'z'y where u' and w’ are n-full and a(u) # a(u') = a(w') 2 a(v') = 2.

If zyuv'w'is a prefix of zyu, say zyu = z'ju'v'w'r, then x = z'yuv'w'vywz, contrary to the
assumption. Similarly uv'w?’, is not a suffix of wz,. Therefore z;u is a proper prefix of
z\uv'w' and wz; is a proper suffix of u'v'w’z’; so that there exist r,s ¢ A* such that z/ju’v'w’ =
zyus, 52y = wzy, uVWZ') = rwz,, and z';r = zyju. Now z'|uv'w’ = zjus = z';rs so that uy'w' =
rs.

If a(w) = a(u) € a(u’) = a(u'v'w') = a(rs) then u is not a suffix of r and w is not a
prefix of s. But this implies that ris a suffix of u and s is a prefix of w so that a(u) = a{uw)
2 alrs) = au'v'w).

Since u is the shortest n-full prefix of uvw which contains every letter in «(uvw) it follows
that 4 = w,a; - - - u,a, where Ul oo Uy €A ay,...,8,€Aand a(y) Galya) = alu) for
i=1,...,n Similarly w = byw,--- b,w, where wy,...,w, €A, by,...,b,c¢A and a(w,)
Galbw) = a(w) = a(u) fori=1,...,n However @ = a(rs) G a(u) = a(w); therefore
r is a proper suffix of u,a, and sis a proper prefix of b;w.

Say r = u',a, and s = byw'| where u’, is a suffix of u, and w'; is a prefix of w,. Then
u'v'w' = rs = y',a,b,w'\. Since g, ca(uvw) = a(u) = a(w) 2 a(v) and a, ¢ a(u)),
uha, is a prefix of «’. Similarly b,w’, is a suffix of w’. Therefore u’ = u'ya,, w'= bw'y, and
v’ = 1, contrary to the assumption that a(v") # @. Hence a(u) 2 a(u) 2 a(v).

There are three cases to consider.

LI r=u' and s = u'yv'w), where u’ = w'ju'y, let u” = u'jvu'y, v" = v/, and w” = w’ Since
a(v) € a(u’) it follows that a(u”) = a(u’) = a(w”) and u”is r-full. Then x = z uvwz, =
Z'yrvsz'y = z'wu'yvu'yv'wz’y = z'\u"v"w'z’, which contradicts the assumption that x cannot be
written in this form.

2.If r=u¥v'| and s = v',w) where v' = v'|v, let u” = u/, v’ = v,y and w" = w’ Since @
# a(v) € a(w) and a(v) € a(u), @ = a(v") € a(u”). Then x = zyuvywz, = z';rvsz’y =
z\uv'\whw'z'y = zu"v'w'z’, which contradicts the assumption that x cannot be written in

this form.
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3. For r = uv'w'; and s = w’, where w' = w';w’, the argument is similar to case 1.
1 2 W2
7 7!

Therefore if x cannot be written in the form z'juv'w’2’,, where «’ and v’ are n-full and

a(u) = a(u’) = a(w) 2 a(v) # @, then neither can z;uwz,.

Example Let x = abaaachccaab and n = 1.

Consider the non-empty subsets of a(x) = {a,b,c} in the following order: {a,b,c}, {a,8}, {b,c},
{a,c}, {a}, {8}, {c}. Let z;uvwz, be any decomposition of x such that uw is 2-full and a(v) C

a(u) = a(w). These decompositions are illustrated in the following table.

subset decomposition of x replace x by
z u v w z5
{a,b,c} 1 abaaac bc caab 1 abaaaccaab
{a,5}
{b,c}
{a,c} ab aaac 1 caa b
{a} ab a a a ccaab  abaaccaab
abaacc a 1 a b
{8}
{d abaa ¢ 1 c aab

-

Therefore the unique minimal element 7 congruent to abaaacbccaab is abaaccaab.

Proposition 12 Let n > 1 and let Ag(A,n) = max{lx! | x ¢ A and x is the unique minimal ele-

ment of its = class}. Then = is of finite index for any given alphabet A and, furthermore,

(2n)#A~1
2n—1 |

Ag(A,n) = Zn[
Proof: By induction on #A.

If #A = 1, say A = {a}, then the 5 classes are {1}, {a} , ..., {4 and {a’| i > 24}

1_

Thus = is of finite index on A and A(A,n) = 2n Qm=t .
G 2n-1

Assume the result is true for alphabets with cardinality #A — 1. For a ¢ A, let

y € (A—{a}) " be such that y is the unique minimal element of [y]EG and Iyl = Ag(A—{a},n).

Suppose x € A is the unique minimal element of [x]= . If xis not 2»-full then there exist
nG
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Xl oo Xpp €A and @y, ...,3,€A where 0K m <2nm X =x{a1 " XpdnXpes,
a(xa) =alx) for all i=1,...,m and alx) Galx) for i=1,...,m+1l. Let
A+t € @(x)—a(x,.;). Consider x; where 1 < /i < m+1. If Ixl > |yl then there exists
x'ie(A—-{a;})" such that ;c',- = x and x| <lIxl. But = s a congruence so
X1@y " Gy X'y X F X1@1 i Xi@; 0 Xy = X Since Ixyay - - agoyxia; - -

Xm+l < Ix! this contradicts the fact that x is the minimal element of [x]= . Therefore
nG

m+1 .
Ix;] < Iyl which implies Ix| < m+ Y iyl = m(1+ly) < 2n(1+iy)).

i1

Now consider the case when xis 2n-full. Then there exist xy, .. ., X,x'l, . . ., X' .2 € A,

and ay,...,a,a’,...,a', €A, such that x = xa; - - - x,@,2a',x', - - - a'1x'; and a(x;) =
alxa) = alx) = ala’;x’)) # a(x’;) fori=1,...,n As above, it follows that Ix], 1x’;] <
lylfori=1,...,n Since x,a; " - x,a, and a',x', - -+ a';x'| are n-full and a(xa; - - - x,a,)

= ala',x', -+ a'1x') = alx) 2 a(2), if z # 1 then (xa; - - - x,a,) (@' ,x', - - - @'1x')) =

n
x. This contradicts the minimality of x. Thus z = 1, x| = Y Ixal+la’x'}| € 2n(1+Iyl), and,

im1
since x was an arbitrary minimal element, Ag(A,n) < 2n(1+1y).

Let x = (ya)™ay)”. If x is not the minimal element of [x]= then there exist
nG

u,v,w,21,z; € A such that x = z,uvwz,, u and w are n-full, and a(u) = a(w) 2 a(v) = 2.
Now (ya)” is the shortest n-full prefix of x and (ay)” is the shortest a-full suffix of x contain-
ing all the letters in a(x); therefore a(uvw) ¢ a(x). If a¢a(uvw) then acafu) and
a ea(w) and, since a(v) # @, it follows that uvw = zjayaz, for some z; z,¢ A But then
a(uvw) 2 alay) = afx), which is a contradiction. Therefore a(uvw) S a(x)—{a}, so that y
= zsuvwzg for some zs, zg € A. However this implies that zsuwzg 2 y which contradicts the fact

that y is the minimal element of [y]= .
G

Therefore x is the minimal element of [x]= and Ag(A,n) > Ix| = 2n(1+yl). Thus
G

n
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Ag(A,n) 2 2n(1+lyD) = 2n(Ag(A—-{a},n)+1)

- 2n[2n{ @m** -1,

2n—1

5 | @Qnr)*A-1
2n[—-—————2n__1 .

Since there are only a finite number of words of length less than or equal to Ag(A,n) it

follows that = partitions A into a finite number of distinct congruence classes.

%



4.2 G-Trivial Monoids

Finite J-trivial, R-trivial, and L-trivial monoids are characterized by the properties
eM, U M,e = ¢, eM, = ¢, and M,e = ¢, respectively, for all idempotents e ¢ M. A natural

generalization is the the following.

Definition 13 Let M be a finite monoid. Then M is G-trivial if and only if eM, N M,e = e for

all idempotents e e M.

As with the three other families of monoids there are various alternative characterizations

for the family of G-trivial monoids.

Theorem 14 Let M be a finite monoid. The following conditions are equivalent.
1. M is G-trivial.
2. eM, e = e for all idempotents e ¢ M.
3. There exists an n > 0 such that for all f},...,f,eMand all ge{f, ..., )",
o fd8Ur e fud = (f1o o Sd"
4. For all f,g,hk ¢ M, fghkf = fimplies fgkf = f.

Proof:

(1=2) Suppose e ¢ M is idempotent andf ¢ eM,e. Then f = ege for some g ¢ M,. But e €M,
so eg, geeM, Therefore f = e(ge)eeM, and f = (eg)lecM,e so that
feeM, N M,e. Since M is G-trivial, f = e.

(2=1) Suppose e ¢M is idempotent and feeM, N M,e. Then f = eg = he for some
g&h e M,. Since eis idempotent, f = eg = eeg = ehe ¢ eM,e. Therefore f= e

(2>3) Let f,...,fncMand let gec{f},...,fn)". Since M is finite, there exists an n > 0
such that e = (f, - f,)" is idempotent. Now fi, ..., ,€P, so geM,. Thus
U1 S8 fa) = ege=e= (fi - f)"

(3>4) Let fghkeM be such that fghkf = f Then f = (fghk)"f, so fgkf =

65
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[(feni) ") fek [ (fehi) "f] = [(fehk)"(fzk) (fghk)"\ f = (fghk)"f = f.

(4=2) Suppose e ¢ M is idempotent and let g e M,. If g = 1 then ege = ee = e. Otherwise g
=g "8gnWherem 2 1and g;eP, for 1 < i < m. Since g ¢ P, there exist f;,h, e M
such that e = fgh;.

Now e = eee = e(fig1h)e = elfi(gih)e = eg hie, so suppose e =
egy---ghe where 1</i<m—-1. Then e = ee = veg, - - -ghee =
e(g - &) (hifir) (GuhiDe = e(gy---g)(gy hy)e. By induction, e =

€21 " gmhme. Thuse = e(g; - - g )h,le=e(g; - - g,)le = ege.

Definition 15 Let M be a monoid. Then = is the smallest congruence such that f = f2 and

fg = gfforall f,g e M.

Theorem 16 Let M be a finite monoid. M is G-trivial if and only if M is aperiodic and for all

idempotents e,/ ¢ M, ¢ = fimplies MeM = M/M.

Proof
(+) Since M is finite there exists n > 0 such that /" is idempotent for all feM. Let feM
and let e = /™ Clearly fe¢M, so efceM, and feecM,e. Since ef = [t = fe
S leeM, N M,e = e. Therefore /™! = f" j.e. M is aperiodic.
To prove that e = f implies MeM = MM for all idempotents e, f ¢ M it is suffi-
cient to show that for g, k,/ecM
1. if e = ghk and f = gh’k are idempotent then MeM = MM
2. if e = ghkland f = gkhl are idempotent then MeM = M /M.
1. Since e is idempotent e = ee?e = e(ghk)(ghk)e = e(gh) (kg)(hk)e. But M is G-
trivial so e = e(gh)(hk)e = efe. Therefore MeM = MefeM C MfM. Similarly, f
= fff = f(gh)hkf so f = flgh)kf = fef and MfM C MeM. Thus
MeM = M/M. |

2. Since e is idempotent, e = ee?e = e(ghkl) (ghkl)e. Because M is G-trivial it follows
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that e = egkighkle, e = egkhkle, and finally e = egkhle = efe. Therefore

MeM C M/M. By symmetry M/M C MeM; thus MeM = M/M.

(=) Let e ¢ M be idempotent and f ¢ eM, N M,e. Then f = eg = he for some gh e M,. If
g=1 then f=¢ = e Otherwise g=g;--'g, where g e¢P, for i=1,...,m For
each /; 1< i< m there exist k,;eM such that e = k;g/. Then f = eg =
e"g = eMg---8, = (eg) - --(egn) =  (kig1h8) c KmBmingm) =
(k1818110 - - - (kmgr;lgmlm) = (kigily) * +* (kp&@mln) = €™ = e. By assumption MeM =
MfM.

M is finite; therefore there exists » > 0 such that k" is idempotent for all & ¢ M.
Since e e MeM = MM = MegM, there exist k,/ ¢ M such that e = kegl = k"e (g/)".
Then ¢ = k"e(g)" = k"e(gl)"(gl)" = e(g)" = egl(gl)"'cegM = fM. This implies
eM = fM because feeM, C eM. Similarly Me = M/,

Because M is finite and aperiodic, it is H-trivial, hence f = e. Therefore

eM, N Me=¢e
An alternate proof of this theorem can be found in [5].

It is now possible to relate G-trivial monoids to the families of languages defined by the

congruences in the previous section.

Proposition 17 1If X is a ~ language and there exists n > 0 such that for all u,v €A,

a(u) 2 a(v) implies u” ~ u"vu” then the syntactic monoid, M, of X is G-trivial.

Proof: Let fy, ..., fncMand let ge{fy, ..., fn)" Then g =f f, -+ f where r > 0 and

1<i<mfor j=1,...,r. Since the syntactic morphism is surjective, there exist

Uy, ..., Uyc Asuchthat y; = f fori=1,...,m Letu=u,---u,,,andletv=u,~l---u,-.

Now a(u) 2 a(v) so u”~ u™u® Since M is the syntactic monoid of X,

fr- - fdg(fi  f)"=ulvu" = u" = (f, - - - f,,)". By Theorem 14, M is G-trivial.
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Lemma 18 Let M be a monoid and let ¢ : A— M be a surjective morphism. Then a(x) 2 a(y)

implies ¢ (y) € My, for all x,y € A.

Proof: If y =1 then clearly ¢(y) = 1¢My(,). Otherwise y = a, - - - a, for some n > 0 where
a;i€eA. For i=1,...,n aeca(y) Calx) so x=uav, for some u,v;eA Since

d(x) = ¢(Ui)¢(ai)¢(vi), ¢(ai) EP¢(x)- Thus d’(}’) = d’(al) cet Cb(d,,) € M¢,(x).

Lemma 19 Let M be a finite G-trivial monoid and ¢: A—M be a surjective morphism. Let 7

be the cardinality of M and let 4,v ¢ A Then u ~ uvu implies ¢ (u) = ¢ (uvu).

Proof: Suppose u ~ uvu. By Lemma 2.5 there exist uy, ..., u,¢ A such that u = uy - - - u,
and a(u;)) = -+ = a(u,) = a(vu). Let ug=1. By the choice of n, the elements ¢ (uy),
d(uguy) ..., &(ugu,---u,) cannot all be distinct. Hence there exist / and

0 < i <j < n, such that ¢(uguy -+ - ;) = dluguy * - - Wity -~ + - u.
Let f"@é(uﬂul o), g o= dluyyy - ”j), and h = ¢(Uj+1 ~--u,). Then f= fgso f

= fg™ for all m 2 0. Choose m such that g” is idempotent. Now a(u;y; - - - u,vug - - - ;) 2

al(upyy + - u)™ so ho(V)f = dpujyy -+ - upvug - - - u)) €M m = M, by Lemma

Sy <+ u)
18. Thus
d(uvu) = feho(v) fgh = fg"hé (v) fg™h

= fg"h since g"M g™ = g"

= feh

= ¢(u).

Theorem 20 Let M be the syntactic monoid of X & A. M is finite and G-trivial if and only if X

is a =; language for some n 2> 1.

Proof:
(=) Suppose M is finite and G-trivial. Let n be the cardinality of M. Since = is the smallest

congruence such that u = wvu for all 4,v ¢ A such that u is r-full and a(u) 2 a(v), it is
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sufficient to show u =% wvu implies ¥ = uvu. But this follows from Lemma 19 since
u =% uvuimplies u ;~ uvu. Thus X is a < language.

n

(<) Immediate from Propositions 4(d) and 17.

Some additional properties of these monoids and other related results are presented here

for completeness.
Proposition 21 For all f,g €M, P, = P, if and only if M/fM = MgM.

Proof:

(=) Since f¢P; = P,, g e M/M so MgM € M(M/M)M = M/M. Similarly M/M C MgM;
hence M/M = MgM. '

(«) Lethe P;. Then f e MAM so there exist 4,4’ ¢ M such that f = h'hh". Now g e MgM =
MfM- so there exist f7f" €M such that g = fff" Hence g = fff" = fh'hh'"f"eMhM so

that & ¢ P,. Thus P) G P, and by symmetry it follows that P, C P,.
Lemma 22 1If eM,e = ethen M, = P,.

Proof: Clearly P, C M,. Suppose feM,. Then efe = ¢ and since efe ¢ M/M, it follows that

feP, =(g|le ¢ MgM)}. Hence M, C P,.

Proposition 23 Let M be a G-trivial monoid and let ¢:A—M be a homomorphism. For all
xyeAh, if a(x) =a(y) and e =¢(x) and f =¢(y) are idempotent then P, =P, and

eM,f = ef.

Proof: Suppose x,y € A are such that a(x) = a(y) and e = ¢(x) and f = ¢(y) are idempotent.
Clearly e = f so, by Theorem 16, MeM = MfM. Proposition 21 implies that P, = P,. Since

feP,=P, C M,, it follows from Theorem 14 that efe ¢ eM,e = e. Thus eM,f = efeM_f C

efM.f = efM,f = ef.

Proposition 24 Let M be a G-trivial monoid. Then {x }'x is #M-full} = {e e M|e is idempo-
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Proposition 24 Let M be a G-trivial monoid. Then {x |x is #M-full} = {e ¢ M|e is idempo-

tent}.

Proof: Let n = #M. Suppose x is n-full. Since a(1) € a(x), x ~ x1x = x2, so by Lemma 19
x = x?> = x%. Therefore x is idempotent.
Conversely if e ¢ M is idempotent then, since the syntactic morphism is surjective, there

exists x ¢ A such that x = ¢. But eis idempotent, s0 e = ¢" = x" = x” and x" is clearly n-full.
Corollary 25 If M is G-trivial and n = # M then M" = {e ¢ M | e is idempotent}.

Theorem 26 Let M be a finite monoid. Then eP,e = ¢ for all idempotents ¢ ¢ M if and only if

there exists an n > 0 such that (fgh)"g(fgh)” = (fgh)" for all fg,h e M.

Proof:

() Since M is finite there exists #n > 0 such that e = (fgh)” is idempotent. Now
e = fglh(fgh)" 11« MgM so that g ¢ P,. Therefore (fgh)"g(fgh)" = ege = ¢ = (fgh)"
since eP,e = e

(=) Let g ¢P,. Then e ¢ MgM so that e = fgh for some f,4 ¢ M. Since e is idempotent, ege =

e"ge” = (fgh)"g(fgh)" = (fgh)" = e" = ¢. Therefore eP,e = e.



4.3 Automata and Expressions

The automata and regular expressions corresponding to the family of languages discussed

in the previous two sections have also been investigated.

Proposition 27 Let S = < A, Q, o> be a semiautomaton, and let M be its transformation
monoid. Then M is G-trivial if and only if there exists n > 0 such that for all ¢ € Q, all »-fuil

words x, and all z ¢ (a(x))", o(g,x) = o(g,xx).

Proof?

(=) The proof follows directly from Lemma 19.

(<) Suppose ec¢M is idempotent. Let feM,. If f=1 then efe = ¢? = e Otherwise
S=/f1--f, where m > 1 and f; ¢ P,. Then there exist g, 4 ¢ M such that e = g, f4,.
Since the syntactic morphism is surjective, there exist Xy, ..., %m Vi - »Vms
zy, ..., ZpcAsuch that x, = g, y; = fyand z; = i for i =1, ..., m

Thus e = e” = g.f1h " 8uSfmhm = X\ V121" " " XpYmZym a0d f = f1 - - f, =

Y1 " Vme Letu=xyz; " XpVmZmand let v =y, - -y, Clearly a(u” 2 a(v) and
_ uis n-full. Therefore o(qu™u™ = o(qu") forall g eQ so that e = ¢" = y" = y"yu” =
e'fe" = ofe

Hence eM,e = e for all idempotents e ¢ M.

Consider the following algorithm, a modification of Algorithm 11, which transforms the

unique minimal element x of a =, class into a regular expression which denotes [xl=-
nG

Algorithm 28

form =#a(x),...,1do
for C C a(x) such that #C = mdo

for each decomposition x = zyz, such that y is 2a-full, a(y) = C, and #,(z)).f;(z,) ¢C
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do
let u be the shortest prefix of y such that u is n-full and a(u) = a(y).
let w be the shortest suffix of y such that wis n-full and a(w) = a(y).

Replace x by z;uC wz,. Note that since x is minimal, y = uw.

Since the subsets C are considered in order of decreasing cardinality the largest possible
subset is always inserted. For example, the factorization x = ab (aac) (caa) b does not have to
be considered because any new words this would introduce would have already been introduced
when C = {g,b,c}. It follows from the correctness of Algorithm 11 that this algorithm is also

correct.

Example Let x = abaaccaab. This is the unique minimal element of [abaaacbccaabl= which
1G

was determined in the example following Algorithm 11.

subset decomposition of x such that uw is 2-full replace x by
r4) u w Zy

{a,b,c} 1 abaac  caab 1 abaac{a,b,c} caab

{a,5}

{b,c}

{a,c}

{a} ab a a cla,bc}’caab  abaa’ac{a,b,c} caad
abaa’acl{a,b,cl’c a a b abaa’ac{a,b,c} caa’ab

{8}
{d}

Therefore the regular expression which denotes [x]= is abaa ‘ac{a,b,c} caa ab.
1G

Now in the algorithm C € A so C'= (| AsgA ¢B; Thus [x]z ¢
a€A-C "G

({C°l@ = C < A} U A)’is a language in B;M and hence any = language is an element of
BlMB = Bz.
However, the family of languages with G-trivial syntactic monoids is incomparable with

B,. Consider the language in B, denoted by the expression (ab)". The graph of its automaton
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is illustrated in Figure 1.

Figure 1

Let f = ab g = a h = pand k = 1. Then fghkf = ababab = ab = f since
a(qq, (ab)®) = qo = a(gq.ab), a(q,, (ab)d) = qz‘ = o(qy,ab), and o (g, (ab)}) = ¢q, =
o(qy,ab). But fgkf = agbaab # ab = fsince o (qg,abaab) = q, = gy = o(qq,ab). From
Theorem 14 it follows that the syntactic monoid of this language is not G-trivial.

Since eM, = ¢ implies eM, N M,e = ¢, every finite R-trivial monoid is also G-trivial.
But the family of languages with R-trivial syntactic monoids contains languages which are not in

B, hence the family of languages with G-trivial syntactic monoids also does.



4.4 Noncounting Languages

The family of noncounting languages is also important in the study of star-free languages.
In {10], [20], [22], and [26] it is proved that every star-free language is noncounting and,

moreover, that a regular language is noncounting only if it is star-free.

Definition 29 For n 2 0 define ;- to be the smallest congruence such that u" ;- u™*1 for all

u ¢ A. A language is noncounting if and only if it is a ;- language for some n > 0.

Given some alphabet, A, let ¥, denote the set of all ;~ languages over this alphabet.
Thatis, N, = (X € A|Xisa T language}. The set of all noncounting languages is represented

by N=(JN,. Clearly N, and N are Boolean algebras. It is immediate from the definition
n20

that x -—-yimpliesx,;—yforallx,yeA’andn 2 0. Thus Ny € N, €& ---. Each contain-

n+1

ment is proper; consider, for example, the languages {a"} ¢ N,.;— N, for n > 0.

Green and Rees [16] proved that i~ is a congruence of finite index for any alphabet.
Thus every language in N, is regular and hence star-free. However in [6], Brzozowski, Culik,
and Gabrielian showed that for an alphabet of cardinality greater than 1, N, contains languages
which are not even recursively enumerable.

Here attention will be focused on the relationship between N, and the languages of G-

trivial monoids.
Proposition 30 Let u,v ¢ A. If a(u) 2 a(v) then u ~ uwvu

Proof: By induction on Ivi.

Assume the result is true for ail v'e A such that Iv'| < Ivl. If lvi=20 then v =1 so
4  u? = yvu. Otherwise v = v'a for some a €A, v'e A Now aea(v) C a(u) so u = ras
for some r,s ¢ A Since a(v') € a(v) € au) = alaras) and Iv'| < Ivl, it follows by the in-

duction hypothesis that aras ;~ (aras)v'(aras). Thus u = ras  raras [ rarasv'aras {-
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rasv'aras = uvu.

Definition 31 Let xe¢A" and suppose ae¢d and wu,veA are such that x = uwav and
a(u) Ga(ua) = a(x). Then the initial mark of x is a;(x) = a and the initial segment of x is
f(x) = u. Symmetrically, if x = uav and a(v) § a(av) = a(x) then the terminal mark of x is

ag(x) = a and the terminal segment of xis t(x) = v.

The initial segment of a word is just its longest prefix which does not contain every letter
occurring in the word. The initial mark is the letter in the word whose first appearance occurs
furthest to the right. Analogous remarks can be made concerning terminal segments and termi-

nal marks.
The following characterization of — from [6] provides a useful working definition.

Lemma 32 Let xyc¢A Then x—y if and only if ap(x) =ay(y), ag(x) = ag(y),

FG) = £, and 1(x) 1 1),

Clearly [1]1_-1. From this lemma it follows that for x ¢ A, [x]r_ =

[f(x)lral_(x) (@(x))" N (a(x)) ‘ag(x) [t(x)]I_.

Lemma 33 Supppose n 2 0, ay,...,a,¢Aand g, ag;for 1 <i<j<n Thena,---a,

is the unique element of minimal length in [a; - - - a,,]l_.

Proof: By induction on n.

For n = 0 the result is immediate from the fact that [1]1_ = 1. Assume the result is true

for nand suppose a;, . . .,a,,a,.1€ A are such that g; # q;for 1 < i< j < n+l.

Now [a;--- a,,+1]1_ = [a,--- a,,]l_a,,.,.l{al, R Y N
{ay, ... a1} ayla, - - - an+1]T. By the induction hypothesis the unique minimal element of
la; - - - a,,]l_ is a,-+-a, Since 1 is the unique minimal element of {a;‘ ‘- @,.},

ay ‘- a,a,,; is the unique minimal element of [a; - - - a,,]ra,,ﬂ{al “ @,y . Similarly,
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ay - - - @,y is the unique minimal element of {a; - - - @,4} 'ayla, - - - a,,+1]r and hence is the

unique minimal element of [a; - - - a,,+1]r. By induction the result is true for ail n = 0.

Proposition 34Let ac A, X C A, and Y,Z € (A—{a})" Then
(@ Xa(Y N Z) = XaY) N (XaZ), and

(®) (YN Z)aX = (YaX) N (ZaX).

Proof:

(a) It is easily verified that Xa(Y N Z) € (Xa¥Y) N (XaZ). Now we XaY) N Xa2) im-
plies w = x,ay and w = x,az, where x;,x,¢X, y Y, and ze¢Z. If Iyl > Izl then a € a(y);
this contradicts the fact that Y € (A—{a})". Theréfore Iyl < lzI. Similarly, 1zt < Iyl.
Consequently lyl = Izl and y = z Thus w = xjay ¢ Xa(Y N Z) and (XaY) N (XaZ)
Xa(Y N 2). |

(b) This follows by left-right duality.

Proposition 35 Let x ¢ A. The language corresponding to the congruence class [XJT can be ex-
pressed as a finite intersection of languages X, for j in some index set J, such that
a(X;) = a(x) and X; e B\M for all j ¢J. That is, xl_= NX,

J€J

Proof? By induction on Ixi.
If IxI =0 then x =1 and [x]T_ = {1} ¢ B;. Assume that the claim holds for all we A
with lwl < n. Consider x € A"*l. Let A, = a(x) to simplify notation.
By the remark following Lemma 32,
[x].l_ = [f(x)]raL(x)A; N AxaR(x)[t(x)]r.
Since | £(x)1, lz(x)! < ix! it follows from the induction hypothesis that

U&= AU and [t = NV,

€I k€K
where a(U)) = a(f(x)), (V) = a(t(x)),and U;, V, e BM for all j €], k e K.

Using Proposition 34,
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N

=[N WUa 0D
! J€I

N (A;aR(x)Vk)].

k€K

Clearly a(Uar (x)A,) = a(x) = a(AJag(x)V,) for all j ¢J, k ¢ K. Also,

(| BB < BMBC BM if a(x) CA
. c€A—a(x)

*T1 B eByCBM if alx) = A

Hence Uja; (x) Ay, A ag(x)V, e BM forall j¢J, k ¢ K. The result is therefore true for n+1.
Corollary 36 Ny € B\MB = B,.

Definition 37Let n 2 0, m > 1 and x,y ¢ A Then x "-‘ﬂ’ y if and only if for every decomposi-
tion x =x;---Xx, there exists a decomposition y =y;---y, such that x, -y, for

i=1,...,mand vice versa. N7 denotes the set {X C A|X is a -’ language}.
n

In (7] it is shown that (N,)™B = { X € A|Xisa - language}. This justifies the nota-
tion N Since ;- is of finite index, lﬂ' ) is also of finite index for m 2 1. Hence every 1—('-" )

language is star-{ree.
Proposition 38 For n 2 1, N{B € N,,,.

Proof:Let x ¢ A If x = 1 then x2"~! = x2" 30 assume Ix| > 1.
Consider any decomposition of x2” into n pieces xy, . ..,X,. Since x|l + - + Ix,l =
Iy« +* x,0 = |x?M = 2nix| there exists /, 1 € /i < n, such that Ix;| > 2Ixl. Lety = fy.(x).

Then x; = yz for some z ¢ A. Now x¥ = (x; - - - x;_)y(zxi4, - - - X,); thus there exist u,v € A

such that y = wuxv and x = vu. Let x/=uvz and x;'=x; for j=1,...,i=1,i+l,...,n
Then x)' - - - x," = (x; -+ - x_Puvz(xyy - - - x,) = x?"~1 and, since x; = wovz = wvuvz — uvz
=x',x;~x/forj=1,...,n

Conversely, consider any decomposition x?*~! = x,"- - - x,'. Since Ix;1 + -+ +Ix,1 =
ey -+« x,1 = 1x®"Y = (2n—1)Ix| > nix| there exists i, 1 < i < n, such that Ix;l > Ix|. As

above, let y = f,,(x;/), let x;' = yz where z € A, and let u,v € A be such that y = yvand x = wu.
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2n and

Now, if x;=uwxwy and x;=x;' for j=1,...,i=1,i+1,...,n then x; - X, =x
x'rxforj=1,...,n

Thus x2* l—(-'i) x2*~! for all x e A But 57— is, by definition, the smallest congruence satis-

fying this property. Hence x ;;—y implies x 1—@ y for all x,y € A and thus N} € N,,_;. Since

N,,— is a Boolean algebra N/B & N,,_;.

Proposition 39For n 2 1, N} € Ny

Proof Let A = {ay,...,a,}, let x =(a; - a,)* % and let y = (a; - - * a,)**"L. Clearly

X 57—y Consider the decomposition y =y, -y, where yy=a; - a,.1a,a; """ ap-y,

Ya=ay - a,a1a3° " Gy, AN Y = Quygc @nAy - Qp Qg Gniz—; " " Q@) " Qe

for i=2,...,n—1. From the remark following Lemma 32 it is clear that y; is the unique

minimal element of [y"]f" Since Ix! < Iyl there do not exist x;,...,X,€A such that
. Xx=x - x,and x;, -y fori=1,...,n Therefore x ;r"i)yand N7} & Noypa.

It is possible to relate noncounting languages with the languages of G-trivial monoids.
Proposition 40 A monoid M is idempotent if and only if fM,f = ffor all f e M.

Proof: Clearly, if fM;f = ffor all f¢M then M is idempotent since for any feM, 1 ¢ M, and
thus f2 = f1f = f.

Now suppose M is idempotent, fe¢M, and g e M, Then g<¢Pf for some n 2 0. The
proof proceeds by induction on n. The case n = 0 is trivial since f = fZ = f1fin an idempo-
tent monoid.

Let g € P,. Then f = hgk for some A,k ¢ M so that

S = hgk = h(gk)
= h(gk)(gk) = (hgk)gk
= (flgk = (fe)k (note that f = fgk)
= (f8) (f8)k = (f3) (fzk)
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= fg(f) = fef.
Assume now that f = fgfand f = fhf. Then
f=rf=W0g
= (MmN gf = f(hfe) f
= f(hf2g) (hfg) f = (fhf)gh (f2f)
= (Igh(f) = fghf.

It now follows that f = fgfforall ge M £

Clearly a language is in N, if and only if its syntactic monoid is idempotent. From the
above proposition and Theorem 14 it follows that every idempotent monoid is G-trivial. Thus
every . language has a G-trivial syntactic monoid.

Note that idempotent monoids are not necessarily R-trivial or L-trivial. Consider M, the
free idempotent monoid on the two generators {a,5}). It is the transformation monoid of the

automaton denicted in Fignre 2.

Figure 2

Here abM = {gb, gba} = gbaM and Mab = {gb, bab} = Mbab, but aba = ab # bab.

Thus M is neither R-trivial nor L-trivial.
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By Lemma 4(c) u" 7 u"*! for all ue A But ;- is the smallest congruence such that
u" — u"*! for all u € A, thus x 7y implies x = y for all xy € A
In the special case when n = 1 the following interesting relationship holds. It is a direct

consequence of the above results and Proposition 30.

Proposition 41 Let x,y ¢ A. Then x  yif and only if x = y.

The congruences ;-(3'—), for n 2 2, do not fare as well.

Proposition 42 There does not exist an n 2> 1 such that x = y implies x # yforall x,y ¢ A

Proof: Let x = (ab)"b(ab)” and let y = (ab)?". Since a((ab)™) 2 «(b) and (ab)" is n-full, it
foilows that x =0

Now consider the decomposition x = x;x, where x| = (ab)” and x, = b(ab)". Suppose
¥ = y1y; where x; — y;. Then y; = (ab)’for some ;, 1 < i < 2n. However this implies y; =

(ab)?*~' #+ x,. Therefore there does not exist a decomposition y = y,y, such that x, - y; and

2)
X3 7 y2. Thus x ;Ly.

Corollary 43 For n 2 2, N7 contains languages whose syntactic monoids are not G-trivial.



4.5 Some Negative Results

A number of other congruences, also generalizations of the congruences used to charac-
terize the languages of R-trivial and L-trivial monoids, were initially conjectured to be charac-

terizations of the family of G-trivial monoids.

In this section properties of these congruences and the relationships between them and

the congruences of Section 4.1 are investigated.
Definition 44 Let x,y ¢ Aand n > 0. Then x ;, yif and only if x ~ yand x ~ y.

Definition 45 Let x,ycA and n > 0. Then x ,;9’ y if and only if for every decomposition

x = x'x" there exists a decomposition y = y'y" such that x' ~ y’ and x" ~ y" and vice versa.

Definition 46 Let x,y ¢ Aand n > 0. Then x ﬁ y if and only if there exist u,v,w € A such that

X =uw,y =uvw, u ~ uv,and w ~ ww. = is the symmetric transitive closure of ﬁ

Definition 47 Let x,y ¢ A. Then x <y and x =3, y if and only if for each decomposition
x = x'ax" with a ¢ A there exists a decomposition y = y'ay” such that x' ~ y' and x" ~ y"

and vice versa.

Definition 48 Let x,y ¢ A. Then x <y and x <3, y if and only if for each decomposition
x = x'ax" with a €A there exists a decomposition y = y'agy” such that x' < y' and

x" <% y" and vice versa.

This congruence and the congruence < defined by Definition 2.48 are both special cases of a

more general congruence which is discussed in [32].

Proposition 49 Let u ¢ A and let n > 0. Then
1
(a) u” P un+ ,

(b) u2n ’T(g) u2n+1’
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2n  ,,2n+1
(© u? = u?r*l,
(d) u?*! e 427 and

(&) ™! =g 42",

Proof

(a), (b), and (c) follow immediately from Proposition 2.8(a) and\ its dual.

(d) If n = 0 the result is trivial so assume n > 0. Suppose x'ax" is a decomposition of w271,
Since a € a(u?~1) = a(u), lul > 1. Therefore either 4"~! is a prefix of x' or 4" is a
suffix of x". Since these two cases are symmetrical, assume, without loss of generality,
that the former is true.

Let y' = ux' and y" = x" so that y'ay” = wx'ax" = wu?"! = u2" Since u" lis a
prefix of x" and w?"™! | - u"it follows that x' , ~ wx' = y'.

Conversely, for any decomposition u?”=y'ay” there exists a decomposition
u?*~1 = x'ax" such that x’' .~ ¥ and x” , =~ y". Thus u?"~! ’-,-,* u?,

‘(e) If u=1then u*! =1 %= 1 = 42" Therefore suppose |zl > 1. For n = 0, the result is
clearly true, so assume it is true for n—1.

Let x’ax” be a decomposition of #2™!. Then either #*" =1 is a prefix of x' or 42"~
is a suffix of x". In the first case let y' = ux', y" = x”, and x' = u®" '~lz where z ¢ A,
Then y'ay” = wx'ax" = uu®' = u?". Clearly x" <%_, y" and, by the induction hy-
pothesis, x’ = y2"'-1; - u""'z = ux' = y’. The second case follows by symmetry.

Let y'ay” be a decomposition of 4?". If 42" is not a prefix of y' then y'a is a prefix
of 4", hence u*" is a suffix of y". These two cases are symmetric, thus it suffices to
consider the first. Let y' = u?""'z for some z ¢ A, let x' = 4"~z and let x" = y". As
above, x'ax" = u?" 1 x' <_, y', and x" <5 _ y".

-1

Hence u?™! < u?"

In all five cases no stronger result can be achieved. To see this consider the example

where u € A.
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Lemma 50 Let u,v e Aand n > 0. Then u % wvuif and only if wis n-full and a(u) 2 a(v).

Proof: Suppose u . uvu. Then u ~ u(vu) so by Lemma 2.11 there exist u;, . . ., u, € A such
that u = uy - u, and auy) 2 --- 2 aly,) 2 alvu). But a(u) 2 a(u;) and alvu) 2
a(u). Therefore a(u) = afu) = -+ = alu,) = a(uv), which implies that u is n-full.

Also a(u) = a(uv) so that a(u) 2 a(v).
Conversely, if uis n-full and a(u) 2 a(v) then, since a(vu), a(uv) C a(u), ulwu) ~

u 7~ (uv)u; that is u ~ uva.
Corollary 51 Let x,y ¢ Aand n > 0. Then x = y implies x ~ y.

Proof: Since x 54 y for all x,y ¢ A the result is true for n = 0. For n > 0 the result follows
from Lemma 50, since =%, is the smallest congruence satisfying u =, uvu for all u,v ¢ A such

that « is »full and a(z) 2 a(v).

’

Lemma 52 Let u,v,u',v'eAandlet n > 0. If uvu ~ u'v'u’ and u ~ u' then u —~ u'.

Proof: If uvu ;v u'v'u’ then u(vu) ~ u'(v'u’). Since u ~ u' it follows from Proposition

2.8(c) that u 7~ u’. Similarly u ~ u'. Thus u ~ u'.
Proposition 53 Let x,y ¢ Aand n > 0. Then x ;2 yimplies x ~ y.

Proof: Suppose x ~2 y. Let u be a prefix of x; say x = uv. Then there exists u’,v' ¢ A such

that y' = u'v', u ~ u'and v ~ v'. Therefore x ;~ y. Similarly x ~ y, hence x ~ .

Proposition 54 Let x,y ¢ Aand n 2 0. If xis 2n-full then x ,—~ y implies x ;& y.

Proof: If x is 2n-full then, since x ,;~ y implies x ~ y, it follows that y is 2»-full. Since x is
2n-full, there exist xy, . . ., X,, € A such that x = x; - * * x,, and a(x;) = a(x). Similarly there
exist y;, ...,y € Asuch that y =y, - - - y,, and a(y;) = a(y).

Let x = u,u, be a decomposition of x. Then either
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1. uy=xy -+ x,zwhere uyz = X, - * * X3,

or 2. uy = zx,.; - - * X5, where u;z = x; - - * x,.
1. Since x,~~y, x,~5y and hence. x ~y Since zu; = X, "Xy, 3
(xl”'xn)(xn+l "‘Xz,,) = xand Y,y Yaa 1L O’I T 'yn)()’n+l T Ye) =y, Uy 1L

Yus1 ® * * Y2 Therefore there exists a suffix v, of y,4; * - - y,, such that v, ~ u,. Let v; be
such that y = v;v,. Since x; - - - x, is a prefix of uy, y; - - - y, is a prefix of vy, x; - - x,
and y; -+ - y, are n-full, and a(x; - - - x,) = a(x) = a(y) = aly; - , it follows that
Uy~ X~y ~ V.
2. is symmetrical.
Similarly for any decomposition y = v;v, there exists a decomposition x = u,u, such that

uy ~ v, and u; ~ v, Thusx @y

Proposition 55 Let x,y ¢ A and n 2 0. Then x ; -2 y if and only if for every decomposition

x = x'x" there exists a decomposition y = y'y" such that x’ ~, ' and x" ~ »" and vice versa.

Proof:
(=) Suppose x 2 y. From Proposition 53 x - y, therefore x 7 yand x ~ . Let x = x'x"
be any decomposition of x. Then there exist y’,y" ¢ A such that y = y'y", x' ~ y', and

x" =~ y". But by Proposition 2.8(c) and the corresponding result for -~ it follows that

V "

x' =~ y' and x" ~ y". Similarly, for any decomposition y = y'y" there exist x',.x" ¢ A

"

such that x = x'x", x' ~ »', and x" ~ »".

() The result follows directly from Proposition 2.8(a) and its dual.

Proposition 56 Let x,y e Aand n > 0. Then x = y implies x 2y

Proof: 1t is sufficient to show that x :-G y implies x - 2, Assume x = . Then there exist
u,v,w € A such that x = uw, y = uvw, u ~ uv, and w ~ ww.

Let x = x'x" be a decomposition of x. Then either x' is a prefix of « or u is a prefix of

x'. In the first case u = x'z and x” = zw for some z<¢A Let y'=x' and y" = zvw. Then
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x' 7z ' and, since w 5 vw, x" = zw ~ zvw = y". If uis a prefix of x’ then x" is a suffix of
w and the result follows from symmetry with the first case.

Let y = y'y"” be a decomposition of y. There are three cases to consider. If y’ is a prefix
of u (say u = y'z where z ¢ A) then choosing x’' = y' and x"” = zw gives the result as above.
Likewise, if y" is a suffix of w. The only other case is when y’' = uv, and y" = v,w where
v=vv; Let x'=wuand x" = w. Since u ~ uvand v; is a prefix of v, u,(u) S pn,(uv;) <
pn(uv) = u,(u) so u ~ uv,, and thus by Proposition 2.8(c), x' = u ~ uv{ = y'. Similarly,
x"=w o~ vyw=y"

@
Therefore x = y.

Proposition 57 Let x,y ¢ Aand n > 1. Then x 3, y implies x = ».

Proof: 1t is sufficient to show that x =y implies x ’-;zG ¥. Suppose x = ). Then there exist
r.s,u,v,w ¢ A such that x = ruws, y = ruvws, u and w are n-full, and a(u) = a(w) 2 «(v).
Since u is n-full and a(u) 2 «(v), u ~ uv so, by Proposition 2.8(b), u ;4 uv. But ~ is a

congruence, SO ru 7, ruv. Likewise ws ~ vws. Hence x = (ru)(ws) = (ru)v(ws) = y.
Proposition 58 Let x,y e Aand n > 0. Then x o ¥ implies x =+ .

Proof: Suppose u,v,w € A are such that 4 and w are (n+1)-full and a(u) = a(w) 2 a(v). By
the remark followihg Definition 2.6, there exist uy, ..., 4,, € A such that u = uy - - w4,
and a(uy) = -+ = alu,,. ).

Let x'ax* be a decomposition of uw. If x'a is a prefix of u then u = x'az and x" = zw for
some ze¢ A Let y' = x' and y” = zvw. Then y'ay” = x'azvw = uvw, and since a(v) U a(z)
C a(u) = a(w) and wis n-full, x" = zw .~ w .~ zvw = y". Similarly, if ax" is a suffix of w
then there exist y', y" ¢ A such that y'ay” = uvw, x' ~ y', and x" ~ y".

Now let y'ay” be a decomposition of uvw. If y'a is a prefix of u then u = y'az and
y" = 2w for some ze¢A Let x'=y' and x"=zw. As above x'ax” = uw, x' ~ y', and

x" ~ y". If ay" is a suffix of w then by symmetry it follows that there exist x',.x" ¢ A such that
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x'ax" = uw, x' ~ y', and x" ~ y".
The remaining case is when u is a prefix of y’ and wis a suffix of y”. Then there exist

Vy,V, € A such that v = v,av,, y' = uvy, and y" = vow. Since a ¢ a(v) € alu,y)), Uyyy = ras

for some rscA Let x'=u;- - u,r and x" =sw so that x'ax" = uy- - urasw =
Uy Uy qw = uw. Now uy - - u, is nfull and a(y,) 2 alu,.vy) 2 alr) so that x' =
Uy® o Upl oz~ Uy * " Uy ;= Uy """ UpllypVy = uvy = y'. Also, wis nfull and a(w) 2 a(s) U

a(vy); hence x"" = sw ~ w ~ v,w = y'.
Therefore uw — uvw. But naTH is the smallest congruence satisfying uw s WW for all
u, v, w € A such that u and w are (n+1)-full and a(u) = a{w) 2 «(y). Hence x , 5 y im-

plies x == y for all x,y € AL

Proposition 59 Let x,y ¢ Aand n > 0. Then x =, yimplies x & y.

Proof: By induction on n.
- Since x 3@ y for all x,y ¢ A the result is true for n = 0. Suppose n > 0 and x <3, ». If
x = 1 then y = 1 so there is nothing to prove. Therefore assume x # 1.

Let x = x;x, be a decomposition of x. Since x = 1 either x; = 1 or x, # 1. Without
loss of generality, assume x; # 1. Then x; = xya for some a € A, xg¢ A. But x =2, y; there-
fore there exists a decomposition y = y,ay, such that y, ~ x¢ and y, .~ x;. Let y; = ypa
Since ~ is a congruence y; = yo@ 7~ Xod = X1, S0 that y = yy, is the required decomposition
of y.

Similarly, for any decomposition y = Y17 of y there exists a decomposition x = x;x, of x

such that x, ~ y; and x, ~ y;. Hence x ;2 y.

Proposition 60 Let x,y ¢ Aand n > 0. Then x <= yimplies x ~ y.

Proof: By induction on .

The result is clearly true for n = 0 since x 5~ y for all x,y ¢ A. Assume the result holds

for n, and suppose x <=, y.
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Let uepm,(x). If u=1 then uep,,(y). Otherwise u = av for some ac A, veA
Since u € p,4(x), x = x'ax" for some x',x" ¢ A such that v e (u,(x"))". But x <=,, y so
there exist y',y" € A such that y = y'ay”, x' <= y', and x" <=3 y”. By the induction hy-
pothesis x" ~ y”; therefore ve(u,(y")". Thus u=aveu,(y'ay") = p,(y). Hence

Bnr1(¥) S g, (). Similarly, w41 () © w4 (x), so that x | 1~ ».
Corollary 61 Let x,y ¢ Aand n > 0. Then x <=5, y implies x ~ J.

Clearly x <=y if and only if x <~y if and only if x -~ y. From Definitions 47 and 48 it

then follows that x <=3 y if and only if x 5~ y.
Proposition 62 There does not exist an n 2> 1 such that x =3, y implies x <= y for all x,y ¢ A

Proof: Let x = (ab)" and y = (ab)"a(ab)". By Proposition 4(d), x =, .
Now consider the decomposition y = y'ay” of y where y’' = y" = (ab)”. The decomposi-
tions of x of the form x = x'ax’ arei
x' = (ab)" =" and x" = b(abd)’
where 0 < / < n—1. But x" = b(ab)’ <5 (ab)" = y" for any i, since there does not exist a

decomposition v'bv” of y” such that 1 <= v'. Therefore x <% y.
Proposition 63 There does not exist an n 2 0 such that x <~ y implies x 5 for all x,y € A.

Proof: Without loss of generality, assume n 2 4, since x <~y implies x 7~y for all / and j such
that i 22 j 2 0. Let x = (ca)™(ab)” and y = (ca)"a(ab)”. The decompositions of x and y of

the form wdv where d € A are summarized in the following table. The value of / ranges from 0

to n—1.
decompositions of x decompositions of y

u d v u d v

(ca)’ ¢ aflca)1-i(ap)" (ca)’ ¢ alca)"*"'a(ab)"

(ca)ic a (ca)™ 1=(ab)" (ca)'c a (ca) g (ab)"

(ca)™ab)’ a b(ap)n—1-i (ca)” a (ab)"

(ca)™ab)’ b (ab)r 1 (ca)"a(ab)™ 1= g4 b{ab)r1—i
(ca)ra(ab)"'"ia b (ap)r—1-i
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Since (ca)"” and (ab)" are n-full it follows that (ca)” ~ (ca)"a and (ab)" ~ a(ab)".
Hence for every decomposition x = x'dx" there exists a decomposition y = y'dy" such that
x' ~y'and x" ~ y" and vice versa. Thus x =%, yandso x <~ ).

Now (ca)*a(ab)* is the unique minimal element of its % class and hence
(ca)*a(ad)* g (ca)*(ba)*. But (ca)*(ab)* = (ca)*(ca)?(ab)* 5 (ca)*(ca)"*(ca)*(ab)* =
(ca)™(ab)*(ab)? 5. (ca)™(ab)”, and likewise (ca)*a(ab)* 5 (ca)"a(ab)". Therefore x =
(ca)™(ad)" g, (ca)"a(ab)" = y.

Proposition 64 There does not exist an n 2> 0 such that x =y implies x =~y for all x,y ¢ A.

Proof: Let x = (ac)™(ba)" and y = (ac)"a(ba)". Since (ac)" ~ (ac)"a and (ba)" =~ a(ba)",
x = .
Consider the decomposition y = y,ay, of y where y; = (ac)” and y, = (ba)". The
ﬁde;:ompositions of x of the form x = x,ax, are:
x; = (ac)’ and x, = c(ac)"“""(ba')"
and x; = (ac)™(ba)"'"'b and x, = (ba)’
where 0 €< / < n—1.
In the first case a(x)) = {a,b,c} # {(a,b} = a(y,) so that x, + y,, and in the second case
alx) = {a,bc} # {(a,c} = a(y)) so that x; 7 y,.
Hence there does not exist a decomposition x = xjax; such that x, -~ y; and x; -~ y,.

Thus x < y.

The relationships proved in this section between the various congruences can be con-
veniently represented in the following diagram. A solid line from one congruence symbol to
another indicates that the family of languages generated by the first set of congruences contains
the family of languages characterized by the second set of congruences. A line with an X
through it indicates that such a containment was shown not to hold. By transitivity, other rela-

tionships not explicitly drawn can be deduced.



Figure 3



CHAPTER 5 DEFINITE AND RELATED LANGUAGES

The families of finite J-trivial, R-trivial, L-trivial, and G-trivial monoids can all be charac-
terized by a condition involving the monoid and its idempotents. Specifically, M is
J-trivial  if and only if eM, U M,e = ¢ for all idempotents eeM
R-trivial  if and only if eM, = ¢ for all idempotents eeM
L-trivial  if and only if M,e = ¢ for all idempotents eeM
G-trivial ifand only if eM, N M,e = e for all idempotents eecM
By replacing M, by S, four other well known families are obtained. The first, finite semi-
groups in which eS U Se = ¢, characterize the set of finite and cofinite languages. Finite semi-
groups which satisfy Se = ¢, ¢S = ¢, and ¢S N Se = ¢ for all idempotents e ¢ S are respectively
definite [18], reverse definite [2], and generalized definite [13].
The foilowing four theorems summarize some of their properties. Proofs of these resul}s
can be found in [8], [12], [23], [24], [30], and [34]. In all cases X C A is a regular language, S
is its syntactic semigroup, and A = <A,Q,qy, F,o> is the reduced automaton recognizing X.
W = {{x} | x ¢ A} is the family of languages containing exactly one word. Fand C represent the

families of finite and cofinite languages respectively.

Theorem 1 (Finite/Cofinite Languages) The following are equivalent:
X1. X is a 4 language for some n > 0, where x + y if and only if IxI, iy 2 norx =y
and Ix! < n.
El. Xe (W U AB
E2. XeFUC
S1. For all idempotents e € S,eS U Se = e. (Every idempotent is a zero.)
Al. There exists an n > 0 such that for all x € A", y ¢ A and ¢ €Q, o(g,yx) = o{g,x)

= a(gx).

90
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szeorem 2 (Reverse Definite Languages) The following are equivalent:
X1. X is a +5 language for some n > 0 where x < y if and only if f,(x) = £, ().
El. Xe (W U WAB
E2. Xe(FP U FC U CHB
S1. For all idempotents e €S, eS = e. (Every idempotent is a left zero.)

Al. There exists n > 0 such that for all x € A”, y € A, and ¢ € Q, o{(g.xy) = o(g,x).

Theorem 3 (Definite Languages) The following are equivalent:
X1. X is a =7 language for some n > 0 where x — y if and only if #,(x) =t,(y).
El. Xe (W U AW)B.
E2. Xe (F? U CF U CHB.
S1. For all idempotents e ¢ S, Se = ¢ (Every idempotent is a right zero.)
Al. There exists n > 0 such that for all x € A”, y ¢ A, and ¢q € Q, a(g,x) = (g, yx).

A2. There exists n > 0 such that for all x € A", p,g €Q, o{g,x) = a(p,x).

Theorem 4 (Generalized Definite Languages) The following are equivalent:
X1. X is a < language for some n > 0 where x < y if and only if f,(x) = f,(y) and
th(x) = t,(y).
ElL. Xe (W U AB=(W U WAU AW)B.
E2. Xe (F U C)?B.
S1. For all idempotents e €S, eS N Se = ¢Se = ¢. (Every idempotent is a middle
zero).

Al. There exists n > 0 such that for all x € A” y ¢ A, and q € Q, o{g.xx) = o (g,x).

In J-trivial monoids every idempotent is a local zero over its alphabet. R-trivial, L-trivial,
and G-trivial monoids are such that every idempotent is a local left, local right, and local middle
zero respectively. The congruences have this local nature too. Only letters from the alphabet

of a word can be added to the word without changing its contents and hence its congruence
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class.

If, in addition, the concept of ‘length n’ is replaced by ‘n-full’ the definitions of -, <, =,
and ~ parallel those of ~, - and =.

A similar analogy between the automata of reverse definite and R-trivial, definite and L-
trivial, and generalized definite and G-trivial monoids is also apparent. Look in particular at
Theorem 2.65 property A4, Theorem 3.3 properties A3 and A4, and Proposition 4.27. In light
of the above, Property Al of Theorem 1 corresponds to Property Al of Theorem 2.1.

Languages denoted by expressions in (D U DA)B, where D=
(Cala e A, C C A-{a}}M, are clearly generalizations of those in (W U WA)B since W =
{{a}JaeAM = (z'alac A]M. The dual result for L-expressions also holds. If
D' = {AaA|a e AJM then (D' U A)B is the family of all languages with Jtrivial monoids.
The correspondence between G-trivial expressions and generalized definite expressions is not
presently clear. When #A < 2, expressions more similar to those for finite/cofinite reverse
definite, definite, and generalized definite have been found for languages with J-trivial, R-
trivial, L-trivial, and G-trivial syntactic monoids, respectively. (See [3] and [5].) However,

those results do not generalize to larger alphabets.

The families of finite/cofinite, definite, reverse definite, and generalized definite
languages are just the beginning of an infinite hierarchy ([4] and [28]) whose next element is
the family of locally testable languages and whose union is B;. Can the J-trivial, L-trivial, R-
trivial, G-trivial hierarchy be extended in a similar manner to yield B,? If so, do there exist

comparable hierarchies for each B;, i 2> 3?

It is also unknown whether the families of languages defined in Section 4.5 are an impor-
tant part of this hierarchy, nor is the relationship between them well understood. Providing al-

ternate characterizations would certainly aid in the solution of these problems.
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Appendix

The SNOBOL4 program on the following page finds the unique minimal word (minimal)
congruent to the input word (word). Some sample output from this program can be found on
pages 99 and 100.

The primary data structure is an m-ary trie representing all subwords of length less than or
equal to n found so far. Interior nodes are arrays of m pointers; leaves are integers in the range
0 to n. Label each edge in this structure by the index of the array cell in which the pointer that
represents it is stored. In this way each path in the trie can be associated with a subword. A
leaf with value / indicates that all subwords of length / have been found which have the same
prefix as the labelled path to this leaf. This compression makes the searching faster as portions

of the trie which are full (consisting of an array of #’s) do not have to be examined.
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*This function succeeds, returning the null string, if concatenating letter to

*the end of minimal increases the n-contents of minimal. It fails otherwise.
*

update update = “false’

i=1
do update = ident(datatype(rootli]), array’) update(rootli]) :£(for)
rootfil = full(rootli]) n \
for i=1t@{,m)i+1 :s(do)
(ident(datatype (root{letter]), integer”) It(root[letter],n)) :f(done)
root[letter] = eq(rootlletter], n — 1) n :s(true)

root{letter] = array(m,root[letter] + 1)
true update =
done ident(update) . :s(return)f(freturn)
*
*This function succeeds, returning the null string, if the trie with root” a

*is full.
»

ful j=1
test j = le(j,m) ident(afjl,n) j + 1 :s(test)
gt(j,m) , :s(return) f(freturn)

-

*Initialization for the main program.
main &anchor = 1
&trim = 1
define ("'update(root)i’)
define(‘full(a);j”)
m = input
output = le(m,0) ‘invalid alphabet size’ :s{end)
output = ‘alphabet size is “m
n = input
output == 1t(n,0) ‘invalid index’ :s(end)
output = ‘index of the congruence is " n
»

*Read the next word and perform the necessary initialization.
»

read word = input ' :f(end)
output =
output = word
contents = gt(n,0) array(m,0) :f(write)
minimal =

®

*Process the word one letter at a time.

t

while word break('123456789") span('0123456789") . letter = :f (write)
minimal = update(contents) minimal " letter :f(while)
full (contents) f(while)
write output = ‘minimal congruent word is " minimal :(read)

end main
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alphabet size is 3
index of the congruence is 2

12332313
minimal congruent wordis 123321

22112
minimal congruent wordis 22112

1
minimal congruent word is 1

minimal congruent word is

2212223
minimal congruent wordis 22123

2211
minimal congruent wordis 2211

alphabet size is 1
index of the congruence is §

1111111
minimal congruent word is 11111

11111
minimal congruent wordis 11111

11
minimal congruent word is 11



alphabet size is 3
index of the congruence is 1

123
minimal congruent wordis 123

minimal congruent word is

33113312
minimal congruent wordis 312

alphabet size is 3
index of the congruence is 0

- minimal congruent word is

3121
minimal congruent word is

alphabet size is 12
index of the congruence is 6

1031010101010103
minimal congruent word is 10 3 10 10 10 10 10 3
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