<table>
<thead>
<tr>
<th>Reproduction Requirements</th>
<th>Number of Pages</th>
<th>Number of Copies</th>
<th>Cost: Time/Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Paper Stock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Offset</td>
<td>Signs/Repro's</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bond</td>
<td>Xerox</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Book</td>
<td>Cover</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cover</td>
<td>Bristol</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supplied</td>
<td></td>
</tr>
<tr>
<td>Paper Size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8½ x 11</td>
<td>8½ x 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11 x 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paper Colour</td>
<td>White</td>
<td>Ink</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>Black</td>
<td></td>
</tr>
<tr>
<td>Printing</td>
<td>1 Side</td>
<td>Numbering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 Sides</td>
<td>to</td>
<td></td>
</tr>
<tr>
<td>Binding/Finishing Operations</td>
<td>Collating</td>
<td>Printing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corner Stitching</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Ring</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tape</td>
<td>Plastic Ring</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perforating</td>
<td></td>
</tr>
<tr>
<td>Folding</td>
<td></td>
<td>Cutting</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Finished Size</td>
<td></td>
</tr>
<tr>
<td>Special Instructions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unstaple them, and attach the tech. report listing to the end of the report, and then again put on new fronts and backs.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Film Qty</th>
<th>Size</th>
<th>Plates Qty</th>
<th>Size & Type</th>
<th>Sub. Total Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside Services</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department</td>
<td>Room</td>
<td>Phone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comp Sec</td>
<td>5100</td>
<td>3293</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reproduction Requirements</th>
<th>Number of Pages</th>
<th>Number of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset</td>
<td>48</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Types of Paper Stock</th>
<th>Number of</th>
<th>Number of</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bond</td>
<td>Pages</td>
<td>Copies</td>
</tr>
<tr>
<td>8½ x 11</td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>11 x 17</td>
<td>4</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paper Colour</th>
<th>Number of</th>
<th>Number of</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>Pages</td>
<td>Copies</td>
</tr>
<tr>
<td>Black</td>
<td>4</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Printing</th>
<th>Number of</th>
<th>Number of</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Side</td>
<td>Pages</td>
<td>Copies</td>
</tr>
<tr>
<td>2 Sides</td>
<td>4</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Binding/Finishing Operations</th>
<th>Number of</th>
<th>Number of</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collating</td>
<td>Pages</td>
<td>Copies</td>
</tr>
<tr>
<td>Corner Stitching</td>
<td>3 Ring</td>
<td>4</td>
</tr>
<tr>
<td>Tape</td>
<td>Plastic Ring</td>
<td>5</td>
</tr>
<tr>
<td>Plastic Ring</td>
<td>Perforating</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Special Instructions</th>
<th>Number of</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covers Attached</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Film</th>
<th>Size</th>
<th>Plates</th>
<th>Size & Type</th>
<th>Sub. Total Materials</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Paper</th>
<th>Qty</th>
<th>Size</th>
<th>Plastic Rings</th>
<th>Qty</th>
<th>Size</th>
<th>Prov. Tax</th>
<th>Sub. Total</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Outside Services</th>
<th>Total</th>
</tr>
</thead>
</table>
LANGUAGES OF R-TRIVIAL AND RELATED MONOIDS

by

Faith Ellen Fich

Computer Science Dept.
University of Waterloo
Waterloo, Ontario, Canada

Research Report CS-79-18
May 1979
Abstract

The family of languages, whose syntactic monoids are R-trivial, is considered. Languages whose syntactic monoids are J-trivial correspond to a congruence which tests the subwords of length n or less that appear in a given word, for some integer n. It is shown that in the R-trivial case the required congruence also takes into account the order in which these subwords first appear, from left to right. Characterizations of the related automata and regular expressions are presented. Dual results for L-trivial monoids are also discussed.

The family of G-trivial monoids, a generalization which includes both R-trivial and L-trivial monoids, is investigated. Similar characterizations, in terms of congruences, automata and regular expressions are provided.

Finally, the relationship between the above families and some other well-known families of languages are considered.
Acknowledgements

I would like to thank my supervisor, John Brzozowski, who first introduced me to the beauty of star-free languages, guided me, and provided constant encouragement. I also appreciate the helpful comments of Karel Culik and Stanley Burris.

For the arduous task of transforming my handwritten rough draft into computer files ready for the phototypesetter, I had the willing aid of Randy Morrison, Ross Brown, and my husband, Michel. Kimberly King, who didn’t want to be mentioned, was invaluable as a proofreader.

The National Science and Engineering Research Council of Canada supported this research through a Postgraduate Scholarship.
Table of Contents

1 Introduction

1.1 Preliminaries .. 7
1.2 Background .. 10

2 Languages of R-Trivial Monoids

2.1 Languages of J-Trivial Monoids .. 12
2.2 The τ_R Congruence .. 14
2.3 R-Trivial Monoids .. 23
2.4 Partially Ordered Automata ... 25
2.5 R-Expressions ... 35
2.6 Other Congruences ... 39
2.7 Summary ... 48

3 Languages of L-Trivial Monoids ... 49

4 Languages of G-Trivial Monoids

4.1 Basic Congruences ... 53
4.2 G-Trivial Monoids ... 65
4.3 Automata and Expressions .. 71
4.4 Noncounting Languages ... 74
4.5 Some Negative Results ... 81

5 Definite and Related Languages .. 90

Bibliography ... 93

Appendix ... 97

(vi)
CHAPTER 1 INTRODUCTION

1.1 Preliminaries

Let \(A \) be a finite non-empty alphabet, \(A^+ \) the free semigroup generated by \(A \), and \(A^* \) the free monoid generated by \(A \), with unit element \(1 \) (the empty word). The cardinality of \(A \) is denoted by \(|A| \) and the length of \(x \in A^* \) is denoted by \(|x| \); note that \(|1| = 0 \). The product (concatenation) of two words \(x \) and \(y \) in \(A^* \) is denoted by \(xy \). The "alphabet" of a word \(x \in A^* \) is \(\alpha(x) = \{ a \in A \mid x = uav \text{ for some } u, v \in A^* \} \).

A word \(u \) is a prefix of \(x \in A^* \) if and only if \(x = uv \) for some \(v \in A^* \). Similarly \(v \) is a suffix of \(x \) if and only if there exists \(u \in A^* \) such that \(x = uv \). The front of length \(n \) of \(x \) is defined to be

\[
f_n(x) = \begin{cases}
x & \text{if } |x| \leq n \\
u & \text{if } |x| > n \text{ and } u \text{ is the prefix of length } n \text{ of } x.
\end{cases}
\]

The tail of length \(n \) of \(x \), \(t_n(x) \), is defined analogously. The reverse \(x^\rho \) of a word \(x \) is defined by induction on \(|x| \): \(1^\rho = 1 \) and \((xa)^\rho = ax^\rho \).

Subsets of \(A^* \) are called languages. If \(X, Y \subseteq A^* \) then \(\overline{X} = A^* - X \), \(X \cup Y \), and \(X \cap Y \) denote the complement of \(X \), the union of \(X \) and \(Y \), and the intersection of \(X \) and \(Y \), respectively. The product of two languages is \(XY = \{ w \mid w = xy, x \in X, y \in Y \} \). Also \(X^* = \bigcup_{n \geq 0} X^n \) (where \(X^0 = \{1\} \)) is the submonoid of \(A^* \) generated by \(X \). The reverse of \(X \) is \(X^\circ = \{ x^\rho \mid x \in X \} \).

For any family \(F \) of languages \(FB \) is the smallest family containing \(F \) and closed under complementation and finite unions. Similarly \(FM \) is the smallest family containing \(F \cup \{1\} \) and closed under concatenation. Thus \(FB \) and \(FM \) are the Boolean algebra and monoid generated by \(F \), respectively.
The syntactic congruence \equiv_X of $X \subseteq A$ is defined as follows. For all $u, v, x, y \in A$

$$x \equiv_X y \text{ if and only if } (uxv \in X \text{ if and only if } uyv \in X).$$

The quotient monoid $M = A/\equiv_X$ is the syntactic monoid of X, and the syntactic morphism of X is the natural morphism mapping $x \in A$ onto the equivalence class of \equiv_X containing x. For convenience, \bar{x} is used to represent the equivalence class of \equiv_X containing x.

If \sim is any congruence on A then X is defined to be a \sim language if and only if X is a union of congruence classes of \sim. Thus X is a \sim language if and only if for all $x, y \in A$

$$x \sim y \text{ implies } (x \in X \text{ if and only if } y \in X).$$

Since \sim is a congruence, $x \sim y$ implies $uxv \sim uyv$ for all $u, v \in A$. Thus X is a \sim language if and only if

$$x \sim y \text{ implies } x \equiv_X y, \text{ (i.e. } x = y).$$

The congruence class of \sim containing x is denoted by $[x]_\sim$.

A semiautomaton is a triple $S = <A, Q, \sigma>$, where A is the input alphabet, Q is a finite set of states, and $\sigma: Q \times A \rightarrow Q$ is the transition function. A (finite) automaton is a system $A = <A, Q, q_0, F, \sigma>$ where A, Q, and σ are as above, $q_0 \in Q$ is the initial state, and $F \subseteq Q$ is the set of final states. The domain of σ is extended to $Q \times A$ in the natural way. That is, $\sigma(q, 1) = q$ and $\sigma(q, ax) = \sigma(\sigma(q, a), x)$ for all $q \in Q$, $x \in A$, and $a \in A$. The language accepted or recognized by an automaton is $\{x \in A | (q_0, x) \in F\}$. An automaton is reduced if and only if for all distinct $p, q \in Q$ there exists $x \in A$ such that $\sigma(p, x) \in F$ and $\sigma(q, x) \in F$ or vice versa.

In any semiautomaton define the relation \rightarrow as follows. For $p, q \in Q$

$$p \rightarrow q \text{ if and only if } \sigma(p, x) = q \text{ for some } x \in A.$$

S (or A) is partially ordered if and only if the relation \rightarrow on Q is a partial order. A semiautomaton is a chain reset if and only if \rightarrow is a total order.

The direct product of two semiautomata $S = <A, Q, \sigma>$ and $T = <A, P, \tau>$ is the semiautomaton $S \times T = <A, Q \times P, \eta>$, where $\eta((q, p), a) = (\sigma(q, a), \tau(p, a))$. The cascade
product of $S = \langle A, Q, \sigma \rangle$ and $T = \langle C, P, \tau \rangle$ with connection $\omega : Q \times A \to C$ is the semiautomaton $S \cdot T = \langle A, Q \times P, \eta \rangle$ where $\eta((q,p),a) = (\sigma(q,a), \tau(p,\omega(q,a)))$. If $A = C$ and $\omega(q,a) = a$ for all $a \in A$ then $S \cdot T$ reduces to $S \times T$.

An initialized semiautomaton is a semiautomaton with an initial state. Let $S = \langle A, Q, \sigma \rangle$ and $T = \langle C, P, \tau \rangle$ be two semiautomata. T is a subsemiautomaton of S if and only if $C \subseteq A$, $P \subseteq Q$, and τ is the restriction of σ to $P \times C$. If S and T are initialized semiautomata with initial states q_0 and p_0 respectively, then T is an initialized subsemiautomaton of S if it is a subsemiautomaton of S and $q_0 = p_0$. The initialized semiautomaton S is a homomorphic image of the initialized semiautomaton T if and only if $C = A$ and there exists a surjective mapping $\psi : P \to Q$ such that $\psi(p_0) = q_0$ and $\psi(\tau(p,a)) = \sigma(\psi(p),a)$. S is covered by T if and only if S is a homomorphic image of an initialized subsemiautomaton of T.

An initialized semiautomaton $S = \langle A, Q, q_0, \sigma \rangle$ is connected if and only if for each $q \in Q$ there exists $x \in A$ such that $\sigma(q_0,x) = q$. The connected initialized subsemiautomaton of S is $\langle A, Q', q_0, \sigma' \rangle$ where $Q' = \{ q \in Q \mid$ there exists $x \in A$ such that $\sigma(q_0,x) = q \}$ and σ' is the restriction of σ to $Q' \times A$.

The transformation monoid of a semiautomaton $S = \langle A, Q, \sigma \rangle$ (or of an automaton $\langle A, Q, q_0, F, \sigma \rangle$) is the set of all transformations of Q into itself of the form $(q_1, \ldots, q_n) \mapsto (\sigma(q_1,x), \ldots, \sigma(q_n,x))$ for some $x \in A$. It is well-known that if A is a reduced automaton recognizing the language $X \subseteq A$, then the transformation monoid of A is isomorphic to the syntactic monoid of X.

Let M be any monoid. The cardinality of M is denoted by $\#M$. An element $e \in M$ is said to be idempotent if $e = e^2$. M is idempotent if and only if e is idempotent for all $e \in M$. For $f \in M$ let $P_f = \{ g \in M \mid f \in MgM \}$ and $M_f = P_f^\dagger$. Then M_f is the submonoid of M generated by the elements g with which f can be written ($f \in MgM$).
1.2 Background

The family of regular languages over an alphabet A is the set of all languages $X \subseteq A^*$ which can be built up from the languages $\{ \{a\} \mid a \in A \}$ using Boolean operations, concatenation and the star operator. In 1956, Kleene [18] proved that the languages recognized by automata are regular and that any regular language is recognized by some automaton. A theorem due to Myhill [25] states that a language $X \subseteq A^*$ is regular if and only if it is a \sim language for some congruence \sim over A^* of finite index if and only if its syntactic monoid is finite.

The family of star-free languages over A is the set of all languages $X \subseteq A^*$ which can be built up from the languages $\{ \{a\} \mid a \in A \}$ using only Boolean operations and concatenation. There are many different characterizations of star-free languages. A language X is star-free if and only if its syntactic monoid M is finite and group-free (i.e. every subgroup of M contains only one element), or, alternatively, if and only if M is finite and aperiodic (i.e. there exists $n \geq 1$ such that $f^n = f^{n+1}$ for all $f \in M$). It is necessary and sufficient for the reduced automaton $A = \langle A, Q, q_0, F, \sigma \rangle$ accepting X to be permutation-free (i.e. for all $P \subseteq Q, x \in A$, $\{ \sigma(p, x) \mid p \in P \} = P$ implies $\sigma(p, x) = p$ for all $p \in P$). A reset is an initialized semiautomaton $\langle C, \{p_0, p_1\}, p_0, \tau \rangle$ such that for each $c \in C$ either $\tau(p_0, c) = \tau(p_1, c) = p_0$ and $\tau(p_1, c) = p_1$. X is star-free if and only if A can be covered by a cascade product of resets. The proofs of these and other characterizations can be found in [1], [11], [14], [19], [20], [21], [26], and [27].

Various subfamilies of the star-free languages have also proved interesting. Consider the families $B_0 \subseteq B_1 \subseteq B_2 \subseteq \cdots$ where $B_0 = \{ \{a\} \mid a \in A \} MB$ and $B_{i+1} = B_i MB$ for all $i \geq 0$. Clearly $\bigcup_{i=0}^{\infty} B_i$ is equal to the family of all star-free languages over the alphabet A. This sequence of Boolean algebras is known as the dot-depth hierarchy and was introduced and first studied by Cohen and Brzozowski [11]. It is easily seen that B_0 is equal to the set of finite and
cofinite languages over A. If \(\#A = 1 \) then \(B_0 \) is also a monoid and thus is equal to the family of star-free languages over A. However, for \(\#A > 1 \), the dot-depth hierarchy is infinite [7]. In [4], an excellent survey of this material can be found.

The well-known Green relations are fundamental in the theory of monoids [9,15]. They are defined as follows. Let \(M \) be a monoid and \(f,g \in M \); then

\[
\begin{align*}
J_f & \quad \text{if and only if} \quad MfM = MgM \\
L_f & \quad \text{if and only if} \quad Mf = Mg \\
R_f & \quad \text{if and only if} \quad fM = gM \\
H_f & \quad \text{if and only if} \quad fLg = fRg
\end{align*}
\]

Clearly \(J, L, R, \) and \(H \) are equivalence relations. If \(\rho \) is an equivalence relation on \(M \), we say that \(M \) is \(\rho \)-trivial if and only if \(f\rho g \) implies \(f = g \). In 1965, Schützenberger [26] showed that a language is star-free if and only if its syntactic monoid is finite and \(H \)-trivial. In 1972, Simon [28,29] characterized the languages corresponding to finite \(J \)-trivial monoids. This latter family of languages plays a key role in the structure of \(B_1 \). \(J \)-trivial and \(H \)-trivial monoids and the dot-depth hierarchy are also treated in [12].

Here, the languages corresponding to finite \(R \)-trivial and \(L \)-trivial monoids are studied, as well as the set of languages of \(G \)-trivial monoids, which is a generalization of both of these. Characterizations are given in terms of congruences, monoids, automata, and regular expressions. The relationship of these families to the dot-depth hierarchy is also considered.
CHAPTER 2 LANGUAGES OF R-TRIVIAL MONOIDS

2.1 Languages of J-Trivial Monoids

Simon, in [28] and [29], provides many characterizations for languages with J-trivial syntactic monoids as is summarized in the following theorem. An additional property, M3, is taken from [5].

Theorem 1 Let \(X \subseteq A^* \) be a regular language, let \(M \) be its syntactic monoid, and let \(A = \langle A, Q, q_0, F, \sigma \rangle \) and \(A^0 \) be the reduced finite automata accepting \(X \) and \(X^0 \), respectively. The following conditions are equivalent.

M1. \(M \) is J-trivial.

M2. \(M \) is R-trivial and L-trivial.

M3. For all idempotents \(e \in M \), \(eMe \cup Me e = e \).

M4. There exists an \(n \geq 0 \) such that for all \(f, g \in M \), \((fg)^n = (fg)^n \).

M5. There exists an \(n \geq 0 \) such that for all \(f, g \in M \), \(f^n = f^{n+1} \) and \((fg)^n = (gf)^n \).

X1. \(X \) is a \(\sim_n \) language for some \(n \geq 0 \).

E1. \(X \in \{ AaaA^* \mid a \in A \}MB \).

A1. \(A \) and \(A^0 \) are both partially ordered.

A2. \(A \) is partially ordered and for all \(q \in Q \), \(x, y \in A^* \), \(\sigma(q,x) = \sigma(q,xx) = \sigma(q,xy) \) and \(\sigma(q,y) = \sigma(q,yy) = \sigma(q,yx) \) imply \(\sigma(q,x) = \sigma(q,y) \).

A3. \(A \) can be covered by a direct product of chain resets.

The congruence \(\sim_n \), mentioned above, is defined in terms of the subwords of length less than or equal to \(n \) that a given word contains. More precisely we have:

Definition 2 Let \(x, y \in A^* \) and \(n \geq 0 \). Then

(a) \(x \) is a subword of \(y \) if and only if there exist \(x_1, \ldots, x_n, u_0, \ldots, u_n \in A^* \) such that
\[x = x_1 \cdots x_n \text{ and } y = u_0x_1u_1 \cdots x_nu_n \]

(b) the \(n \)-contents of \(y \), denoted by \(\mu_n(y) \), is the set \(\{ x \mid x \text{ is a subword of } y \text{ and } |x| \leq n \} \)

(c) \(x \sim_n y \) if and only if \(\mu_n(x) = \mu_n(y) \).

It is straightforward to show that \(\sim_n \) is a congruence of finite index for any \(n \geq 0 \). See [28, pages 67-68]. There Simon also proves three results which are needed for the next section.

Proposition 3 Let \(x, y \in A^* \) and \(n \geq 0 \). Then

(a) \(x^n \sim_n x^{n+1} \),

(b) \((xy)^n \sim (xy)^n x \), and

(c) \((xy)^n \sim_n y(xy)^n \).

Proposition 4 Let \(x, y \in A^* \) and \(n \geq 0 \). Then \(x \sim_{n+1} y \) implies \(x \sim_n y \).

Lemma 5 Let \(u, v \in A^* \) and \(n > 0 \). Then \(u \sim_n uv \) if and only if there exist \(u_1, \ldots, u_n \in A^* \) such that \(u = u_1 \cdots u_n \) and \(\alpha(u_1) \supseteq \alpha(u_2) \supseteq \cdots \supseteq \alpha(u_n) \supseteq \alpha(v) \).

One additional definition is required.

Definition 6 Let \(x \in A^* \) and \(n > 0 \). Then \(x \) is \(n \)-full if and only if \(\mu_n(x) = \bigcup_{i=0}^{n} (\alpha(x))^i \). That is, \(x \) contains as a subword every word over the alphabet \(\alpha(x) \) of length at most \(n \).

Clearly, \(x \) is \(n \)-full if and only if \(x \sim_n xy \) for all \(y \in (\alpha(x))^* \) which, by Lemma 5, is true if and only if there exist \(x_1, \ldots, x_n \in A^* \) such that \(x = x_1 \cdots x_n \) and \(\alpha(x_1) = \cdots = \alpha(x_n) = \alpha(x) \). Every word is 1-full and any \((n+1)\)-full word is also \(n \)-full.
2.2 The π_R Congruence

The congruence π_R is defined to be a refinement of π in which the order of appearance (from the left) of the subwords in a word is also taken into account. More formally:

Definition 7 Let $x, y \in A$ and $n \geq 0$. Then $x \pi_R y$ if and only if

(a) for each prefix u of x there exists a prefix v of y such that $u \pi v$, and

(b) for each prefix v of y there exists a prefix u of x such that $u \pi v$.

Note that if $|x| < n$, $x \pi_R y$ if and only if $x = y$.

The two equivalence relations π and π_R are closely related and satisfy many similar properties.

Proposition 8 Let $x, y \in A$ and $n \geq 0$.

(a) If $x \pi_R y$ then $x \pi y$.

(b) $x \pi xy$ if and only if $x \pi_R xy$.

(c) If $xy \pi_R x'y'$ and $x \pi x'$, then $x \pi_R x'$.

Proof:

(a) Since x is a prefix of x there exists a prefix v of y such that $x \pi v$. Thus $\mu_n(x) = \mu_n(v) \subseteq \mu_n(y)$. Similarly, $\mu_n(y) \subseteq \mu_n(x)$; so $\mu_n(x) = \mu_n(y)$. Therefore $x \pi y$.

(b) Assume $x \pi xy$. Any prefix of x is also a prefix of xy. Let v be any prefix of xy. Then either v is a prefix of x or x is a prefix of v. In the second case $\mu_n(x) \subseteq \mu_n(v) \subseteq \mu_n(xy) = \mu_n(x)$ so that $x \pi y$. Therefore $x \pi_R xy$. The converse follows from (a).

(c) Let u be a prefix of x. Since u is also a prefix of xy there exists a prefix u' of $x'y'$ such that $u \pi u'$. Now either u' is a prefix of x' or x' is a prefix of u'. In the second case $\mu_n(x') \subseteq \mu_n(u') = \mu_n(u) \subseteq \mu_n(x) = \mu_n(x')$, so that $u \pi x'$. Similarly, for each prefix u'
of \(x' \), there exists a prefix \(u \) of \(x \) such that \(u \vdash x' \). Therefore \(x \vdash x' \).

Proposition 9 Let \(x,y \in A \) and \(n \geq 0 \). Then

(a) \(x^n \vdash_{\pi} x^{n+1} \)

(b) \((xy)^n \vdash_{\pi} (xy)^n \).

Proof: Immediate from Propositions 3(a) and (b) and 8(b).

Proposition 10 Let \(x,y \in A \) and \(n \geq 0 \). Then \(x \vdash_{\pi} y \) implies \(x \vdash_{\pi} y \).

Proof: Follows from Proposition 4.

Lemma 11 Let \(u,v \in A \) and \(n > 0 \). Then \(u \vdash_{\pi} uv \) if and only if there exist \(u_1,u_2,\ldots,u_n \in A \) such that \(u = u_1 \cdots u_n \) and \(\alpha(u_1) \supseteq \cdots \supseteq \alpha(u_n) \supseteq \alpha(v) \).

Proof: Follows from Lemma 5 and Proposition 8.

In the remaining part of this section some additional interesting properties of \(\pi \) are presented.

Lemma 12 Let \(n > 0 \), \(x,y,x',y' \in A \), and \(a \in A \). If \(xay \vdash_{\pi} x'ay' \) and \(a \notin \alpha(y) \cup \alpha(y') \) then \(x \vdash_{\pi} x' \).

Proof: Let \(u \in \mu_{n-1}(x) \). Then \(ua \in \mu_n(xa) \supseteq \mu_n(xay) = \mu_n(x'ay') \). Since \(a \notin \alpha(y') \), \(ua \in \mu_n(x'a) \). Now \(u \in \mu_{n-1}(x') \); hence \(\mu_{n-1}(x) \supseteq \mu_{n-1}(x') \). Similarly \(\mu_{n-1}(x') \subseteq \mu_{n-1}(x) \). Therefore \(x \vdash_{\pi} x' \) and, by Proposition 8(c), \(x \vdash_{\pi} x' \).

Lemma 13 Let \(n > 0 \), \(x \in A \), and \(a \in A \). Then \(x \vdash_{\pi} xa \) if and only if there exists a prefix \(ua \) of \(x \) such that \(u \vdash_{\pi} x \).

Proof:

(\(\Rightarrow \)) Suppose \(x \vdash_{\pi} xa \). Since \(n > 0 \), \(\alpha(x) = \alpha(xa) \) and thus \(a \in \alpha(x) \). Let \(x = uav \) where
$a \in \alpha(v)$. Then $uav = x \mathrel{\not\! \alpha} xa = (uav)a1$ so, by Lemma 12, $u \mathrel{\not\! \alpha} xa = x$. Hence $u \mathrel{\not\! \alpha} x$ by Proposition 8(a).

(\Leftarrow) If $w \in \mu_n(xa)$ then either $w \in \mu_n(x)$ or $w = va$ where $v \in \mu_{n-1}(x) = \mu_{n-1}(u)$. Thus $w = va \in \mu_n(ua) \subseteq \mu_n(xa)$. Hence $\mu_n(xa) \subseteq \mu_n(xa)$. But $\mu_n(x) \subseteq \mu_n(xa)$; therefore $x \mathrel{\not\! \alpha} xa$. From Proposition 8(b) it follows that $x \mathrel{\not\! \alpha} xa$.

Lemma 14 Let $n \geq 0$, $x \in \mathcal{A}$, and $a, b \in \mathcal{A}$. If $x \mathrel{\not\! \alpha} xa$ and $xb \mathrel{\not\! \alpha} xbb$ then $xb \mathrel{\not\! \alpha} xba$.

Proof: If $n = 0$ then the result is trivially true since $y \mathrel{\not\! \alpha} z$ for all $y, z \in \mathcal{A}$. Therefore assume $n > 0$. By Lemma 13 there exist $u, v \in \mathcal{A}$ such that ua is a prefix of x, vb is a prefix of xb, $u \mathrel{\not\! \alpha} x$, and $v \mathrel{\not\! \alpha} xb$. But vb is a prefix of xb, so v is a prefix of x; hence $\mu_{n-1}(v) \subseteq \mu_{n-1}(x) \subseteq \mu_{n-1}(xb) = \mu_{n-1}(v)$. Thus $xb \mathrel{\not\! \alpha} x \mathrel{\not\! \alpha} u$ and, since ua is a prefix of xb, it follows by Lemma 13 that $xb \mathrel{\not\! \alpha} xba$.

Lemma 15 Let $u, v, v' \in \mathcal{A}$ and $a, b \in \mathcal{A}$. If $a \not\equiv b$ and $uav \mathrel{\not\! \alpha} ubv'$ then either $u \mathrel{\not\! \alpha} ua$ or $u \mathrel{\not\! \alpha} ub$.

Proof: Suppose $a \not\equiv b$ and $uav \mathrel{\not\! \alpha} ubv'$. Then there exists a prefix u' of ubv' such that $u' \mathrel{\not\! \alpha} ua$. If u' is a prefix of u then $\mu_n(u') \subseteq \mu_n(u) \subseteq \mu_n(ua) = \mu_n(u')$ so $u \mathrel{\not\! \alpha} ua$.

Otherwise ub is a prefix of u' so that $\mu_n(ub) \subseteq \mu_n(u') = \mu_n(ua)$. If $z \in \mu_n(ub)$ then either $z \in \mu_n(u)$ or $z = z'b$ where $z' \in \mu_{n-1}(u)$. But $z = z'b \in \mu_n(ua)$ and $a \not\equiv b$ imply $z \in \mu_n(u)$. Thus $\mu_n(ub) \subseteq \mu_n(u)$ and, since $\mu_n(u) \subseteq \mu_n(ub)$, $u \mathrel{\not\! \alpha} ub$.

Lemma 16 Let $u, v \in \mathcal{A}$, $a, b \in \mathcal{A}$, and $n > i > 0$. If $\mu_{n-i}(u) \not\equiv \mu_{n-i}(ua)$ and $\mu_i(v) \not\equiv \mu_i(vb)$ then $\mu_n(uav) \not\equiv \mu_n(uavb)$.

Proof: Suppose $\mu_{n-i}(u) \not\equiv \mu_{n-i}(ua)$ and $\mu_i(v) \not\equiv \mu_i(vb)$. Then there exist $u', v' \in \mathcal{A}$ such that $u'a \in \mu_{n-i}(ua) - \mu_{n-i}(u)$ and $v'b \in \mu_i(vb) - \mu_i(v)$. Clearly $u'av'b \in \mu_n(uavb)$.

If $u'av'b \in \mu_n(uav)$ then there exist $r, s \in \mathcal{A}$ such that $uav = rs$, $u'a$ is a subword of r, and $v'b$ is a subword of s. Since $u'a \in \mu_{n-i}(ua) - \mu_{n-i}(u)$, it follows that ua is a prefix of r. Hence s is a suffix of v. But if $v'b$ is a subword of s, then $v'b$ is a subword of v, contradicting the fact
that \(v'b \in \mu_n(vb) - \mu_n(v) \). Therefore \(u'av'b \in \mu_n(uavb) - \mu_n(uav) \) and thus \(\mu_n(uav) \neq \mu_n(uavb) \).

Proposition 17 \(\pi \) is a congruence of finite index for all \(n \geq 0 \).

Proof: Let \(n \geq 0 \) and let \(x, y \in A \) be such that \(x \pi \sim y \). Let \(a \in A \).

Suppose \(u \) is a prefix of \(xa \). Then either \(u \) is a prefix of \(x \) or \(u = xa \). In the first case, because \(x \pi \sim y \), there is a prefix \(v \) of \(y \) such that \(u \pi \sim v \). If \(u = xa \) then from Proposition 8(a) \(x \pi \sim y \), and since \(\pi \) is a congruence \(u = xa \pi \sim ya \). By symmetry, for each prefix \(v \) of \(ya \) there exists a prefix \(u \) of \(xa \) such that \(u \pi \sim v \). Therefore \(\pi \) is a right congruence.

Suppose \(u \) is a prefix of \(ax \). Then either \(u = 1 \) or \(u = au' \) for some prefix \(u' \) of \(x \). If \(u = 1 \) then \(u \) is also a prefix of \(ay \). Otherwise, since \(x \pi \sim y \), there exists a prefix \(v' \) of \(y \) such that \(u' \pi \sim v' \). But \(\pi \) is a congruence so \(u = au' \pi \sim av' \). Similarly for each prefix \(v \) of \(ay \) there exists a prefix \(u \) of \(ax \) such that \(u \pi \sim v \). Hence \(\pi \) is a left congruence.

The fact that \(\pi \) is of finite index can be obtained from a counting argument using the fact that \(\pi \) is of finite index.

One nice property of \(\pi \), which is not shared by \(\pi \), is that each congruence class has a unique shortest element.

Theorem 18 Every congruence class of \(\pi \) contains a unique element of minimal length. Furthermore, if \(a_1, \ldots, a_m \in A \) then \(a_1 \cdots a_m \) is minimal if and only if \(\mu_n(1) \subseteq \mu_n(a_1) \subseteq \mu_n(a_1a_2) \subseteq \cdots \subseteq \mu_n(a_1 \cdots a_m) \).

Proof: By induction on \(k \), the minimum length of elements in a given \(\pi \) class. Note that minimum length elements exist because length is a function from \(A \) to the nonnegative integers which form a well ordered set.

For \(k = 0 \) the lemma is true since 1 is the only word of length 0. Let \(k \geq 1 \) and assume the lemma is true for all \(\pi \) classes containing elements of length less than \(k \). Suppose there
exists a \(\widetilde{\pi} \) class containing minimal elements \(x \) and \(y \) of length \(k \).

Since \(k \geq 1 \), \(x = ua \) for some \(u \in A \), \(a \in A \). Now \(\mu_n(u) \subseteq \mu_n(x) \) and \(u \sim \pi x \) implies \(u \sim \pi x \) by Proposition 8(b); so \(\mu_n(u) \neq \mu_n(x) \). Employing the induction hypothesis (since \(|u| < k \) \(\{u\}_{\widetilde{\pi}} \) has a unique element of minimal length. Call this element \(w \). If \(w \neq u \) then \(|w| < |u| \) and hence \(|wa| < |xl| \). But \(w \sim \pi u \) and \(\sim \pi x \) is a congruence, so \(wa \sim \pi ua = x \) contradicting the minimality of \(x \). Therefore \(u = w \). By the induction hypothesis \(u = a_1 \cdots a_m \) where \(\mu_n(a_1) \subseteq \cdots \subseteq \mu_n(a_1 \cdots a_m) \) and thus \(x = a_1 \cdots a_m a \) where \(\mu_n(a_1) \subseteq \cdots \subseteq \mu_n(a_1 \cdots a_m) \subseteq \mu_n(a_1 \cdots a_m a) \).

Because \(x \sim \pi y \) there exists a prefix \(v \) of \(y \) such that \(u \sim \pi v \). By Proposition 8(c) \(u \sim \pi v \). Also, \(v \) is a proper prefix of \(y \) since \(\mu_n(v) = \mu_n(u) \subseteq \mu_n(x) = \mu_n(y) \). Then \(v = u \), since otherwise \(|y| \geq 1 + |v| > 1 + |u| = |xl| \) contradicting the minimality of \(y \). Therefore \(y = ua' \) for some \(a' \in A \). Now \(\mu_n(u) \subseteq \mu_n(ua) \); hence there exists a word \(za \in \mu_n(ua) - \mu_n(u) \). But \(\mu_n(ua) = \mu_n(ua') \), so \(za \in \mu_n(ua') - \mu_n(u) \). That being the case, \(a = a' \) and thus \(x = y \).

By induction, every congruence class of \(\sim \pi \) contains a unique element of minimal length and, if \(a_1, \ldots, a_m \in A \) are such that \(a_1 \cdots a_m \) is minimal, then \(\mu_n(1) \subseteq \mu_n(a_1) \subseteq \cdots \subseteq \mu_n(a_1 \cdots a_m) \).

Finally, suppose \(x = a_1 \cdots a_m \) where \(a_1, \ldots, a_m \in A \) and \(\mu_n(1) \subseteq \mu_n(a_1) \subseteq \cdots \subseteq \mu_n(a_1 \cdots a_m) \). Let \(u_0 = 1 \), \(u_1 = a_1 \), \ldots, \(u_m = a_1 \cdots a_m \) be the prefixes of \(x \) and let \(y \) be the unique minimal element of \([x]_{\pi} \). Since \(x \sim \pi y \) there exist prefixes \(v_0, v_1, \ldots, v_m \) of \(y \) such that \(u_i \sim \pi v_i \) for \(0 \leq i \leq m \). Because \(\mu_n(v_i) = \mu_n(u_i) \neq \mu_n(u_j) = \mu_n(v_j) \) for all \(i \neq j \), the \(v_i \)'s must be distinct. Thus \(|y| \geq m \). But \(|x| = m \); therefore, by the uniqueness of the minimal element, \(x = y \).

Definition 19 Let \(n \geq 0 \). Then

(a) the function \(\chi_n : A \to A \) is defined by \(\chi_n(x) = \) the unique minimal element of \([x]_{\widetilde{\pi}} \),

(b) the length of the longest minimal element is \(\lambda_R(A, n) = \max\{ |\chi_n(x)| \mid x \in A \} \), and

(c) the set of all longest words which are the minimal elements in their \(\sim \pi \) classes is
\[\Lambda_R(A, n) = \{ \chi_n(x) \mid x \in \mathcal{A} \text{ and } |\chi_n(x)| = \lambda_R(A, n) \}. \]

Proposition 20 Let \(n \geq 0 \). Then \(\lambda_R(A, n) = \binom{n + \#A}{n} - 1 \). Furthermore, for \(\#A > 1 \) and \(n > 0 \), \(x \in \Lambda_R(A, n) \) if and only if \(x = x_n a_n \cdots x_2 a_2 x_1 a_1 \) where \(a_i \in \mathcal{A} \) and \(x_i \in \Lambda_R(A - \{a_i\}, i) \) for \(i = 1, \ldots, n \).

Proof: By induction on \(\#A \).

If \(\#A = 1 \), say \(A = \{a\} \), then the result is clearly true since \(\Lambda_R(A, n) = \{a^n\} \) and \(\lambda_R(A, n) = n = \binom{n + 1}{n} - 1 \). Now assume the proposition is true for all alphabets with cardinality \(\#A - 1 \), where \(\#A > 1 \).

Because 1 is the only word of length 0 and \(x \in \Lambda_R(A, 0) = \{1\} \) and \(\lambda_R(A, 0) = 0 = \binom{0 + \#A}{0} - 1 \). It remains to consider the case \(n > 0 \).

Let \(x = x_n a_n \cdots x_1 a_1 \) where \(a_i \in \mathcal{A} \) and \(x_i \in \Lambda_R(A - \{a_i\}, i) \) for \(i = 1, \ldots, n \). Clearly \(a_n \cdots a_i \in \mu_{n-i+1}(x_n a_n \cdots x_i a_i) \) for \(i = 1, \ldots, n \). However, since \(x_n \in (A - \{a_n\})^* \), \(a_n \in \mu_1(x_n) \). Assume \(a_n \cdots a_{i+1} \in \mu_{n-i+1}(x_n a_n \cdots x_i a_i) \) where \(1 \leq i \leq n-1 \). Then, because \(x_i \in (A - \{a_i\})^* \), \(a_n \cdots a_{i+1} a_i \in \mu_{n-i+1}(x_n a_n \cdots x_i a_{i+1} a_i x_i) \). By induction it follows that \(a_n \cdots a_i \in \mu_{n-i+1}(x_n a_n \cdots x_i a_i) - \mu_{n-i+1}(x_n a_n \cdots x_i) \) and hence \(\mu_{n-i+1}(x_n a_n \cdots x_i) = \mu_{n-i+1}(x_n a_n \cdots x_i a_i) \).

Consider any prefix \(ua \) of \(x \) where \(u \in \mathcal{A} \) and \(a \in \mathcal{A} \). If \(u = x_n a_n \cdots x_i \) and \(a = a_i \), for some \(i, \ 1 \leq i \leq n \), then, from above and Proposition 4, \(\mu_n(ua) = \mu_n(u) \). Otherwise \(u = x_n a_n \cdots x_{i+1} a_{i+1} v \) where \(v \in \mathcal{A} \), \(va \) is a prefix of \(x_i \), and \(1 \leq i \leq n \). Since \(x_i \in \Lambda_R(A - \{a_i\}, i) \), it is the minimal element of its \(\tau_R \) class; so \(\mu_i(v) \subseteq \mu_i(va) \) by Theorem 18. For \(i < n \), it follows from the preceding paragraph and Lemma 16 that \(\mu_n(u) \neq \mu_n(ua) \).

And when \(i = n \), \(u = v \). Thus \(\mu_n(u) = \mu_n(ua) \) for any prefix \(ua \) of \(x \). Theorem 18 implies that \(x \) is the minimal element of its \(\tau_R \) class.

Now let \(y \in \Lambda_R(A, n) \). Then \(y = \chi_n(y) \) is \(n \)-full and \(\alpha(y) = A \). Otherwise there exists \(a \in A \) such that \(\mu_a(y) \neq \mu_n(ya) \). Since \(y \) is the minimal element of \([y]_{\tau_R} \), it follows from
Theorem 18 that \(y \in A \) is the minimal element of \([yA]_{\sim_{R}} \). This contradicts the fact that
\(y \in \Lambda_{R}(A, n) \).

Decompose \(y \) into \(y_{n}a_{n} \cdots y_{1}a_{1}y_{0} \) where \(y_{0} \in A \) and \(\alpha(y_{i}) \neq \alpha(y_{i}a_{i}) = A \) for \(i = 1, \ldots, n \). Since \(y_{n}a_{n} \cdots y_{1}a_{1}y_{0} \) is \(n \)-full, \(y_{n}a_{n} \cdots y_{1}a_{1} \sim_{R} y_{n}a_{n} \cdots y_{1}a_{1}y_{0} \) and therefore
\(y_{0} = 1 \).

Suppose for some \(i, 1 \leq i \leq n \), that \(y_{i} \neq \chi_{i}(y_{i}) \). Then, by Theorem 18, there exist
a \in A - \{a_{i}\} and \(u, v \in A \) such that \(y_{i} = uv \) and \(u \sim_{R} v \). Let \(w \in \mu_{n}(y_{n}a_{n} \cdots y_{i+1}a_{i+1}u) \). Now \(w = w'w'' \) where \(w' \) is a subword of \(y_{n}a_{n} \cdots y_{i+1}a_{i+1} \) and \(w'' \) is a subword of \(ua \). If \(\|w''\| \leq i \) then \(w'' \in \mu_{i}(ua) = \mu_{i}(u) \) so that \(w \in \mu_{n}(y_{n}a_{n} \cdots y_{i+1}a_{i+1}u) \). Otherwise let \(w_{1}, w_{2} \in A \) be such that
\(w_{2} = 1 \) and \(w = w_{1}w_{2} \). Since \(y_{n}a_{n} \cdots y_{i+1}a_{i+1} \) is \((n-i) \)-full and
\(\|w_{1}\| = \|w_{1}\| - \|w_{2}\| \leq n-i \), \(w_{1} \) is a subword of \(y_{n}a_{n} \cdots y_{i+1}a_{i+1} \). But \(w_{2} \) is a suffix of \(w'' \) so \(w_{2} \) is a subword of \(ua \). As above, \(w_{2} \in \mu_{i}(u) \), and thus \(w = w_{1}w_{2} \in \mu_{n}(y_{n}a_{n} \cdots y_{i+1}a_{i+1}u) \). Therefore it follows that \(\mu_{n}(y_{n}a_{n} \cdots y_{i+1}a_{i+1}u) = \mu_{n}(y_{n}a_{n} \cdots y_{i+1}a_{i+1}u) \), which contradicts
Theorem 18 since \(y \neq \chi_{n}(y) \). Hence \(x_{i} = \chi_{i}(x_{i}) \) for \(i = 1, \ldots, n \).

If \(\|y_{k}\| < \lambda_{R}(A - \{a_{k}\}, k) \) for some \(1 \leq k \leq n \) then
\[
\|y\| = \sum_{i=1}^{n} [\|y_{i}\| + 1] < \sum_{i=1}^{n} [\lambda_{R}(A - \{a_{i}\}, i) + 1] = \sum_{i=1}^{n} [\|x_{i}\| + 1] = \|x\|
\]
contradicting the fact that \(y \in \Lambda_{R}(A, n) \). Therefore \(y_{i} \in \Lambda_{R}(A - \{a_{i}\}, i) \) for \(i = 1, \ldots, n \). This also implies that \(\lambda_{R}(A, n) = \|x\| \). Hence, by the induction hypothesis and [17, page 212],
\[
\lambda_{R}(A, n) = \|x\| = \sum_{i=1}^{n} \lambda_{R}(A - \{a_{i}\}, i) + 1 = \sum_{i=1}^{n} \binom{i + \#A - 1}{i} = \binom{n + \#A}{n} - 1
\]

The following is an algorithm for finding the minimal element of a congruence class of \(\sim_{R} \)
given any word \(x \) in the class. A SNOBOL4 program which implements this algorithm can be found in the Appendix.
Algorithm 21 Determine $\chi_n(x)$ given x.

Find the shortest prefix ua of x such that $u \in A$, $a \in A$, and $u \sim_n ua$. If none exists then $x = a_1 \cdots a_m$ where $\mu_n(1) \subseteq \mu_n(a_1) \subseteq \mu_n(a_1a_2) \subseteq \cdots \subseteq \mu_n(a_1 \cdots a_m)$ and $\chi_n(x) = x$.

Otherwise $x = uav$ for some $v \in A$. Since $u \sim_n ua$ implies $u \sim_{\mathcal{R}_n} ua$ and $\sim_{\mathcal{R}_n}$ is a congruence, $uv \sim_{\mathcal{R}_n} uav = x$. Thus $\chi_n(x) = \chi_n(uv)$. Note that uv is shorter than x and so the algorithm always terminates.

Example Let $x = abccbac$ and $n = 2$.

<table>
<thead>
<tr>
<th>prefix u of x</th>
<th>$\mu_2(u)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>$1, a$</td>
</tr>
<tr>
<td>ab</td>
<td>$1, a, b, ab$</td>
</tr>
<tr>
<td>abc</td>
<td>$1, a, b, ab, c, ac, bc$</td>
</tr>
<tr>
<td>$abcc$</td>
<td>$1, a, b, ab, c, ac, bc, cc$</td>
</tr>
<tr>
<td>$abccba$</td>
<td>$1, a, b, ab, c, ac, bc, cc, cb, bb$</td>
</tr>
<tr>
<td>$abccbac$</td>
<td>$1, a, b, ab, c, ac, bc, cc, cb, bb$</td>
</tr>
</tbody>
</table>

Since $\mu_2(abccba) = \mu_2(abccbac)$, $abccba \sim_{\mathcal{R}_n} abccbac$ and hence $abccba \sim_{\mathcal{R}_n} abccbac = x$. Replace x by $abccbac$.

| $abccba$ | $1, a, b, ab, c, ac, bc, cc, cb, bb, aa, ba, ca$ |
| $abccbac$ | $1, a, b, ab, c, ac, bc, cc, cb, bb, aa, ba, ca$ |

Since $\mu_2(abccba) = \mu_2(abccbac)$, $abccba \sim_{\mathcal{R}_n} abccbac$. Now $\mu_2(1) \subseteq \mu_2(a) \subseteq \mu_2(ab) \subseteq \mu_2(abc) \subseteq \mu_2(abcc) \subseteq \mu_2(abccba)$; therefore $\chi_2(x) = abccba$.

To construct $\mu_n(ua)$ from $\mu_n(u)$ it is only necessary to add those elements wa such that $w \in \mu_{n-1}(u)$ but $wa \notin \mu_n(u)$. The number of elements in $\mu_n(u)$ is bounded by $\sum_{i=0}^{n} m^i$, where m
is the cardinality of the alphabet. Thus for a fixed \(n \) and a fixed alphabet, \(\chi_n(x) \) can be found in \(O(|x|) \) steps. By employing the algorithm twice, \(O(|x| + |y|) \) steps suffice to determine whether \(x \overset{\sim}{\sim}_n y \).

The algorithm motivates the following definition:

Definition 22 Let \(x, y \in A \) and \(n \geq 0 \). Then \(x \overset{\sim}{\sim}_n y \) if and only if \(x = rus \) and \(y = ruv \) for some \(r, s, u, v \in A \) such that \(u \overset{\sim}{\sim}_{n-1} uv \). Let \(\overset{\sim}{\sim}_n \) be the symmetric transitive closure of \(\overset{\sim}{\sim}_{n-1} \).

One verifies that \(x \overset{\sim}{\sim}_n x \) for all \(x \in A \) since \(1^n = 1 \overset{\sim}{\sim}_{n-1} 1 = 1^n \), \(x = x(1^n)1 \), and \(x = x(1^n)1 \). Hence \(\overset{\sim}{\sim}_n \) is an equivalence relation over \(A \). It is easy to see that \(\overset{\sim}{\sim}_n \) is the smallest congruence satisfying \(u \overset{\sim}{\sim}_n uv \) for all \(u, v \in A \) such that \(u \overset{\sim}{\sim}_{n-1} uv \).

Proposition 23 Let \(n \geq 0 \) and \(x, y \in A \). Then \(x \overset{\sim}{\sim}_n y \) if and only if \(x \overset{\sim}{\sim}_n y \).

Proof: If \(x \overset{\sim}{\sim}_n y \) then \(x \overset{\sim}{\sim}_n y \) by Proposition 8(b); thus \(x \overset{\sim}{\sim}_n y \) implies \(x \overset{\sim}{\sim}_n y \) since \(\overset{\sim}{\sim}_n \) is transitive. If \(x \overset{\sim}{\sim}_n y \) then by Theorem 18, \(\chi_n(x) = \chi_n(y) \). From Algorithm 21 it follows that \(x \overset{\sim}{\sim}_n \chi_n(x) \) and \(y \overset{\sim}{\sim}_n \chi_n(y) \). Hence \(x \overset{\sim}{\sim}_n y \).
2.3 R-Trivial Monoids

Four equivalent characterizations of finite R-trivial monoids (from [28] and [5]) are presented. These monoids are then related to the congruences \(\cong \), \(\cong' \), and \(\cong'' \).

Theorem 24 Let \(M \) be a finite monoid. The following conditions are equivalent.

1. \(M \) is \(R \)-trivial.
2. For all \(f, g, h \in M \), \(fgh = f \) implies \(fg = f \).
3. For all idempotents \(e \in M \), \(eMe = e \).
4. There exists \(n > 0 \) such that, for all \(f, g \in M \), \((fg)^n f = (fg)^n \).

Proof:

(1\(\Rightarrow \)2) Let \(f, g, h \in M \) be such that \(fgh = f \). Then \(fM \supseteq fgM \supseteq fghM = fM \). Since \(M \) is \(R \)-trivial, \(f = fg \).

(2\(\Rightarrow \)3) Let \(e \in M \) be an idempotent and let \(f \in P_e \). Then \(e \in MeM \) so there exist \(g, h \in M \) such that \(e = gh \). Since \(e = e^2 = e(gh) = eg(gh) = e(gf)h, e = eg \) and \(e = e(gf) = (eg)f = ef \). Thus \(eP_e = e \) and hence \(eMe = e(P_e) = e \).

(3\(\Rightarrow \)4) Since \(M \) is finite there exists an \(n > 0 \) such \(f^n \) is idempotent for all \(f \in M \). Now let \(f, g \in M \). Because \(e = (fg)^n \in MeM \) is idempotent, \(f \in P_e \subseteq Me \). Hence \((fg)^n f = (fg)^n \).

(4\(\Rightarrow \)1) Let \(n > 0 \) be such that \((hk)^n = (hk)^n h \) for all \(h, k \in M \). Suppose \(fM = gM \). Then there exist \(h, k \in M \) such that \(f = gh \) and \(g = fh \). Thus \(f = gh = fhk = f(hk)^m \) for all \(m \geq 0 \) and hence \(f = f(hk)^n = f(hk)^n h = fh = g \).

Lemma 25 Suppose \(M \) is a finite \(R \)-trivial monoid and \(\phi : \hat{A} \rightarrow M \) is a surjective morphism. Let \(n = \#M \) and let \(u, v \in \hat{A} \). Then \(u \cong uv \) implies \(\phi(u) = \phi(uv) \).
Proof: Suppose $u \sim uv$. By Lemma 5, there exist $u_1, \ldots, u_n \in A$ such that $u = u_1 \cdots u_n$ and $\alpha(u_1) \supseteq \cdots \supseteq \alpha(u_n) \supseteq \alpha(v)$. Let $u_0 = 1$. By the choice of n, the elements $\phi(u_0), \phi(u_0u_1), \ldots, \phi(u_0u_1 \cdots u_n)$ cannot all be distinct. Hence there exist i and j, $0 \leq i < j \leq n$, such that
\[f = \phi(u_0 \cdots u_i) = \phi(u_0 \cdots u_i \cdots u_j) = f\phi(u_{i+1} \cdots u_j) = f\phi(u_{i+1})\phi(u_{i+2} \cdots u_j). \]
Since M is R-trivial, $f = f\phi(u_{i+1})$. If $\alpha(u_n) = \emptyset$ then $v = 1$ and there is nothing to prove.

Thus suppose $\alpha(u_n) \neq \emptyset$. Since $\alpha(u_{i+1}) \supseteq \alpha(u_n) \neq \emptyset$, $u_{i+1} = az$ for some $a \in \alpha(u_{i+1})$, $z \in A$. Then
\[f = f\phi(az) = f\phi(a)\phi(z) \text{ and } f = f\phi(a). \]
Consequently $f = f\phi(a)$ for all $a \in \alpha(u_{i+1})$.

Because $u_{i+1} \cdots u_nv \in (\alpha(u_{i+1}))^*$ it follows that
\[\phi(u) = \phi(u_0 \cdots u_n) = f\phi(u_{i+1} \cdots u_n) = f\phi(u_{i+1} \cdots u_nv) = \phi(uv). \]

Theorem 26 Let M be the syntactic monoid of $X \subseteq \text{A}$. Then M is finite and R-trivial if and only if X is a \sim_R language for some $n \geq 0$.

Proof: Assume M is finite and R-trivial. Let $n = \#M$ and let $x,y \in \text{A}$. Suppose $x \sim_R y$. Then $x = rus$ and $y = ruvs$ for some $r,s,u,v \in \text{A}$ such that $u \sim uv$. By Lemma 25, $u = uv$ and $x = rus = ruvs = y$. Since \sim_R is the symmetric transitive closure of \sim_R, it follows that $x \sim_R y$ implies $x = y$. By Proposition 23 $x \sim_R y$ if and only if $x \sim_R y$. Thus $x \sim_R y$ implies $x = y$; i.e. X is a \sim_R language.

By Proposition 9, for all $x,y \in \text{A}$, $(xy)^n \sim_R (xy)^n x$. If X is a \sim_R language then $(xy)^n = (xy)^n x$. Since the syntactic morphism is a surjective function from A onto M, it follows that for all $f,g \in M$, $(fg)^n = (fg)^n f$. Because \sim_R is of finite index, M is finite and it is R-trivial by Theorem 24.
2.4 Partially Ordered Automata

In this section the automata associated with \(R \)-trivial monoids and \(\sigma \)-languages are considered.

Lemma 27 Let \(S = \langle A, Q, \sigma \rangle \) be a semiautomaton, let \(x \in A \) and let \(C \subseteq A \). Then \(\sigma(q,xa) = \sigma(q,x) \) for all \(a \in C \), \(q \in Q \) if and only if \(\sigma(q,xy) = \sigma(q,x) \) for all \(y \in C^*, q \in Q \).

Proof: Obvious.

Proposition 28 Let \(S = \langle A, Q, \sigma \rangle \) be a semiautomaton and let \(M \) be its transformation monoid. The following are equivalent.

1. \(M \) is \(R \)-trivial.
2. There exists \(n > 0 \) such that for all \(x,y \in A \), \(x \) \(n \)-full and \(\alpha(x) \supseteq \alpha(y) \) imply \(\sigma(q,x) = \sigma(q,xy) \) for all \(q \in Q \).
3. For any \(x \in A \), \(\sigma(q,x) = \sigma(q,xx) \) for all \(q \in Q \) implies \(\sigma(q,x) = \sigma(q,xa) \) for all \(q \in Q, a \in \alpha(x) \).

Proof:

\(1 \Rightarrow 2 \) This follows from Lemma 25, the comment following Definition 6, and the fact that the syntactic morphism is surjective.

\(2 \Rightarrow 3 \) Let \(n > 0 \) be such that for all \(x,y \in A \), \(x \) \(n \)-full and \(\alpha(x) \supseteq \alpha(y) \) imply \(\sigma(q,x) = \sigma(q,xy) \) for all \(q \in Q \). Suppose \(x \in A \) satisfies \(\sigma(q,x) = \sigma(q,xx) \) for all \(q \in Q \).

By induction it follows that \(\sigma(q,x) = \sigma(q,x^n) \) for all \(q \in Q \) and \(n > 0 \). Let \(q \in Q \) and \(a \in \alpha(x) \). Since \(x^n \) is \(n \)-full and \(\alpha(a) \subseteq \alpha(x) = \alpha(x^n) \), \(\sigma(q,x) = \sigma(q,x^n) = \sigma(q,x^n)a = \sigma(q,xx^n), a) = \sigma(q,xa) \).

\(3 \Rightarrow 1 \) Let \(e \in M \) be idempotent and let \(g \in P_e \). Let \(f,h \in M \) be such that \(e = fgh \). Since \(M \) is the transformation monoid of \(S \) there exist \(x,y,z \in A \) such that \(x = f, y = g, \) and \(z = h \).

Let \(w = xyz \) so that \(w = xyz = fgh = e \).
Since e is idempotent $w = e = e^2 = w^2$ so $\sigma(q, w) = \sigma(q, w\omega)$ for all $q \in Q$. Therefore $\sigma(q, wa) = \sigma(q, w)$ for all $a \in \alpha(w)$, $q \in Q$. Because $\alpha(y) \subseteq \alpha(w)$ it follows by Lemma 27 that $\sigma(q, wy) = \sigma(q, w)$ for all $q \in Q$. Thus $eg = wy = w = e$ so $eP_\omega = e$.

But $eP_\omega = e$ implies $eM_e = e$; hence M is R-trivial.

Definition 29 Let $S = \langle A, Q, \sigma \rangle$ be a semiautomaton. Then $\Pi(S)$ is defined to be the semiautomaton $\langle A, Q_1, \sigma_1 \rangle$, where

$$Q_1 = \{ q \in Q \mid \text{there exists } x \in A \text{ and } q' \in Q - \{ q \} \text{ such that } \sigma(q', x) = q \}$$

and σ_1 is the restriction of σ to $Q_1 \times A$. Note that Q_1 is the set of all states that have nontrivial predecessors. $\Pi^n(S)$ can be defined inductively by:

$$\Pi^0(S) = S$$

and $\Pi^n(S) = \Pi(\Pi^{n-1}(S))$ for $n > 0$.

The semiautomaton $\langle A, Q_n, \sigma_n \rangle$ will be used to represent $\Pi^n(S)$. Clearly, for every S there exists a smallest integer n such that $Q = Q_0 \supseteq Q_1 \supseteq \cdots \supseteq Q_n = Q_{n+1}$.

Recall the definition of partially ordered semiautomata given in Section 1.1. For any semiautomaton $S = \langle A, Q, \sigma \rangle$, \rightarrow is clearly a preorder on Q since $\sigma(q, 1) = q$ for all $q \in Q$ and $\sigma(p,x) = q$ and $\sigma(q,y) = r$ imply $\sigma(p,xy) = r$ for all $p, q, r \in Q$ and $x, y \in A$. Thus to prove that a semiautomaton is partially ordered it is sufficient to show that \rightarrow is an antisymmetric relation on the state set.

Property 2 in the following proposition is from [28].

Proposition 30 Let $S = \langle A, Q, \sigma \rangle$ be a semiautomaton. The following conditions are equivalent.

1. S is partially ordered.

2. For all $q \in Q$, $x, y \in A$, $\sigma(q, xy) = q$ implies $\sigma(q, x) = q$.

3. There exists an integer $n \geq 0$ such that $\Pi^n(S)$ has an empty state set.
Proof:

(1⇒2) Suppose $x, y \in \mathcal{A}$ and $q \in Q$ are such that $\sigma(q, xy) = q$. Let $p = \sigma(q, x)$. Then $q \rightarrow p$.

Now $q = \sigma(q, xy) = \sigma(p, y)$, therefore $p \rightarrow q$. Since \rightarrow is a partial order, $p = q$ and thus $\sigma(q, x) = q$.

(2⇒3) Suppose that $\sigma(q, xy) = q$ implies $\sigma(q, x) = q$ for all $q \in Q$, $x, y \in \mathcal{A}$, but that $\Pi^a(S)$ does not have an empty state set for any $n \geq 0$. Let n be such that $Q_n = Q_{n+1}$ and let $m = \#Q_n$. Because $Q_n \neq \emptyset$ there exists $q_1 \in Q_n$. Since $q_1 \in Q_{n+1}$ there exists $q_2 \in Q_{n}(\{q_1\})$ and $x_1 \in \mathcal{A}$ such that $\sigma(q_2, x_1) = q_1$. Repeating this argument a total of m times, one has $q_1, \ldots, q_{m+1} \in Q, x_1, \ldots, x_m \in \mathcal{A}$ where $\sigma(q_{i+1}, x_i) = q_i \approx q_{i+1}$ for $i = 1, \ldots, n$. But $m+1 > \#Q_n$; therefore there exist i and j such that $0 \leq i < j \leq n$ and $q_i = q_{j+1}$. Then $\sigma(q_{j+1}, x_j(x_{j-1} \cdots x_i)) = q_i = q_{j+1}$ so that $\sigma(q_{j+1}, x_j) = q_{j+1}$. This contradicts the fact that $q_j \approx q_{j+1}$.

(3⇒1) Suppose S is not partially ordered. Then there exist $p, q \in Q$ such that $p \rightarrow q$, $q \rightarrow p$, and $p \not\approx q$. Let $x, y \in \mathcal{A}$ be such that $\sigma(p, x) = q$ and $\sigma(q, y) = p$. From the definition of Π, if $p, q \in Q_i$ then $p, q \in Q_{i+1}$. Since $p, q \in Q = Q_0$ it follows by induction that $p, q \in Q_n$ for all $n \geq 0$. Thus there does not exist an integer $n \geq 0$ such that $\Pi^a(S)$ has an empty state set.

The two families of automata described in Propositions 28 and 30 are actually the same.

Proposition 31 If there exists $n > 0$ such that for all $x, y \in \mathcal{A}$, x n-full and $\alpha(x) \supseteq \alpha(y)$ imply $\sigma(q, x) = \sigma(q, xy)$ for all $q \in Q$ then $\sigma(q, xy) = q$ implies $\sigma(q, x) = q$ for all $q \in Q$, $x, y \in \mathcal{A}$.

Proof: Suppose $\sigma(q, xy) = q$. Then $\sigma(q, (xy)^n) = q$. Now $(xy)^n$ is n-full and $\alpha((xy)^n) \supseteq \alpha(x)$, so $q = \sigma(q, (xy)^n) = \sigma(q, (xy)^n x) = \sigma(\sigma(q, (xy)^n), x) = \sigma(q, x)$.

Proposition 32 Let $S = \langle A, Q, \sigma \rangle$ be a partially ordered semiautomaton. Then the transformation monoid, M, of S is R-trivial.
Proof: Suppose \(f,g,h \in M \) are such that \(fgh = f \). Since \(M \) is the transformation monoid of \(S \) there exist \(x,y,z \in A \) such that \(x = f, \ y = g, \) and \(z = h \). Now \(xyx = fgh = f = x \) and \(S \) is partially ordered. Thus \(\sigma(q,x) = \sigma(q,xyz) = \sigma(\sigma(q,x),yz) \) and, by Proposition 30, \(\sigma(q,x) = \sigma(\sigma(q,x),y) = \sigma(q,xy) \) for all \(q \in Q \). Therefore \(f = x = xy = fg \).

Three additional properties of partially ordered semiautomata, mentioned in [21], [28], and [31], are now presented.

Proposition 33 If \(T \) is a semiautomaton which is covered by some partially ordered semiautomaton \(S \) then \(T \) is partially ordered.

Proof: Assume \(S \) is partially ordered. Since any subsemiautomaton of a partially ordered semiautomaton is clearly partially ordered it is sufficient to prove the result when \(T \) is a homomorphic image of \(S \).

Suppose \(T = <A,P,\tau> \) is a homomorphic image of \(S = <A,Q,\sigma> \). Then there exists a surjective map \(\psi: Q \to P \) such that \(\tau(\psi(q),x) = \psi(\sigma(q,x)) \) for all \(x \in A \).

Now suppose \(\tau(p,xy) = p \) where \(p \in P \) and \(x,y \in A \). Let \(Q' = \{ q \in Q \mid \psi(q) = p \} \). Note \(Q' \neq \emptyset \) because \(\psi \) is surjective. Consider the map \(\gamma: Q' \to Q' \) defined by \(\gamma(q) = \sigma(q,xy) \). Because \(\psi(\sigma(q,xy)) = \tau(\psi(q),xy) = \tau(p,xy) = p, \gamma(q) \) is indeed an element of \(Q' \) for each \(q \in Q' \).

Let \(q' \in Q' \), and let \(n = \# Q' \). Since \(\{ \gamma^0(q') = q', \gamma^1(q'), \gamma^2(q'), \ldots, \gamma^n(q') \} \subseteq Q' \), there exist \(0 \leq i < j \leq n \) such that \(\gamma^i(q') = \gamma^j(q') \). From the definition of \(\gamma \), \(\gamma^i(q') = \sigma(q', (xy)^i) = \sigma(\gamma^i(q'), (xy)^{i-j}) \). Since \(S \) is partially ordered, \(\sigma(\gamma^i(q'),x) = \gamma^j(q') \). Thus \(\tau(p,x) = \tau(\psi(\gamma^i(q'),x) = \psi(\sigma(\gamma^i(q'),x)) = \psi(\gamma^j(q')) = p \) and hence \(T \) is partially ordered.

Proposition 34 The cascade product of two partially ordered semiautomata is partially ordered.

Proof: Suppose \(S = <A, Q, \sigma> \) and \(T = <C, P, \tau> \) are partially ordered and \(\omega: Q \times A \to C \) is a connection function. Let \((q,p) \in Q \times P \) and \(x,y \in A \) be such that \(\eta((q,p),xy) = (q,p) \). Say
Then \((q,p) = \eta((q,p),xy) = (\sigma(q,xy), \tau(p, \omega(q_1,x_1) \cdots \omega(q_n,x_n) \omega(q_{n+1},y_1) \cdots \omega(q_{n+m},y_m)))\) where \(q_1 = q, q_{i+1} = \sigma(q_i,x_i)\) for \(i = 1, \ldots, n-1,\) and \(q_{n+i+1} = \sigma(q_{n+i},y_i)\) for \(i = 0, \ldots, m-1.\) Thus \(q = \sigma(q,xy)\) and \(p = \tau(p, \omega(q_1,x_1) \cdots \omega(q_n,x_n) \omega(q_{n+1},y_1) \cdots \omega(q_{n+m},y_m))).\)

But S and T are partially ordered; thus \(\sigma(q,x) = q\) and \(\tau(p, \omega(q_1,x_1) \cdots \omega(q_n,x_n)) = p.\) Hence \(\eta((q,p),x) = (\sigma(q,x), \tau(p, \omega(q_1,x_1) \cdots \omega(q_n,x_n))) = (q,p)\) so that \(S \circ T = <A, Q \times P, \eta>\) is partially ordered.

Corollary 35 The direct product of two partially ordered semiautomata is partially ordered.

Let \(A = <A, Q, q_0, F, \sigma>\) and \(C = <A, P, p_0, G, \tau>\) be automata and let \(<A, Q \times P, \eta> = <A, Q, \sigma> \times <A, P, \tau>.\) Then the union of A and C is

\[A \cup C = <A, Q \times P, (q_0, p_0), F \times P \cup Q \times G, \eta>,\]

the intersection of A and C is

\[A \cap C = <A, Q \times P, (q_0, p_0), F \times G, \eta>,\]

and the complement of A is

\[\overline{A} = <A, Q, q_0, Q - F, \sigma>\].

Because the definition of a partially ordered automaton does not depend on the set of final states it follows that if A and C are partially ordered then \(A \cup C, A \cap C,\) and \(\overline{A}\) are also. Hence the set of all partially ordered finite automata with alphabet A forms a Boolean algebra.

Definition 36 A graph G is tree-like if and only if the graph G', obtained from G by removing all trivial loops, is a tree. (A trivial loop is an edge from a vertex to itself.) The height of G is defined to be the height of the tree G'.

Clearly any initialized semiautomaton whose state graph is tree-like is partially ordered.

Proposition 37 Let \(n \geq 0.\) The state graph of the initialized semiautomaton
\(\sigma >\) is tree-like.

Proof: \([1]_{\tau_R}\) is clearly the root since \(\sigma([1]_{\tau_R}, x) = [x]_{\tau_R}\) for all \(x \in \mathcal{A}\). For any node \([x]_{\tau_R} \in \mathcal{A}^*/\sim_R\), the fact that there is a unique path from \([1]_{\tau_R}\) to \([x]_{\tau_R}\) which contains no trivial loops follows directly from Theorem 18. Thus the state graph is tree-like.

Another way partially ordered automata can be characterized is in terms of certain sequential networks.

Definition 38 For \(n \geq 0\), an \(n\)-way fork is an initialized semiautomaton \(<\mathcal{A}, \{q_0, q_1, \ldots, q_n\}, q_0, \sigma>\) where \(\mathcal{A} = A_0 \cup A_1 \cup \cdots \cup A_n\), the \(A_i\)'s are pairwise disjoint and, for \(i > 0\), are non-empty, \(\sigma(q_0, a) = q_i\) for all \(a \in A_i\), and \(\sigma(q_i, a) = q_i\) for all \(a \in A\), \(i = 1, \ldots, n\). See Figure 1. A half-reset is a one-way fork.

![Figure 1](An n-way fork)

Proposition 39 If a semiautomaton can be covered by a cascade product of half-resets then it is partially ordered.

Proof: Immediate from Propositions 33 and 34 and the fact that a half-reset is partially ordered.

In [21] and [31] it is proved that any partially ordered finite automaton can be covered by a cascade product of half-resets. Introducing \(n\)-way forks is a convenient intermediate step.
Proposition 40 Any n-way fork is isomorphic to the connected initialized subsemiautomaton of a cascade product of n half-resets.

Proof: By induction on n. The case $n = 0$ is degenerate. For $n = 1$ the result follows from the definition of a half-reset. Assume the result is true for $n \geq 1$. Consider the $n+1$-way fork F_{n+1} illustrated in Figure 2(a).

![Diagram](image)

Figure 2

Let $F_n = \langle A, Q, q_0, \sigma \rangle$ be the n-way fork of Figure 2(b) and let the half-reset in Figure 2(c) be denoted by $T = \langle \langle b_0, b_1 \rangle, P, p_0, \tau \rangle$. Define the connection ω as follows:

$$\omega(q,a) = \begin{cases} b_1 & \text{if } q = q_0 \text{ and } a \in A_{n+1} \\ b_0 & \text{otherwise} \end{cases}$$

Let $R = \langle A, R, (q_0,p_0), \eta \rangle$ be the connected initialized subsemiautomaton of $F_n \circ T$.

Note that $R = \{ (q_0,p_0), (q_1,p_0), \ldots, (q_n,p_0), (q_n,p_1) \}$ since these are the only states which are accessible from (q_0,p_0). Except for (q_0,p_0) each is a terminal state (i.e. $\eta(r,a) = r$ for all $a \in A, r \in R - \{ (p_0,q_0) \}$). It is clear that F_{n+1} is isomorphic to R.

By the induction hypothesis F_n is isomorphic to the connected initialized subsemiautomaton of a cascade product of n half-resets; therefore F_{n+1} is isomorphic to the connected initial-
ized subsemiautomaton of a cascade product of $n+1$ half-resets. Thus the result is true for all $n \geq 1$.

Proposition 41 Any initialized semiautomaton whose state graph is tree-like is isomorphic to the connected initialized subsemiautomaton of a cascade product of forks.

Proof: By induction on the height of the graph.

If the graph of an initialized semiautomaton is tree-like of height 0 or 1, then the semiautomaton is a fork. Assume the result is true for all initialized semiautomata whose graphs are tree-like of height less than h, where $h > 1$.

Let $S = <A, Q, q_0, \sigma>$ be an initialized semiautomaton whose graph is tree-like of height h. Let $\{q_1, \ldots, q_n\} = \{q \in Q - \{q_0\} \mid \sigma(q_0, a) = q \text{ for some } a \in A\}$ be the set of children of q_0. For $1 \leq i \leq n$, let $S_i = <A, Q_i, q_i, \sigma_i>$ be the subsemiautomaton of S initialized at q_i. Since $q_i \neq q_0$, the height of the graph is less than h; thus S_i is isomorphic to the connected initialized subsemiautomaton of $S'_i = <A, Q'_i, q_i, \sigma'_i>$, a cascade product of forks.

Define $T'_i = <C'_i, Q'_i, q'_i, \tau'_i>$ as follows. If there exists an $a \in A$ such that $\sigma'_i(q, a) = q$ for all $q \in Q'_i$, let $C'_i = A$ and $\tau'_i = \sigma'_i$. Otherwise let $C'_i = A \cup \{e\}$, where $e \notin A$, and let τ'_i be such that for $q \in Q'_i$, $c \in C'_i$,

$$
\tau'_i(q, c) = \begin{cases}
\sigma'_i(q, c) & \text{if } c \in A \\
q & \text{if } c = e.
\end{cases}
$$

Note that if T_i is an n-way fork, then T'_i is an n-way fork too. Also, applying the transformation to the cascade product of two semiautomata gives the same result as applying it to the two semiautomata separately and then taking the cascade product. Hence T'_i is still a cascade product of forks.

Let $T_0 = <A, P, p_0, \tau_0>$ be the n-way fork where $P = \{p_0, p_1, \ldots, p_n\}$ and

$$
\tau_0(p, a) = \begin{cases}
p_i & \text{if } p = p_0 \text{ and } \sigma(q_0, a) = q_i \\
p & \text{otherwise}
\end{cases}
$$

Inductively define $T_i = T_{i-1} \circ T'_i$ for $i = 1, \ldots, n$ where the connection
\(\omega_i : P \times Q_1^i \times \cdots \times Q_{i-1}^i \times A \rightarrow C_i \) is given by

\[
\omega_i(r,a) = \begin{cases}
q_i & \text{if } r = (p_i, q_1, \ldots , q_{i-1}) \\
c_i & \text{otherwise}
\end{cases}
\]

where \(\tau_i'(q,c_i) = q \) for all \(q \in Q_i^i \).

It is a straightforward proof by induction to show that the set of states of \(T_i \) accessible from the initial state \((p_0, q_1, \ldots , q_i) \) is

\[
R_i = \{(p_0, q_1, \ldots , q_i)\} \cup \{(r_k, q_1, \ldots , q_{k-1}, q, q_{k+1}, \ldots , q_i) \mid q \in Q_k^i, 1 \leq k \leq i\}
\]

and that the following equations hold:

\[
\tau_i((p_k, q_1, \ldots , q_k), a) = (p_k, q_1, \ldots , q_k) \text{ for all } a \in A \text{ such that } \sigma(q_0, a) = q_k, 1 \leq k \leq i,
\]

\[
\tau_i((p_k, q_1, \ldots , q_{k-1}, q, q_{k+1}, \ldots , q_i), a) = (p_k, q_1, \ldots , q_{k-1}, \tau_i'(q, a), q_{k+1}, \ldots , q_i)
\]

for \(q \in Q_k^i, 1 \leq k \leq i, \) and

\[
\tau_i((p_k, q_1, \ldots , q_i), a) = (p_k, q_1, \ldots , q_i) \text{ for } i < k \leq n.
\]

Now consider the bijection \(\psi : Q \rightarrow R_n \) defined by

\[
\psi(q) = \begin{cases}
(p_0, q_1, \ldots , q_n) & \text{if } q = q_0 \\
(p_i, q_1, \ldots , q_{i-1}, \psi_i(q), q_{i+1}, \ldots , q_n) & \text{if } q \in Q_i
\end{cases}
\]

where \(\psi_i : Q_i \rightarrow Q_i' \) is the isomorphism from \(S_i \) to the connected initialized subsemiautomaton of \(S_i' \). Let \(a \in A \) and \(q \in Q \). If \(q \in Q_i \), then

\[
\psi(\sigma(q,a)) = \psi(\sigma_i(q,a))
\]

\[
= (p_i, q_i, \ldots , q_{i-1}, \psi_i(\sigma_i(q,a)), q_{i+1}, \ldots , q_n)
\]

\[
= (p_i, q_i, \ldots , q_{i-1}, \tau_i'(\psi_i(q), a), q_{i+1}, \ldots , q_n)
\]

\[
= (p_i, q_i, \ldots , q_{i-1}, \tau_i(\psi_i(q), a), q_{i+1}, \ldots , q_n)
\]

\[
= \tau_n((p_i, q_i, \ldots , q_{i-1}, \psi_i(q), q_{i+1}, q_n), a)
\]

\[
= \tau_n(\psi(q), a)
\]

and, if \(q = q_0 \) and \(\sigma(q_0,a) = q_i \), then

\[
\psi(\sigma(q,a)) = \psi(q_i)
\]

\[
= (p_i, q_i, \ldots , q_{i-1}, \psi(q_i), q_{i+1}, \ldots , q_n)
\]

\[
= (p_i, q_i, \ldots , q_{i-1}, q_i, q_{i+1}, \ldots , q_n)
\]

\[
= \tau_n((p_0,q_1, \ldots , q_n), a)
\]
Thus ψ is an isomorphism between S and the connected initialized subsemiautomaton of T_n, so the result is true for S. It follows by induction that the proposition is true.

Corollary 42 Any partially ordered initialized semiautomaton is the homomorphic image of the connected initialized subsemiautomaton of a cascade product of half-resets.

Proof: Any partially ordered rooted graph can be transformed into a tree-like graph by splitting nodes (see Figure 3). The desired homomorphism is the obvious one which maps a node in the tree-like graph to the node in the original graph from which it was produced. The result then follows by Proposition 41.

![Figure 3](image-url)
2.5 R-Expressions

Definition 4.3 Let A be a finite alphabet. An R-expression is a finite union of regular expressions of the form $\hat{A}_0a_1\hat{A}_1 \cdots a_mA_m$ where $m \geq 0$, $a_1, \ldots, a_m \in A$, and $A_{i-1} \subseteq A - \{a_i\}$ for $1 \leq i \leq m$.

The relationship between partially ordered semiautomata and R-expressions is mentioned in [21].

Proposition 4.4 Let $X \subseteq A$ be the language denoted by some R-expression. Then the reduced automaton recognizing X is partially ordered.

Proof: Because of the remarks following Corollary 3.5 we may assume the expression is of the form $\hat{A}_0a_1\hat{A}_1 \cdots a_mA_m$, where $m \geq 0$ and $A_{i-1} \subseteq A - \{a_i\}$ for $1 \leq i \leq m$, without any loss of generality.

Consider the automaton $A = \langle A, Q, q_0, \{q_m\}, \sigma \rangle$ where $Q = \{q_0, \ldots, q_m, q_d\}$ and σ is defined as follows:

$$\sigma(q_i, a) = \begin{cases} q_i & \text{if } a \in A_i \\ q_{i+1} & \text{if } a = a_{i+1} \\ q_d & \text{if } a \in A - (A_i \cup \{a_{i+1}\}) \end{cases}$$

$$\sigma(q_d, a) = q_d$$ for all $a \in A$

It is straightforward to show that A is partially ordered and recognizes X.

Since the reduced automaton recognizing X is a homomorphic image of A, it follows from Proposition 3.3 that it, too, is partially ordered.

Proposition 4.5 Every \overline{R} language can be denoted by an R-expression.

Proof: It is sufficient to show the result for every congruence class of \overline{R}. The only \overline{R} class is the language denoted by A. Therefore assume $n > 0$. Let x be the minimal element of its
congruence class. If $|x| = 0$ then, since $n > 0$, $\bar{x} = \{1\}$ which can be denoted by \emptyset^*. Otherwise $x = a_1 \cdots a_m$ for some $a_1, \ldots, a_m \in A$. Let $A_0 = \emptyset$ and let $A_i = \{a \in A \mid a_1 \cdots a_i a \bar{\sim} a_1 \cdots a_i a\}$ for $1 \leq i \leq m$. Since x is minimal, $\mu_n(1) \subseteq \mu_n(a_1) \subseteq \cdots \subseteq \mu_n(a_1 \cdots a_{i-1}) \subseteq \mu_n(a_1 \cdots a_i a_i) \subseteq \cdots \subseteq \mu_n(a_1 \cdots a_m) \subseteq \mu_n(a_2 \cdots a_m)$ by Theorem 18. Hence $a_i \notin A_{i-1}$ for $1 \leq i \leq m$ and thus $A_0 a_1 A_1 \cdots a_m A_m$ is an R-expression. From Proposition 23 it easily follows that if $y \in A_0 a_1 A_1 \cdots a_m A_m$ then $y \in x$. Now let $y \in x$ and, for $i = 1, \ldots, m$, let y_i be the shortest prefix of y such that $\mu_n(y_i) = \mu_n(a_1 \cdots a_i)$. Let $y_0 = 1$. Each y_i is a proper prefix of y_{i+1} and $a_1 \cdots a_i a_i \in \mu_n(a_1 \cdots a_{i+1}) - \mu_n(a_1 \cdots a_i)$. Thus there exist $v_0, v_1, \ldots, v_m \in A$ such that $y_{i+1} = y_i v_i a_i a_i$ for $i = 0, \ldots, m-1$ and $y = y_m v_m = v_0 v_1 \cdots v_{m-1} v_m a_i a_i$. Note that, from the definition of y_1, $v_0 = 1$ and, since $a_1 \cdots a_i a_i \bar{\sim} y_i v_i$, $\bar{\sim} y_i \bar{\sim} a_i \cdots a_i$, $v_i \in A_i$ for $i = 1, \ldots, m$. Also,

$$
a_1 \cdots a_i a_i \in \mu_n(a_1 \cdots a_{i+1}) - \mu_n(a_1 \cdots a_i)
= \mu_n(y_i v_i a_i a_i) - \mu_n(y_i)
= \mu_n(y_i a_i a_i) - \mu_n(y_i)
$$

so that $c_{i+1} = a_i a_i$ for $i = 0, \ldots, m-1$. Hence $y \in A_0 a_1 A_1 \cdots a_m A_m$.

With this result, Theorem 26, Proposition 32, and Proposition 44, the languages defined by the congruences $\bar{\sim}_R$, R-trivial monoids, partially ordered automata, and R-expressions are seen to be the same. Since the set of partially ordered automata over a given alphabet forms a Boolean algebra, the set of R-expressions (over the same alphabet) also does. This result is used in the following theorem.

Proposition 46 Let A be an alphabet and let $D = \{C^* a \mid C \subseteq A - \{a\}\}M$. Then $(D \cup DA)B$ is equal to the set of R-expressions over the alphabet A.

Proof: Note: It is convenient to consider elements of D as 'words' over the alphabet $\{C^* a \mid C \subseteq A - \{a\}\}$. This is reflected in the notation below.

(\subseteq) Let $w \in D$. If $w = 1$ then w and wa can be expressed by the R-expressions \emptyset^* and A^*.
respectively. Otherwise \(w = A_1 a_1 \cdots A_m a_m \) where \(m > 0 \) and \(a_i \not\in A_i \) for \(1 \leq i \leq m \). In this case \(w = A_1 a_1 \cdots A_m a_m \sigma^r \) and \(wA = A_1 a_1 \cdots A_m a_m \hat{A} \) which are both R-expressions. Since the set of R-expressions forms a Boolean algebra it contains \((D \cup DA)B\).

(\(\geq\)) Suppose \(w = A_0 a_1 \cdots a_m \hat{A}_m \), where \(m \geq 0 \) and \(A_{i-1} \subseteq A -(a_i) \) for \(1 \leq i \leq m \). Clearly, if \(A_m = \emptyset \) then \(w \in D \), and if \(A_m = A \) then \(w \in DA \), so suppose \(\emptyset \neq A_m \subseteq A \). Let \(w' = A_0 a_1 \cdots A_{m-1} a_m \in D \).

Claim: \[w = w'\hat{A} \cap \bigcup_{b \in A - A_m} wb\hat{A}. \]

Let \(x \in w \). Clearly \(x \in w'\hat{A} \). Now \(a_1 \cdots a_mb \) is a subword of all words in \(wb\hat{A} \) but, if \(b \not\in A_m \), \(a_1 \cdots a_mb \) is not a subword of \(x \). Therefore \(x \not\in wb\hat{A} \) for \(b \in A - A_m \), that is \(x \in \bigcup_{b \in A - A_m} wb\hat{A} \). Thus \(w \subseteq w'\hat{A} \cap \bigcup_{b \in A - A_m} wb\hat{A} \).

Let \(x \in w'\hat{A} \cap \bigcup_{b \in A - A_m} wb\hat{A} \). Since \(x \in w'\hat{A} \), \(x = yz \) where \(y \in w' \) and \(z \in \hat{A} \). Now suppose \(\alpha(x) \cap (A - A_m) \neq \emptyset \). Then \(z = ubv \) where \(u \in \hat{A}_m \), \(b \in \alpha(z) \cap (A - A_m) \), and \(v \in \hat{A} \). But this implies \(x = yubz \in w'\hat{A}_m b\hat{A} = wb\hat{A} \subseteq \bigcup_{b \in A - A_m} wb\hat{A} \) which is a contradiction.

Therefore \(z \in A_m \), so \(x \in w'\hat{A}_m = w \). Thus \(w'\hat{A} \cap \bigcup_{b \in A - A_m} wb\hat{A} \subseteq w \), and hence the claim is true.

Now for \(b \in A - A_m \), \(wb \in D \) and thus \(w = w'\hat{A} \cap \bigcup_{b \in A - A_m} wb\hat{A} \in (D \cup DA)B \). Since \((D \cup DA)B \) is a Boolean algebra it follows that every R-expression is in \((D \cup DA)B \).

It is now possible to relate the family of languages corresponding to finite R-trivial monoids to the dot-depth hierarchy. This hierarchy is defined as follows:

\[B_0 = \{ [a] \mid a \in A \} MB \]

and \(B_{i+1} = B_i MB \) for \(i \geq 0 \).

Since the family of languages \(\{ [a] \mid a \in A \} M = \{ \emptyset \cdot a \mid a \in A \} M \subseteq [C \cdot a \mid C \subseteq A -(a)]M = D \), \(B_0 = \{ [a] \mid a \in A \} MB \subseteq DB \subseteq (D \cup DA)B \). Thus all languages in \(B_0 \) have finite R-trivial
monoids.

Any π-language is also an π_R-language. However, the family B_1 is incomparable with the family of languages with R-trivial monoids. The language $A^a \in B_1$, where $\# A > 1$, has a reduced automaton which is not partially ordered. See Figure 4. In [28, page 116], Simon shows that for $\# A > 2$ the language denoted by the R-expression a^*b^*A is not in B_1.

Finally, for any $A_i \subseteq A$, $A_i' = \bigcup_{a \in A \setminus A_i} \overline{AaA} \in B_1$, so that any R-expression denotes a language in B_1.

$MB = B_2$.

Figure 4
2.6 Other Congruences

Besides \equiv_R and $\equiv_{\bar{R}}$ other congruences can be used to characterize the languages corresponding to finite R-trivial monoids.

Definition 47 Let $x, y \in A$. Then $x \equiv_R y$ and $x \equiv_{\bar{R}+1} y$ if and only if for each decomposition $x = x'ax''$ with $a \in A$, there exists a decomposition $y = y'ay''$ such that $x' \equiv_R y'$ and vice versa.

Definition 48 Let $x, y \in A$. Then $x \equiv_{\bar{R}} y$, and $x \equiv_{\bar{R}+1} y$ if and only if for each decomposition $x = x'ax''$, with $a \in A$, there exists a decomposition $y = y'ay''$ such that $x' \equiv_{\bar{R}} y'$ and vice versa.

Definition 49 Let $x, y \in A$ and $n \geq 1$. Then $x \equiv_R y$ if and only if there exist $u, v, z_1, z_2 \in A$ such that $x = z_1uz_2$, $y = z_1uvz_2$, u is n-full, and $\alpha(u) \supseteq \alpha(v)$. \equiv_R is the symmetric transitive closure of \equiv_R.

Note that \equiv_R is the smallest congruence satisfying $u \equiv_R uv$ for all $u, v \in A$ such that u is n-full and $\alpha(u) \supseteq \alpha(v)$.

Definition 50 Let $x, y \in A$ and $n \geq 1$. Then $x \equiv_{\bar{R}} y$ if and only if there exist $u, v, z_1, z_2 \in A$ such that $x = z_1uz_2$, $y = z_1uvz_2$, u is n-full, and $\alpha(u) = \alpha(v)$. $\equiv_{\bar{R}}$ is the symmetric transitive closure of $\equiv_{\bar{R}}$.

Similarly $\equiv_{\bar{R}}$ is the smallest congruence satisfying $u \equiv_{\bar{R}} uv$ for all $u, v \in A$ such that u is n-full and $\alpha(u) = \alpha(v)$.

Proposition 51 Let $x, y \in A$ and $n \geq 0$. Then $x \equiv_{\bar{R}+1} y$ implies $x \equiv_{\bar{R}} y$. However $x \equiv_{\bar{R}+1} y$ does not imply $x \equiv_{\bar{R}+1} y$.

Proof: Suppose $x \equiv_{\bar{R}+1} y$. Let u be a prefix of x. If $u = 1$ then u is a prefix of y. Otherwise $u = x'a$ for some $x' \in A$. Since $x \equiv_{\bar{R}+1} y$ there exists a prefix $y'a$ of y such that $x' \equiv_{\bar{R}} y'$. But \bar{R}
is a congruence so \(u = x'a \sim y'a \). Similarly for every prefix \(v \) of \(y \) there exists a prefix \(u \) of \(x \) such that \(u \sim v \). Therefore \(x \sim_{n+1} y \).

Let \(x = (ab)^nab \) and \(y = (ab)^nba \). Then \(x \sim_{n+1} y \) since \((ab)^n \sim (ab)^n\) and \((ab)^n a \sim (ab)^n\). However \(x \sim_{n+1} y \).

Proposition 52 Let \(x, y \in A \) and \(n \geq 0 \). Then \(x \sim_{n+1} y \) implies \(x \sim_n y \). However \(x \sim_n y \) does not imply \(x \sim_{n+1} y \).

Proof: It is sufficient to show that if \(x = uv \), \(y = uav \), and \(u \sim ua \), where \(u, v \in A \) and \(a \in A \), then \(x \sim_n y \).

Let \(x = x'bx'' \) be a decomposition of \(x \). If \(x'b \) is a prefix of \(u \), let \(y' = x' \). Otherwise \(x'b = uzb \) for some \(z \in A \). Let \(y' = uaz \). Note that \(ua \sim u \) so \(y' = uaz \sim uz = x' \). In both cases \(y'b \) is a prefix of \(y \) such that \(y' \sim_n x' \). By Proposition 4, \(y' \sim_{n-1} x' \).

Now let \(y = y'by'' \) be any decomposition of \(y \). If \(y'b \) is a prefix of \(u \) let \(x' = y' \). If \(y'b = uazb \) for some \(z \in A \), let \(x' = uz \). Since \(ua \sim u \), \(y' = uaz \sim uz = x' \). Otherwise \(y'b = ua \). Since \(u \sim ua \), there exist \(u_1, \ldots, u_n \in A \) such that \(u = u_1 \cdots u_n \) and \(\alpha(u_1) \supseteq \cdots \supseteq \alpha(u_n) \supseteq \alpha(a) = \{a\} \). Thus \(a \in \alpha(u_n) \), so \(u_n = u'_nau''_n \) for some \(u'_n, u''_n \in A \). Let \(x' = u_1 \cdots u_{n-1}u'_n \). Now, from Proposition 5, \(u_1 \cdots u_{n-1}u'_n \sim u_1 \cdots u_{n-1}u_n = u \) \(y' = y' \) and \(u_1 \cdots u_{n-1}u'_n = x' \). Hence \(x' \sim_{n-1} y' \). In all three cases \(x'b \) is a prefix of \(x \) such that \(y' \sim_{n-1} y' \).

Therefore \(x \sim_n y \).

For \(n = 0 \) note that \(a \sim_{b} b \) but \(a \not\sim b \). Now consider \(n > 0 \). Let \(x = (ab)^{n-1}a \) and \(y = (ab)^{n-1}aa \). Clearly \(x \sim_{n+1} y \). Let \(y' = (ab)^{n-1}a \). The only prefix of \(x \sim y \) congruent to \(y' \) is \(x \) itself, so there does not exist an \(x' \) such that \(x = x'ax'' \) and \(x' \sim y' \). Therefore \(x \sim_{n+1} y \).

Proposition 53 Let \(x, y \in A \) and \(n \geq 0 \). Then \(x \sim_n y \) implies \(x \sim_{n+1} y \).

Proof: By induction on \(n \).

For \(n = 0 \) the result is trivial since \(x \sim_0 y \) for all \(x, y \in A \). Let \(n > 0 \) and assume the
result is true for \(n \). Suppose \(x \preceq_{n+1} y \).

Let \(u \in \mu_{n+1}(x) \). Either \(u = 1 \in \mu_{n+1}(y) \) or \(u = u'a \) for some \(u' \in A^n a \in A \). In this second case there exists a prefix \(x'a \) of \(x \) such that \(u' \in \mu_n(x') \). Since \(x \preceq_{n+1} y \), there exists a prefix \(y'a \) of \(y \) such that \(x' \preceq_n y' \). By the induction hypothesis \(x' \preceq_n y' \). Therefore \(u' \in \mu_n(x') = \mu_n(y') \). Then \(u = u'a \in \mu_{n+1}(y'a) \subseteq \mu_{n+1}(y) \). Hence \(\mu_{n+1}(x) \subseteq \mu_{n+1}(y) \).

By symmetry \(\mu_{n+1}(y) \subseteq \mu_{n+1}(x) \). Therefore \(x \preceq_{n+1} y \).

Proposition 54 Let \(x, y \in A^\ast \) and \(n \geq 0 \). Then \(x \preceq_n y \) if and only if \(x \preceq_{n-1} y \).

Proof: For \(n > 0 \), \(x \preceq_n y \) implies \(x \preceq_{n-1} y \) is an immediate corollary of Proposition 53. From the definitions it is clear that \(x \preceq_0 y \) if and only if \(x \preceq_0 y \).

Let \(n > 0 \) and assume \(x \preceq_{n-1} y \) implies \(x \preceq_{n-1} y \) for all \(x, y \in A^n \). Suppose \(x \preceq_{n-1} y \). Let \(x = x'ax'' \) be any decomposition of \(x \). Then there exists a decomposition \(y = y'ay'' \) of \(y \) such that \(x' \preceq_{n-1} y' \).

From Proposition 51, \(x \preceq_{n-1} y \) implies \(x \preceq_{n-1} y \). Since \(x' \) is a prefix of \(x \), \(y' \) is a prefix of \(y \), and \(x' \preceq_{n-1} y' \), it follows by Proposition 8(c) that \(x' \preceq_{n-1} y' \). But \(x' \preceq_{n-1} y' \) implies \(x' \preceq_{n-1} y' \), which implies \(x' \preceq_{n-1} y' \) by Proposition 52, which implies \(x' \preceq_{n-1} y' \) by assumption.

Similarly, for every decomposition \(y = y'ay'' \) there exists a decomposition \(x = x'ax'' \) such that \(x' \preceq_{n-1} y' \). Hence \(x \preceq_{n-1} y \). By induction it follows that \(x \preceq_{n-1} y \) implies \(x \preceq_{n-1} y \) for all \(n \geq 0 \).

Proposition 55 Let \(x, y \in A^\ast \) and \(n \geq 1 \). Then \(x \preceq_n y \) if and only if \(x \preceq_n y \).

Proof:

\((\Rightarrow)\) Obvious.

\((\Leftarrow)\) Suppose \(u, v \in A^\ast \) are such that \(u \) is \(n \)-full and \(\alpha(u) \supseteq \alpha(v) \). Then there exist \(u_1, \ldots, u_n \in A^\ast \) such that \(u = u_1 \cdots u_n \) and \(\alpha(u_1) = \cdots = \alpha(u_n) \). Since \(\alpha(u_n) = \alpha(u) \supseteq \alpha(v) \), \(\alpha(u_n v) = \alpha(u_n) = \alpha(v u_n) \). Therefore \(u = u_1 \cdots u_n \) and \(u v = u_1 \cdots u_{n-1}(u_n v) u_n \) so that \(u \preceq_n u v \). But \(\preceq_n \) is the smallest congruence satisfying \(u \preceq_n u v \) for all \(u, v \in A^\ast \) such that \(u \) is \(n \)-full and \(\alpha(u) \supseteq \alpha(v) \). Hence
\[x \equiv_R y \] implies \(x \equiv_R y \) for all \(x, y \in A \).

Proposition 56 Let \(x, y \in A \) and \(n \geq 1 \). Then \(x \equiv_R y \) implies \(x \equiv_R y \). However \(x \equiv_R y \) does not imply \(x \equiv_{n+1_R} y \).

Proof: The proof of \(x \equiv_R y \) implies \(x \equiv_R y \) follows immediately from the fact that if \(u \) is \(n \)-full and \(\alpha(u) \supseteq \alpha(v) \) then \(u \equiv_R u'v \). Now let \(x = a^n \) and \(y = a^{n+1} \) where \(a \in A \). Then \(a^n \equiv_R a^{n+1} \) but \(a^n \not\equiv_{n+1_R} a^{n+1} \) since \(a^{n+1} \in \mu_{n+1}(a^{n+1}) - \mu_{n+1}(a^n) \).

Proposition 57 Let \(x, y \in A \) and \(n \geq 1 \). Then \(x \equiv_R y \) implies \(x \equiv_R y \). However \(x \equiv_R y \) does not imply \(x \equiv_{n+1} y \).

Proof: Since \(x \equiv_R y \) implies \(x \equiv_R y \) from Proposition 56, and \(x \equiv_R y \) implies \(x \equiv_R y \) by Proposition 52, it follows that \(x \equiv_R y \) implies \(x \equiv_R y \).

Let \(x = a^n \) and \(y = a^{n+1} \). Clearly \(x \equiv_R y \). Consider the decomposition \(y = y'ay'' \) of \(y \) where \(y' = a^n \) and \(y'' = 1 \). Since the only prefix of \(x \) whose \(n \)-contents equal \(\mu_n(y') \) is \(x \) itself, there does not exist a decomposition \(x = x'ax'' \) such that \(x' \equiv_n y' \). Hence \(x \not\equiv_{n+1} y \).

Lemma 58 Let \(n, l \geq 1 \) and suppose \(u_1, \ldots, u_l, v \in A \) are such that \(\alpha(u_1) \supseteq \cdots \supseteq \alpha(u_l) \supseteq \alpha(v) \) and \(l > (n-1)(\#\alpha(u_1) - \#\alpha(v) + 1) \). Then \(u_1 \cdots u_l \equiv_R u_1 \cdots u_l z \) for all \(z \in (\alpha(v))^* \).

Proof: Let \(m_i = \#\alpha(u_i) \) for \(i = 1, \ldots, l \). Then \(\#\alpha(u_1) = m_1 \geq \cdots \geq m_l \geq \#\alpha(v) \). If for each integer \(m, \#\alpha(v) \leq m \leq \#\alpha(u_1) \), there are at most \(n-1 \) elements of the sequence \(m_1, \ldots, m_l \) with value \(m \), then \(l \leq (n-1)(\#\alpha(u_1) - \#\alpha(v) + 1) \). Thus there exists \(k, 0 \leq k \leq l-n \) such that \(m_{k+1} = \cdots = m_{k+n} \). This implies \(\alpha(u_{k+1}) = \cdots = \alpha(u_{k+n}) \).

Let \(x_0 = u_1 \cdots u_k (x_0 = 1 \text{ if } k = 0) \), let \(x_i = u_{k+i} \) for \(i = 1, \ldots, n-1 \), and let \(x_n = u_{k+n} \cdots u_l \). Also let \(z \in (\alpha(v))^* \). Since \(\alpha(u_{k+n}) \supseteq \alpha(u_{k+n+1}) \supseteq \cdots \supseteq \alpha(u_l) \supseteq \alpha(v) \supseteq \alpha(z) \) it follows that \(\alpha(u_{k+n}) = \alpha(u_{k+n+1}) = \cdots = \alpha(z) \). Thus \(\alpha(x_1) = \cdots = \alpha(x_n) \supseteq \alpha(z) \) and hence \(u = x_0x_1 \cdots x_n \equiv_R x_0x_1 \cdots x_n z = uz \).
Proposition 59 Let $x, y \in \mathbb{A}$, $m = \# \mathbb{A}$, and $n \geq 1$. Then $x \ (n-1)m+1 \mathbf{R} y$ implies $x \ (n) \mathbf{R} y$.

Proof: Let $l = (n-1)m+1$. It is sufficient to show that $x \ (l) \mathbf{R} y$ implies $x \ (n) \mathbf{R} y$.

Suppose $x \ (l) \mathbf{R} y$. Then there exist $u, v, z_1, z_2 \in \mathbb{A}$ such that $x = z_1uz_2$, $y = z_1uvz_2$, and $u \mathbf{R} uv$. Without loss of generality we may assume $v \neq 1$ since otherwise $x = y$.

By Lemma 5 there exist $u_1, \ldots, u_l \in \mathbb{A}$ such that $u = u_1 \cdots u_l$ and $\alpha(u_1) \supseteq \cdots \supseteq \alpha(u_l) \supseteq \alpha(v)$. Now $\# \alpha(u_1) \leq m$ and $\# \alpha(v) \geq 1$, so that $l = (n-1)m+1 > (n-1)(\# \alpha(u_1) - \# \alpha(v)+1)$ and hence, by Lemma 58, $u \ (n) \mathbf{R} y$. But $\ (n) \mathbf{R} y$ is a congruence, thus $x = z_1uz_2 \ (n) \mathbf{R} z_1uvz_2 = y$.

Proposition 60 For $m = \# \mathbb{A}$ and $n \geq 1$, $x \ (n-1)m \mathbf{R} y$ does not imply $x \ (n) \mathbf{R} y$.

Proof: Suppose $\mathbb{A} = \{a_1, \ldots, a_m\}$. Now $a_1 \not\in \mathbb{A}$ but $a_1 \not\in \mathbb{A}$; thus the result is true for $n = 1$.

Assume $n \geq 2$. For $i = 1, \ldots, m$ define $x_i = (a_i \cdots a_i)^{n-1}$. Let $x = x_m \cdots x_1$ and $y = xa_1$. Since each x_i is $n-1$-full and $\alpha(x_m) \supseteq \cdots \supseteq \alpha(x_1) = \{a_1\}$, it follows by Lemma 11 that $x \ (n-1)m \mathbf{R} y$.

If $x \ (n) \mathbf{R} y$ then there exist $z_1, z_2, u \in \mathbb{A}$ such that $x = z_1uz_2$, u is n-full, and $\alpha(u) \neq \emptyset$.

Since a_m only occurs $n-1$ times in x, it is clear that $a_m \notin \alpha(u)$. Assume $a_i, \ldots, a_{i+1} \notin \alpha(u)$ for some i, $1 \leq i \leq m-1$.

If $z_i \cdots z_{i+1} = v_1u'v_2$ for some $v_1, v_2, u' \in \mathbb{A}$ such that $\alpha(u') \subseteq \alpha(u)$ then $u' = a_ja_{j+1} \cdots a_{k-1}a_k$ for some j, k where $1 \leq j \leq k \leq i$. Note that none of these words are n-full. Since $t_i(x_m \cdots x_{i+1}) = a_{i+1} \notin \alpha(u)$, it follows that $x_{i+1} \cdots x_i = z_1uz_2$ for some suffix z_1 of z_i. But $x_i \cdots x_1$ contains only $n-1$ occurrences of a_i; therefore $a_i \notin \alpha(u)$. By induction, $a_i \notin \alpha(u)$ for $i = m, m-1, \ldots, 1$.

Because $u \in \mathbb{A}$, $\alpha(u) = \emptyset$, which is a contradiction. Therefore $[x] \ (n) \mathbf{R} [x]$ so that $x \not\in \mathbb{A}$.

Lemma 61 Let $u, v, v' \in \mathbb{A}$ and $n \geq 1$. If $\alpha(v) = \alpha(v')$ and $u \ (n-1) \mathbf{R} ua$ for all $a \in \alpha(v)$ then $uv \ (n) \mathbf{R} uv'$.
Proof: Suppose xay is a decomposition of uv.

If xa is a prefix of u, say $u = xaz$, let $x' = x$ and $y' = zv'$. Then $x \sim_{n-1} x'$ and $x'ay' = xav' = uv'$.

Otherwise u is a prefix of x, so $x = uz$ and $v = zay$ for some $z \in \mathcal{A}$. Since $a \in \alpha(v) = \alpha(v')$, $u' = za'y'$ for some $z', y' \in \mathcal{A}$. Let $x' = uz'$ so that $x'ay' = uz'ay' = uv'$ and $x = uz \sim_{n-1} u \sim_{n-1} uz' = x'$.

Therefore for every decomposition xay of uv there exists a decomposition $x'ay'$ of uv' such that $x \sim_{n-1} x'$.

By symmetry it follows that $uv \sim_{n} uv'$.

This lemma is not true if \sim_{n} is replaced by \sim_{n+1}. For example, let $u = ab$, $v = ab$, and $v' = ba$. Then $\alpha(v) = \alpha(v')$, $u = ab \sim aba = ua$, and $u = ab \sim abb = ub$. However $uv = abab \not\sim_{n+1} abba = uv'$.

Definition 62 Let $x, y \in \mathcal{A}$. The longest common prefix of x and y, $lcp(x, y)$, is the longest $u \in \mathcal{A}$ such that $x = ux'$ and $y = uy'$ for some $x', y' \in \mathcal{A}$.

Proposition 63 Let $x, y \in \mathcal{A}$, $m = \# \mathcal{A}$, and $n \geq 2$. Then $x \sim_{(n-1)m+1} y$ implies $x \equiv_{n} y$.

Proof: By induction on $|x| + |y| - 2|lcp(x, y)|$.

Let $l = (n-1)m+1$. Suppose that $x \sim_{l} y$ and if $x', y' \in \mathcal{A}$ are such that $|x'| + |y' - 2|lcp(x', y')| < |x| + |y| - 2|lcp(x, y)|$, then $x' \sim_{l} y'$ implies $x' \equiv_{n} y'$. There are four separate cases to consider.

1. $|x| + |y| - 2|lcp(x, y)| = 0$ if and only if $x = y$. In this case the result is trivially true since \equiv_{n} is reflexive.

2. Suppose x is a proper prefix of y, that is, $y = xz$ for some $z \in \mathcal{A}^+$.

 (a) If $\# \alpha(x) = 1$ then $z = a^r$ for some $a \in \mathcal{A}$, $r \geq 1$. Since $y = xz = xaa^{r-1}$ there exist $u, v \in \mathcal{A}$ such that $x = uav$ and $u \sim_{l} x$. Lemma 5 implies that there exist $u_1, \ldots, u_{l-1} \in \mathcal{A}$ such that $u = u_1 \cdots u_{l-1}$ and $\alpha(u_1) \supseteq \cdots \supseteq \alpha(u_{l-1}) \supseteq \alpha(av)$. Let
\[u_i = \alpha u. \] Now \(\alpha(u_i) \supseteq \alpha(z) \) and \(l = (n-1)m+1 > (n-1)(\# \alpha(u_i) - \# \alpha(z) + 1) \) so, by Lemma 58, \(x \equiv_n xz = y \), as required.

(b) Otherwise \(\# \alpha(z) \geq 2 \). From Proposition 51 \(x \equiv_n y = xz \) so, employing Lemma 11, there exist \(u_1, \ldots, u_{l-1} \in A \) such that \(x = u_1 \cdots u_{l-1} \) and \(\alpha(u_1) \supseteq \cdots \supseteq \alpha(u_{l-1}) \supseteq \alpha(z) \). Since \(n \geq 2 \), \(\# \alpha(u_1) \leq m \), and \(\# \alpha(z) \geq 2 \), \(l-1 = (n-1)m > (n-1)(\# \alpha(u_1) - \# \alpha(z) + 1) \) so \(x \equiv_n xz = y \) by Lemma 58.

3. If \(y \) is a proper prefix of \(x \) the result follows from 2 and the fact that \(\equiv_n \) and \(\equiv_R \) are symmetric.

4. Otherwise let \(u = \lcp(x,y) \). Then \(x = \alpha u \) and \(y = \alpha b \) where \(v, w \in A \), \(a, b \in A \), and \(a \neq b \).

Since \(x \equiv_l y \) there exist \(x_1, x_2, y_1, y_2 \in A \) such that \(y = y_1 ay_2 \), \(x = x_1 bx_2 \), \(y_1 \equiv_l u \), and \(x_1 \equiv_l u \).

(a) If \(y_1 a \) is a prefix of \(u \) then by Lemma 13 \(u \equiv_R \alpha u \), so from Propositions 23, 52 and 59

\[u \equiv_l u a \quad \text{and} \quad u \equiv_R u a. \]

Since \(\equiv_l \) and \(\equiv_R \) are congruences, \(uv \equiv_l uav = x \equiv_l y \) and \(uv = \alpha u \). Now \(|uv| + |y| - 2 \llcp(uv,y)| < |x| + |y| - 2 \llcp(x,y)| \) by the induction hypothesis \(uv \equiv_R y \), hence \(x \equiv_R y \).

(b) If \(x_1 b \) is a prefix of \(u \), then using the same arguments as above, \(x \equiv_R y \).

(c) Otherwise \(ub \) is a prefix of \(y_1 \) and \(ua \) is a prefix of \(x_1 \), say \(y_1 = uby_3 \) and \(x_1 = uax_3 \).

Since \(u \equiv_l y_1 = uby_3 \) and \(u \equiv_l x_1 = uax_3 \), \(u \equiv_l uax_3 by_3 \). By Lemma 5, there exist \(u_1, \ldots, u_{l-1} \in A \) such that \(u = u_1 \cdots u_{l-1} \) and \(\alpha(u_1) \supseteq \cdots \supseteq \alpha(u_{l-1}) \supseteq \alpha(ax_3 by_3) \).

Now \(\# \alpha(ax_3 by_3) \geq 2 \), and \(n \geq 2 \), and \(\# \alpha(u_1) \leq m \), so \(l-1 = (n-1)m > (n-1)(\# \alpha(u_1) - \# \alpha(ax_3 by_3) + 1) \). Hence, by Lemma 58, \(u \equiv_R uz \) for all \(z \in (\alpha(ax_3 by_3))^* \).

Let \(x' = ubx_3 ax_2 \). Since \(bx_3 a, ax_3 b \in (\alpha(ax_3 by_3))^* \), \(ubx_3 a \equiv_R u \equiv_R uax_3 b \), so that \(x = uax_3 bx_2 \equiv_R ubx_3 ax_2 = x' \). Now \(\alpha(ax_3 b) = \alpha(bx_3 a) \) and \(uc \equiv_l u \) for all \(c \in \alpha(ax_3 b) \) since \(u \equiv_l uax_3 by_3 \), so by Lemma 61 \(uax_3 b \equiv_l ubx_3 a \). Therefore \(x = uax_3 bx_2 \equiv_l ubx_3 ax_2 = x' \).

But \(x \equiv_l y \), so \(x' \equiv_l y \). Since \(\llcp(x',y)| > \llcp(x,y)| \) it follows that
\[|x'| + |y| - 2 \|lcp(x', y)\| < |x| + |y| - 2 \|lcp(x, y)\|. \] Hence by the induction hypothesis \(x' \equiv_R y \) and thus \(x \equiv_R y \).

Note that the above result is not true for \(n = 1 \). For example, \(ab \nleftrightarrow ba \) but \(ab \not\equiv_a ba \). Also, \(x \equiv_{(n-1)m} y \) does not imply \(x \equiv_{n} y \). Otherwise from Propositions 23, 52, and 55, it follows that \(x \equiv_{(n-1)m} y \) implies \(x nm1 m t w i d r y \) implies \(x \equiv_{(n-1)m} y \) implies \(x \equiv_{n} y \) implies \(x \equiv_{n} y \), contradicting Proposition 60.

The relationships between the various congruences can be conveniently summarized in the following diagram:

![Diagram]

There is one further congruence which should be mentioned. In [5] Brzozowski describes a congruence \(\equiv_\pi \) which he proves characterizes the family of languages of \(R \)-trivial monoids over a two-letter alphabet. It is routine to verify that, in this case, \(x \equiv_{(n-1)m} y \) implies \(x \equiv_\pi y \), and that \(x \equiv_\pi y \) implies \(x \equiv_{(n-1)m} y \) for all \(x, y \in A \). However, for an alphabet of three or more letters, \(\equiv_\pi \) no longer ‘works’.
Proposition 64 Let \(\# A \geq 3 \). There does not exist \(n \geq 1 \) such that \(x \oplus_\tau y \) implies \(x \gtrless y \) for all \(x, y \in A \).

Proof: Consider \(x = (ab)^n \) and \(y = (ab)^m \). From the definition of \(\oplus_\tau \), it follows easily that \(x \oplus_\tau y \). However it is clear that \(x \gtrless y \) since \(\alpha(x) \neq \alpha(y) \).
2.7 Summary

Theorem 65 Let $X \subseteq \mathcal{A}$ be a regular language, let M be its syntactic monoid, and let $A = \langle A, Q, q_0, F, \sigma \rangle$ be the reduced automaton accepting X. The following conditions are equivalent.

M1. M is R-trivial.

M2. For all $f, g, h \in M$, $fgh = f$ implies $fg = f$.

M3. For all idempotents $e \in M$, $eMe = e$.

M4. There exists an $n > 0$ such that for all $f, g \in M$, $(fg)^n f = (fg)^n$.

X1. X is an R_n language for some $n \geq 0$.

X2. X is an R_n language for some $n \geq 0$.

X3. X is an R_n language for some $n \geq 0$.

X4. X is an R_n language for some $n \geq 0$.

X5. X is an R_n language for some $n \geq 1$.

X6. X is an R_n language for some $n \geq 1$.

E1. X can be denoted by an R-expression.

E2. $X \in (D \cup DA)B$ where $D = \{ C'a \mid C \subseteq A - \{ a \} \}$.

A1. A is partially ordered.

A2. For all $x, y \in \mathcal{A}$ and for all $q \in Q$, $\sigma(q, xy) = q$ implies $\sigma(q, x) = q$.

A3. $\Pi^n(A)$ has an empty state set for some $n \geq 0$.

A4. There exists an $n > 0$ such that for all $x,y \in \mathcal{A}$, x-full and $\alpha(x) \supseteq \alpha(y)$ imply $\sigma(q, x) = \sigma(q, xy)$ for all $q \in Q$.

A5. For all $x \in \mathcal{A}$, $\sigma(q, x) = \sigma(q, xx)$ for all $q \in Q$ implies $\sigma(q, x) = \sigma(q, xa)$ for all $q \in Q$, $a \in \alpha(x)$.

A6. A is covered by a cascade product of half-resets.
CHAPTER 3 LANGUAGES OF L-TRIVIAL MONOIDS

The L-trivial property is dual to that of R-trivialness. As a result, characterizations analogous to those in Theorem 2.65 hold.

Definitions for the corresponding congruences are formed by using suffixes in place of prefixes. More precisely if $x,y \in A$ and $n \geq 0$ then $x \equiv_L y$ if and only if for each suffix u of x there exists a suffix v of y such that $u \equiv v$ and vice versa. The five other congruences (\equiv_L, \equiv_A, \equiv_R, \equiv^L_R, and \equiv^L_L) have similarly modified definitions.

If A is the automaton of a language X with an L-trivial syntactic monoid then A^p, the automaton recognizing X^p, is partially ordered. However it is possible to describe these automata more directly.

Proposition 1 Let $S = <A, Q, \sigma>$ be a semiautomaton and let M be its transformation monoid. The following are equivalent.

1. M is L-trivial.

2. There exists an $n > 0$ such that, for all subsemiautomata $T = <C, P, p_0, \tau>$ of S which are connected and all n-full words w with $\alpha(w) = C$, $\tau(p,w) = \tau(p',w)$ for all $p,p' \in P$.

3. There exists an $n > 0$ such that for all $x,y \in A$, x n-full and $\alpha(x) \supseteq \alpha(y)$ imply $\sigma(q,xy) = \sigma(q,x)$ for all $q \in Q$.

4. If $x \in A$ then $\sigma(q,x) = \sigma(q,xx)$ for all $q \in Q$ implies $\sigma(q,x) = \sigma(q,ax)$ for all $q \in Q$, $a \in \alpha(x)$.

Proof:

(1\Rightarrow2) Suppose M is L-trivial. By the dual of Lemma 2.25 there exists an $n > 0$ such that for all $x,y \in A$, $x \equiv_L y$ implies $x = y$. Let $T = <C, P, p_0, \tau>$ be a subsemiautomaton of S which is connected, let $p,p' \in P$, and let w be an n-full word with $\alpha(w) = C$.

49
Since T is connected there exist $u,v \in C^*$ such that $\tau(p_0,u) = p$ and $\tau(p_0,v) = p'$.

Now w is n-full and $u,v \in (\alpha(w))^*$ so $uw \not\sim_n w$ and $vw \not\sim_n w$. This implies that $uw = vw$ and thus $\tau(p,w) = \tau(p_0,uw) = \sigma(p_0,uv) = \sigma(p_0,vw) = \tau(p_0,vw) = \tau(p',w)$.

(2 \Rightarrow 3) Let $n > 0$ be such that, for all subsemiautomata $T = \langle C, P, p_0, \tau \rangle$ of S which are connected and all n-full words w with $\alpha(w) = C$, $\tau(p,w) = \tau(p',w)$ for all $p,p' \in P$.

Suppose x is n-full and $\alpha(x) \supseteq \alpha(y)$. Let $q \in Q$. Consider the subsemiautomaton $T = \langle C, P, q, \tau \rangle$ of S where P is chosen so that T is connected. Since $\alpha(x) \supseteq \alpha(y)$, $\tau(q,x) \in P$. And, because x is n-full, it follows that $\sigma(q,xy) = \tau(q,yx) = \tau(\tau(q,y), x) = \tau(q,x) = \sigma(q,x)$.

The proofs of (3 \Rightarrow 4) and (4 \Rightarrow 1) are the dual of those in Proposition 2.28.

Proposition 2 Let $S = \langle A, Q, \sigma \rangle$ be a semiautomaton and let M be its transformation monoid.

If M is L-trivial then for all $x,y \in \Delta$, $q \in Q$, $\sigma(q,x) = \sigma(q,xx) = \sigma(q,xy)$ and $\sigma(q,y) = \sigma(q,yx) = \sigma(q,yy)$ imply $\sigma(q,x) = \sigma(q,y)$.

Proof: Suppose M is L-trivial. Let $x,y \in \Delta$, $q \in Q$, be such that $\sigma(q,x) = \sigma(q,xx) = \sigma(q,xy)$ and $\sigma(q,y) = \sigma(q,yx) = \sigma(q,yy)$. Then $\sigma(q, (xy)^n) = \sigma(q,x)$ and $\sigma(q, (yx)^n) = \sigma(q,y)$ for all $n > 0$.

Since M is L-trivial, it follows from Proposition 1 that there exists an $n > 0$ such that for all $x,y \in \Delta$, x n-full and $\alpha(x) \supseteq \alpha(y)$ imply $\sigma(q,xy) = \sigma(q,y)$ for all $q \in Q$. Now $(xy)^n$ is n-full and $\alpha((xy)^n) \supseteq \alpha(y)$ so $\sigma(q,x) = \sigma(q,(xy)^n) = \sigma(q,y(xy)^n) = \sigma(q, (yx)^n y) = \sigma(\sigma(q, (yx)^n), y) = \sigma(\sigma(q,y), y) = \sigma(q,yy) = \sigma(q,y)$.

Note that these automata do not satisfy the property that for all $x,y \in \Delta$ and all $q \in Q$, $\sigma(q,xy) = q$ implies $\sigma(q,x) = q$. For example, consider the semiautomaton $\langle [a,b], [q_0,q_1,q_2], \sigma \rangle$ illustrated in Figure 1.

It is easily verified that this automaton satisfies $\sigma(q,xy) = \sigma(q,x)$ for all $q \in Q$ and all $x,y \in \Delta$ such that x is 2-full and $\alpha(x) \supseteq \alpha(y)$. However $\sigma(q_0,aba) = q_0 \neq q_1 = \sigma(q_0,a)$.
The final theorem, analogous to Theorem 2.65, summarizes the characterizations of languages with L-trivial monoids.

Theorem 3 Let $X \subseteq A$ be a regular language, let M be its syntactic monoid, and let $A = \langle A, Q_0, q_0, F, \sigma \rangle$ and A^p be the reduced automata accepting X and X^p respectively. The following conditions are equivalent.

M1. M is L-trivial.

M2. For all $f, g, h \in M$, $hgf = f$ implies $gf = f$.

M3. For all idempotents $e \in M$, $Me = e$.

M4. There exists an $n > 0$ such that for all $f, g \in M$, $g(fg)^n = (fg)^n$.

X1. X is an \overrightarrow{r}_L language for some $n \geq 0$.

X2. X is an \overrightarrow{r}_L language for some $n = 0$.

X3. X is an \overrightarrow{r}_L language for some $n \geq 0$.

X4. X is an \overrightarrow{r}_L language for some $n \geq 0$.

X5. X is an \overrightarrow{r}_L language for some $n \geq 1$.

X6. X is an \overrightarrow{r}_L language for some $n \geq 1$.

E1. X can be expressed as the finite union of regular expressions of the form $A_0a_1A_1 \cdots a_mA_m$.
where $m \geq 0$, $a_1, \ldots, a_m \in A$ and $A_i \subseteq A - \{a_i\}$ for $1 \leq i \leq m$.

E2. $X \in (D \cup AD)B$ where $D = \{ aC^* \mid C \subseteq A - \{a\} \}$.

A1. A^o is partially ordered.

A2. There exists an $n > 0$ such that for all subsemiautomata $T = <C, P, \rho_0, \tau>$ of A

which are connected and all n-full words w with $\alpha(w) = C$, $\tau(\rho, w) = \tau(\rho', w)$ for all

$p, p' \in P$.

A3. There exists an $n > 0$ such that for all $x, y \in A$, x n-full and $\alpha(x) \supseteq \alpha(y)$ imply

$\sigma(q, xy) = \sigma(q, x)$ for all $q \in Q$.

A4. If $x \in A$ then $\sigma(q, x) = \sigma(q, xx)$ for all $q \in Q$ implies $\sigma(q, x) = \sigma(q, ax)$ for all $q \in Q$, $a \in \alpha(x)$.

A5. A^o is covered by a cascade product of half-resets.
CHAPTER 4 LANGUAGES OF G-TRIVIAL MONOIDS

4.1 Basic Congruences

In order to produce a congruence which is a generalization of the congruences in the previous two chapters, it is necessary to make both prefixes and suffixes significant in its definition.

Definition 1 Let $x,y \in A^*$ and $n \geq 1$. Then $x \equiv_{\overline{\sim}_G} y$ if and only if there exist $z_1,z_2,u,v,w \in A^*$ such that $x = z_1uwxz_2$, $y = z_1uvwxz_2$, u and w are n-full, and $\alpha(u) = \alpha(w) \supseteq \alpha(v)$. $\overline{\sim}_G$ is the transitive closure of \sim_G, and $\overline{\sim}_G$ is the symmetric transitive closure of \sim_G.

Note that $\overline{\sim}_G$ is the smallest congruence satisfying $uw \equiv_{\overline{\sim}_G} uvw$ for all $u,v,w \in A^*$ such that u and w are n-full and $\alpha(u) = \alpha(w) \supseteq \alpha(v)$.

Definition 2 Let $x,y \in A^*$ and $n \geq 1$. Then $x \sim_{\overline{\sim}_G} y$ if and only if there exist $z_1,z_2,u,v,w \in A^*$ such that $x = z_1uwxz_2$, $y = z_1uvwxz_2$, u and w are n-full, and $\alpha(u) = \alpha(w) = \alpha(v)$. $\overline{\sim}_G$ is the symmetric transitive closure of \sim_G.

Similarly $\overline{\sim}_G$ is the smallest congruence satisfying $uw \equiv_{\overline{\sim}_G} uvw$ for all $u,v,w \in A^*$ such that u and w are n-full and $\alpha(u) = \alpha(w) = \alpha(v)$.

Definition 3 Let $n \geq 1$. Then $\equiv_{\overline{\sim}_G}$ is the smallest congruence satisfying $u \equiv_{\overline{\sim}_G} uvu$ for all $u,v \in A^*$ such that u is n-full and $\alpha(u) \supseteq \alpha(v)$.

If u is $(n+1)$-full then it is also n-full. Hence $x \equiv_{\overline{\sim}_G} y$ implies $x \equiv_{\overline{\sim}_G} y$, $x \equiv_{\overline{\sim}_G} y$ implies $x \equiv_{\overline{\sim}_G} y$, and $x \equiv_{\overline{\sim}_G} y$ implies $x \equiv_{\overline{\sim}_G} y$ for all $x,y \in A^*$ and all $n \geq 1$.

Proposition 4 Let $n \geq 1$ and $u,v \in A^*$ be such that $\alpha(u) \supseteq \alpha(v)$. Then

(a) $u^{2n} \equiv_{\overline{\sim}_G} u^{2n+1}$,
(b) \(u^{2n} \equiv_n u^{2n}v^2u^{2n} \),
(c) \(u^n \equiv_n u^{n+1} \), and
(d) \(u^n \equiv_n u^n v^n \).

Proof: (a) and (d) follow immediately from the fact that \(u^n \) is \(n \)-full. Since \(u^{2n} = u^n u^n \equiv_n u^n u^n v^2 u^n = u^{2n} v^2 u^{2n} \) and \(u^n \equiv_n u^n u^n \equiv_n u^n u^{2n} = u^{2n+1} u^{n+1} \equiv_n u^{n+1} \), (b) and (c) hold.

These three congruences are closely related. In fact, the families of languages \(\{ X \mid X \text{ is a } \equiv_n \text{ language for some } n \geq 1 \} \), \(\{ X \mid X \text{ is a } \equiv_n \text{ language for some } n \geq 1 \} \), and \(\{ X \mid X \text{ is a } \equiv_n \text{ language for some } n \geq 1 \} \) are the same.

Proposition 5 Let \(x, y \in A \) and \(n \geq 1 \). Then \(x \equiv_n y \) if and only if \(x \equiv_n y \).

Proof: Clearly \(x \equiv_n y \) implies \(x \equiv_n y \), so suppose \(x \equiv_n y \). Then there exist \(z_1, z_2, u, v, w \in A \) such that \(x = z_1uwz_2 \), \(y = z_1uuvz_2 \), \(u \) and \(w \) are \(n \)-full, and \(\alpha(u) = \alpha(w) \supseteq \alpha(v) \). Now \(\alpha(u) = \alpha(w) = \alpha(uv) = \alpha(vw) \) and \(vw \) is \(n \)-full, so \(x = z_1uwz_2 \equiv_n z_1u(uv)z_2 \) and \(y = z_1u(vw)z_2 \equiv_n z_1u(uv)z_2 \). Therefore \(x \equiv_n y \). Since \(\equiv_n \) is the symmetric transitive closure of \(\equiv_n \), it follows that \(x \equiv_n y \) implies \(x \equiv_n y \).

Proposition 6 Let \(x, y \in A \) and \(n \geq 1 \). Then \(x \equiv_{2n} y \) implies \(x \equiv_n y \).

Proof: Suppose \(u, v \in A \) are such that \(u \) is \(2n \)-full and \(\alpha(u) \supseteq \alpha(v) \). From the remark following Definition 2.6 there exist \(u_1, \ldots, u_{2n} \in A \) such that \(u = u_1 \cdots u_{2n} \) and \(\alpha(u_1) = \cdots = \alpha(u_{2n}) \). Let \(u' = u_1 \cdots u_n \) and \(u'' = u_{n+1} \cdots u_{2n} \). Then \(u' \) and \(u'' \) are \(n \)-full, \(u = u'u'' \), and \(\alpha(u') = \alpha(u'') = \alpha(u''vu') \). Thus \(u = u'u'' \equiv_n u'u''vu' \equiv_n uvu \). Since \(\equiv_{2n} \) is the smallest congruence satisfying \(u \equiv_{2n} uvu \) for all \(u, v \in A \) such that \(u \) is \(2n \)-full and \(\alpha(u) \supseteq \alpha(v) \), it follows that \(x \equiv_{2n} y \) implies \(x \equiv_n y \) for all \(x, y \in A \).

Proposition 7 Let \(x, y \in A \) and \(n \geq 1 \). Then \(x \equiv_n y \) implies \(x \equiv_{2n} y \).
Proof: Let \(u,v,w \in A \) be such that \(u \) and \(w \) are \(n \)-full and \(\alpha(u) = \alpha(w) \supseteq \alpha(v) \). Since \(\alpha(u) \supseteq \alpha(wuvw) \), \(u \equiv_{n_0} uuvuvw \). But \(u \equiv_{n_0} uwu \), \(w \equiv_{n_0} wuw \), and \(\equiv_{n_0} \) is a congruence; thus \(uw \equiv_{n_0} uwuvuvw \equiv_{n_0} uvw \). Since \(\equiv_{n_0} \) is the smallest congruence satisfying \(uw \equiv_{n_0} uvw \) for all \(u,v,w \in A \) such that \(u \) and \(w \) are \(n \)-full and \(\alpha(u) = \alpha(w) \supseteq \alpha(v) \) it follows that \(x \equiv_{n_0} y \) implies \(x \equiv_{n_0} y \) for all \(x,y \in A \).

Like \(\equiv_{n} \) and \(\equiv_{n} \), every congruence class of \(\equiv_{n_0} \) has a unique element of minimal length. This is now shown.

Lemma 8 If \(n \geq 1 \) and \(x,x',x'' \in A \) are such that \(x \equiv_{n_0} x'' \) and \(x' \equiv_{n_0} x'' \), then there exists \(x_0 \in A \) such that \(x_0 \equiv_{n_0} x \) and \(x_0 \equiv_{n_0} x' \).

Proof: Suppose \(x,x',x'' \in A \) are such that \(x \equiv_{n_0} x'' \) and \(x' \equiv_{n_0} x'' \). Then there exist \(u,u',v,v',w,w',z_1,z_1',z_2,z_2' \in A \) such that \(x = z_1 uvwz_2 \), \(x' = z_1' u' w' z_2' \), \(z_1 uvwz_2 = x'' = z_1' u' w' z_2' \), \(\alpha(u) = \alpha(w) \supseteq \alpha(v) \), \(\alpha(u') = \alpha(w') \supseteq \alpha(v') \), and \(u, u', w, w' \) are \(n \)-full.

The proof proceeds by considering various cases.

1. \(z_1' u' \) is a prefix of \(z_1 u \).

1.1 \(z_1 uv \) is a prefix of \(z_1' u' v' \).

Here \(z_1 u = z_1' u' r \) and \(wz_2 = sw'z_2' \) for some \(r,s \in A \). Then \(z_1' u' w' z_2' = z_1 uvwz_2 = z_1' u' rsw'z_2' \) so that \(v' = rs \). Let \(x_0 = x' \). Since \(\alpha(u') = \alpha(w') \supseteq \alpha(v') \supseteq \alpha(rs) \), \(x_0 = z_1 u' w' z_2' \equiv_{n_0} z_1' u' rsw'z_2' = z_1 uvwz_2 = x \). And, since \(\equiv_{n_0} \) is reflexive, \(x_0 \equiv_{n_0} x' \).

1.2 \(z_1' u' v' \) is a prefix of \(z_1 uv \).

1.2.1 \(z_1' u' v' \) is a prefix of \(z_1 u \).

Since \(u \) is \(n \)-full, there exist \(u_1, \ldots, u_n \in A \) such that \(u = u_1 \cdots u_n \) and \(\alpha(u_1) = \cdots = \alpha(u_n) \). If \(z_1 = z_1 q \) for some \(q \in A \), then \(z_1 u' v' = z_1' u' v' \) is a prefix of \(z_1 u \) in which case \(\alpha(u') \subseteq \alpha(u) \). Otherwise \(z_1 = z_1' q \) for some \(q \in A \). Hence, if \(z_1 u_1 = z_1' qu_1 \) is a prefix of \(z_1' u' v' w' \), then \(\alpha(u) = \alpha(u_1) \subseteq \alpha(u' v' w') = \alpha(u') \). Thus \(\alpha(u) \not\subseteq \alpha(u') \) and \(\alpha(u') \not\subseteq \alpha(u) \) imply that \(z_1' u' v' w' \) is a prefix of \(z_1 u_1 \).
1.2.1.1 \(z_1'u'v'w' \) is a prefix of \(z_1u_1 \).

There exists \(r' \in A^* \) such that \(z_1'u'v'w'r' = z_1u_1 \) and \(z_1' = r'u_2 \cdots u_nv_wz_2 \).

1.2.1.1.1 \(z_1'u'v' \) is a prefix of \(z_1' \).

Let \(s' \in A^* \) be such that \(z_1 = z_1'u'v's' \) and \(s'u_1 = w'r' \), let \(r_1 = z_1'u's' \), and let \(r_2 = u_1 \). Then \(z_1'u'w'r' = z_1'u's'u_1 = r_1r_2 \) and \(\alpha(r_2) = \alpha(u_1) \).

1.2.1.1.2 \(z_1 \) is a prefix of \(z_1'u' \).

Let \(s' \in A^* \) be such that \(z_1'u' = z_1s' \) and \(s'v'w'r' = u_1 \), let \(r_1 = z_1 \), and let \(r_2 = s'w'r' \). Then \(z_1'u'w'r' = z_1s'w'r' = r_1r_2 \) and, since \(\alpha(v') \subseteq \alpha(w') \), \(\alpha(r_2) = \alpha(s'w'r') = \alpha(s'v'w'r') = \alpha(u_1) \).

1.2.1.1.3 \(z_1 \) is a prefix of \(z_1'u'v' \) and \(z_1'u' \) is a prefix of \(z_1 \).

Let \(s, s' \in A^* \) be such that \(z_1 = z_1'u's, u_1 = s'w'r' \) and \(v' = ss' \), let \(r_1 = z_1'u' \), and let \(r_2 = w'r' \). Then \(z_1'u'w'r' = r_1r_2 \) and, since \(\alpha(s') \subseteq \alpha(v') \subseteq \alpha(w'), \alpha(r_2) = \alpha(w'r') = \alpha(s'w'r') = \alpha(u_1) \).

In all three cases there exist \(r_1, r_2 \in A^* \) such that \(z_1'u'w'r' = r_1r_2 \) and \(\alpha(r_2) = \alpha(u_1) \). Note that \(r_2u_2 \cdots u_n \) is \(n \)-full and \(\alpha(r_2u_2 \cdots u_n) = \alpha(u_1 \cdots u_n) = \alpha(u) = \alpha(w') \). Let \(x_0 = z_1'u'w'r'u_2 \cdots u_nwz_2 \). Then \(x_0 = z_1'u'w'r'u_2 \cdots u_nwz_2 = z_1uwz_2 = x \) and \(x_0 = z_1'u'w'r'u_2 \cdots u_nwz_2 = r_1r_2u_2 \cdots u_nwz_2 = x_0 = z_1'u'w'r'u_2 \cdots u_nwz_2 = z_1'u'w'z'_2 = x' \).

1.2.1.2 \(\alpha(u) = \alpha(u') \).

1.2.1.2.1 \(z_1'u'v'w' \) is a prefix of \(z_1 \).

This is a special case of 1.2.1.1.

1.2.1.2.2 \(z_1u \) is a prefix of \(z_1'u'v'w' \).

Since \(z_1'u'v' \) is a prefix of \(z_1u \), there exists \(p \in A^* \) such that \(z_1'u'v'p = z_1u \) and \(w'z'_2 = pvwz_2 \). But \(z_1u \) is a prefix of \(z_1'u'v'w' \); thus \(p \) is a prefix of \(w' \). Let \(x_0 = z_1'u'wz_2 \). Now \(\alpha(p) \subseteq \alpha(w') = \alpha(u') = \alpha(u) \).
\[\alpha(w), \text{ so that } \alpha(v^p), \alpha(pv) \subseteq \alpha(u'). \] Hence \(x_0 = z'_1u'wz_2 \triangleq \frac{\alpha(v)}{\alpha(u')} \)
\[z'_1u'v'wz_2 = z_1uwz_2 = x \text{ and } x_0 = z'_1u'wz_2 \triangleq \frac{\alpha(v)}{\alpha(u')} z'_1u'vvwz_2 = z'_1u'wz'_2 = x'. \]

1.2.1.2.3 \(z_1 \) is a prefix of \(z'_1u'v'w' \) which is a prefix of \(z_1u' \).

In this case there exist \(r, s \in \mathbb{A} \) such that \(z_1r = z'_1u'v'w' \), \(z'_1u'v'w's = z_1u \), and \(z'_2 = svwz_2 \). Therefore \(z_1rs = z_1u \) so that \(\alpha(s) \subseteq \alpha(u) = \alpha(w) = \alpha(u') \). Let \(x_0 = z'_1u'wz_2 \).
\[\frac{\alpha(v)}{\alpha(u')} z'_1u'(v'w's)wz_2 = z_1uwz_2 = x \text{ and } x_0 = z'_1u'wz_2 \triangleq \frac{\alpha(v)}{\alpha(u')} z'_1u'(w'sv)wz_2 = z'_1u'wz'_2 = x'. \]

1.2.1.3 \(\alpha(u') \subseteq \alpha(u) \).

This implies that \(u'v'w' \) does not contain any \(u_i \) as a contiguous subword. The four subcases below consider the possible relationships between \(u'v'w' \) and the \(u_i \)s.

1.2.1.3.1 \(z'_1u'v'w' \) is a prefix of \(z_1u_1 \).

This is just case 1.2.1.1.

1.2.1.3.2 There exists \(i, 1 \leq i \leq n, \) such that \(z'_1 = z_1u_1 \cdots u_{i-1}r, z'_2 = su_{i+1} \cdots u_nvwz_2, \) and \(u_i = ru'v'w's \) for some \(r, s \in \mathbb{A} \).

Let \(x_0 = z_1u_1 \cdots u_{i-1}ru'v'w'su_{i+1} \cdots u_nwz_2 \). Since \(\alpha(u') = \alpha(w) \supseteq \alpha(v') \) it follows that \(\alpha(ru'v'w's) = \alpha(ru'v'w's) = \alpha(u_i) \).
Therefore \(u_1 \cdots u_{i-1}ru'w'su_{i+1} \cdots u_n \) is \(\alpha(u) \).

\[\frac{\alpha(u) \cdots u_{i-1}ru'w'su_{i+1} \cdots u_n} {\alpha(u)} = \alpha(u). \]

Now this implies that \(x_0 = z_1u_1 \cdots u_{i-1}ru'w'su_{i+1} \cdots u_nwz_2 \triangleq \frac{\alpha(v)}{\alpha(u')} \)
\[z_1u_1 \cdots u_{i-1}ru'v'w'su_{i+1} \cdots u_nwz_2 = z_1u_1 \cdots u_{i-1}u_iu_{i+1} \cdots u_nwz_2 = z_1uwz_2 = x \text{ and } x_0 = z_1u_1 \cdots u_{i-1}ru'w'su_{i+1} \cdots u_nwz_2 \triangleq \frac{\alpha(v)}{\alpha(u')} z_1u_1 \cdots u_{i-1}ru'w'su_{i+1} \cdots u_nvwz_2 = z'_1u'wz'_2 = x'. \]

1.2.1.3.3 There exists \(i, 1 \leq i \leq n-1, \) such that \(u_iu_{i+1} = ru'v'w's, z'_1 = z_1u_1 \cdots u_{i-1}r, \) and \(z'_2 = su_{i+2} \cdots u_nvwz_2 \) for some \(r, s \in \mathbb{A} \).
Let \(x_0 = z_1u_1 \cdots u_{i-1}ru'w'su_{i+2} \cdots u_nwz_2 \).

1.2.1.3.3.1 \(u_i = u'v'w'_1 \) and \(u_{i+1} = w'_2s \) where \(w' = w_1w'_2 \).

Since \(\alpha(v') \subseteq \alpha(u') \), \(\alpha(ru'w'_1) = \alpha(ru'v'w'_1) = \alpha(u_i) \).

In addition, \(\alpha(w'_2) = \alpha(u_{i+1}) \). Hence \(u_1 \cdots u_{i-1}ru'w'su_{i+2} \cdots u_n \) is \(n \)-full.

1.2.1.3.3.2 \(u_i = ru'_1, \ u_{i+1} = u'_2v'w's, \) and \(u' = u'_1u'_2 \).

The proof is analogous to that of case 1.2.1.3.3.1.

1.2.1.3.3.3 \(u_i = ru'v'_1, \ u_{i+1} = v'_2, \) and \(v' = v'_1v'_2 \).

Since \(\alpha(u') \supseteq \alpha(v') \supseteq \alpha(v'_1), \alpha(ru') = \alpha(ru'v'_1) = \alpha(u_i) \). Similarly, \(\alpha(w's) = \alpha(u_{i+1}) \). Thus \(u_1 \cdots u_{i-1}ru'w'su_{i+2} \cdots u_n \) is \(n \)-full.

In all three cases, \(u_1 \cdots u_{i-1}ru'w'su_{i+2} \cdots u_n \) is \(n \)-full. Clearly \(\alpha(u_1 \cdots u_{i-1}ru'w'su_{i+2} \cdots u_n) = \alpha(u) = \alpha(w) \). Therefore

\[
x_0 = z_1u_1 \cdots u_{i-1}ru'w'su_{i+2} \cdots u_nwz_2
\]

\[
\frac{\alpha}{\alpha} z_1u_1 \cdots u_{i-1}ru'w'su_{i+2} \cdots u_nwz_2
\]

\[
= z_1u_1 \cdots u_{i-1}u_iu_{i+1}u_{i+2} \cdots u_nwz_2 = z_1uwz_2 = x
\]

and \(x_0 = z_1u_1 \cdots u_{i-1}ru'w'su_{i+2} \cdots u_nwz_2 \)

\[
\frac{\alpha}{\alpha} z_1u_1 \cdots u_{i-1}ru'w'su_{i+2} \cdots u_nwz_2 = z'_1u'w'z'_2 = x'.
\]

1.2.1.3.4 \(u'v's \) is a suffix of \(u_n \) for some prefix \(s \) of \(w' \), and \(w'z'_2 = svwz_2 \).

Since \(u'v's \) is a suffix of \(u_n \) there exists \(r \in A \) such that \(u_n = ru'v's \) and \(z'_1 = z_1u_1 \cdots u_{n-1}r \). Since \(\alpha(s), \alpha(v') \subseteq \alpha(w') = \alpha(u'), \alpha(ru') = \alpha(ru'v's) = \alpha(u_n) \). Hence \(u_1 \cdots u_{n-1}ru' \) is \(n \)-full and \(\alpha(u_1 \cdots u_{n-1}ru') = \alpha(w) \). Let \(x_0 = z_1u_1 \cdots u_{n-1}ru'wz_2 \). Then \(x_0 = z_1u_1 \cdots u_{n-1}ru'wz_2 \frac{\alpha}{\alpha} z_1u_1 \cdots u_{n-1}ru'(sv)wz_2 = z'_1u'w'z'_2 = x', \) since \(\alpha(sv) \subseteq \alpha(w') \cup \alpha(v) \subseteq \alpha(w) \). Also \(x_0 = z_1u_1 \cdots u_{n-1}ru'wz_2 \frac{\alpha}{\alpha} z_1u_1 \cdots u_{n-1}ru'(v's)wz_2 = z_1u_1 \cdots u_{n-1}u_nwz_2 = z_1uwz_2 = x, \) since \(\alpha(v's) \subseteq \alpha(w') \subseteq \alpha(w) \).
1.2.1.4 $\alpha(u) \subseteq \alpha(u')$.

Since $z'_1 u' v'$ is a prefix of $z_1 u$, $v w z_2$ is a suffix of $w' z'_2$. The result then follows by symmetry from case 1.2.1.3.

1.2.2 $z_1 u$ is a prefix of $z'_1 u' v'$.

Here there exist $r, r' \in A^*$ such that r' is a prefix of v', r is a suffix of v, $z_1 u = z'_1 u' r'$, $v w z_2 = v' w' z'_2$, $z_1 u v = z'_1 u' v' r$, and $r w z_2 = w' z'_2$. Let $y'' = z_1 u r w z_2 = z'_1 u' r' w' z'_2$. Now $x \equiv_{A_0} y''$, $x' \equiv_{A_0} y''$, and $z'_1 u' r'$ is a prefix of $z_1 u$, so that the result follows from case 1.2.1.

2. $z_1 u$ is a prefix of $z'_1 u'$.

This case is completely symmetric to case 1.

Proposition 9 Suppose $n \geq 1$ and $x \equiv_{A_0} y$. If x is an element of its \equiv_{A_0} class with minimal length, then $x \equiv_{A_0} y$.

Proof: If $x \equiv_{A_0} y$, then there exist $m \geq 1$ and $z_0, z_1, \ldots, z_m \in A^*$ such that $x = z_0$, $y = z_m$ and, for $i = 1, \ldots, m$, either $z_{i-1} \equiv_{A_0} z_i$ or $z_i \equiv_{A_0} z_{i-1}$.

The proof proceeds by induction on m. If $m = 1$ then either $x \equiv_{A_0} y$ or $y \equiv_{A_0} x$. In the latter case, since x is minimal, $x = y$. Hence $x \equiv_{A_0} y$. Assume the result is true for $m-1$.

If $z_{i-1} \equiv_{A_0} z_i$ for $i = 1, \ldots, m$, then $x \equiv_{A_0} y$ by definition. Otherwise there exists k, $0 \leq k \leq m-1$, such that $x \equiv_{A_0} z_k$ but $z_k \not\equiv_{A_0} z_{k+1}$. Note that from the proof for $m = 1$, $x \equiv_{A_0} z_1$ so $k \geq 1$.

Since $z_{k+1} \equiv_{A_0} z_k$ and $z_{k-1} \equiv_{A_0} z_k$, it follows from Lemma 8 that there exists $z'_{k-1} \in A^*$ such that $z'_{k-1} \equiv_{A_0} z_{k+1}$ and $z'_{k-1} \equiv_{A_0} z_{k-1}$. Continuing inductively for $i = k-2, \ldots, 0$, since $z'_{i+1} \equiv_{A_0} z_{i+1}$ and $z_i \equiv_{A_0} z_{i+1}$, there exists $z'_i \in A^*$ such that $z'_i \equiv_{A_0} z'_{i+1}$ and $z'_i \equiv_{A_0} z_i$.

Let $z'_i = z_{i+1}$ for $i = k, \ldots, m-1$. Now $z'_0 \equiv_{A_0} z_0 = x$ and x is minimal, so $z'_0 = x$. Thus $z'_0, z'_1, \ldots, z'_{m-1}$ are such that $z'_0 = x$, $z'_{m-1} = z_m = y$, and, for $i = 1, \ldots, m-1$, either $z'_{i-1} \equiv_{A_0} z'_i$ or $z'_{i} \equiv_{A_0} z'_{i-1}$. By the induction hypothesis, $x \equiv_{A_0} y$.

Corollary 10 Every congruence class of \(\equiv_{\mathcal{A}} \), \(n \geq 1 \), contains a unique element of minimal length.

Proof: Suppose \(n \geq 1 \) and \(x, y \in \mathcal{A} \) are such that \(x \equiv_{\mathcal{A}} y \) and \(x \) and \(y \) are both elements of minimal length. Hence \(|x| = |y| \) and by Proposition 9 \(x \equiv_{\mathcal{A}} y \). From Definition 1, if \(z, z' \in \mathcal{A} \) then \(z \equiv_{\mathcal{A}} z' \) implies \(|z| \leq |z'| \), with equality if and only if \(z = z' \). Since \(\equiv_{\mathcal{A}} \) is the transitive closure of \(\equiv_{\mathcal{A}} \), it follows that \(x = y \).

The following is an algorithm which, given \(x \), transforms it into the unique minimal element of \([x]_{\equiv_{\mathcal{A}}} \).

Algorithm 11 Find the unique minimal element of \([x]_{\equiv_{\mathcal{A}}} \).

for each \(C \subseteq \alpha(x) \) such that \(C \neq \emptyset \) do

for each decomposition \(x = z_1 y z_2 \) such that \(y \) is \(2n \)-full, \(\alpha(y) = C \), \(t_1(z_1) \notin C \), and \(f_1(z_2) \notin C \) (note that \(1 \notin C \)) do

let \(u \) be the shortest prefix of \(y \) such that \(u \) is \(n \)-full and \(\alpha(u) = \alpha(y) \).

let \(w \) be the shortest suffix of \(y \) such that \(w \) is \(n \)-full and \(\alpha(w) = \alpha(y) \).

let \(v \in \mathcal{A} \) be such that \(y = uvw \).

Replace \(x \) by \(z_1 uvwz_2 \). Note that since \(uw \equiv_{\mathcal{A}} uvw = y \), \(z_1 uvwz_2 \equiv_{\mathcal{A}} x \).

By Lemma 8, the order in which ‘pieces’ are removed from a word is irrelevant. Also, it is clear that if \(x = z_1 y z_2 = z'_1 y' z'_2 \) where \(\alpha(y) = \alpha(y') \) and \(t_1(z_1), f_1(z_2), t_1(z'_1), f_1(z'_2) \in \alpha(y) \), then either \(z'_1 y' \) is a proper prefix of \(z_1 \), \(y' z'_2 \) is a proper suffix of \(z_2 \), or \(z_1 = z'_1 \), \(y = y' \), and \(z_2 = z'_2 \).

To prove the correctness of the algorithm it remains to be shown that if \(x = z_1 uvwz_2 \) cannot be written in the form \(z'_1 u' v' w' z'_2 \), where \(u' \) and \(v' \) are \(n \)-full and \(\alpha(u') \neq \alpha(u') = \alpha(w') \) \(\equiv \alpha(v') \neq \emptyset \), then neither can \(z_1 uvwz_2 \).

Suppose \(x \) cannot be written in the above form but \(z_1 uvwz_2 \) can. That is, \(z_1 uvwz_2 = \)
\[z'1u'v'w'z'2 \text{ where } u' \text{ and } w' \text{ are } n\text{-full and } \alpha(u) \neq \alpha(u') = \alpha(w') \supseteq \alpha(v') \neq \emptyset. \]

If \(z'1u'v'w' \) is a prefix of \(z1u \), say \(z1u = z'1u'v'w'r \), then \(x = z'1u'v'w'wzw_2 \) contrary to the assumption. Similarly \(u'v'wz'2 \) is not a suffix of \(wz_2 \). Therefore \(z1u \) is a proper prefix of \(z'1u'v'w' \) and \(wz_2 \) is a proper suffix of \(u'v'wz'2 \) so that there exist \(r, s \in A^+ \) such that \(z'1u'v'w' = z1us, sz'2 = wz_2, u'v'wz'2 = rwz_2 \), and \(z'1r = z1u \). Now \(z'1u'v'w' = z1us = z'1rs \) so that \(u'v'w' = rs \).

If \(\alpha(w) = \alpha(u) \not\subseteq \alpha(u') = \alpha(u'v'w') = \alpha(rs) \) then \(u \) is not a suffix of \(r \), and \(w \) is not a prefix of \(s \). But this implies that \(r \) is a suffix of \(u \) and \(s \) is a prefix of \(w \) so that \(\alpha(u) = \alpha(uw) \supseteq \alpha(rs) = \alpha(u'v'w') \).

Since \(u \) is the shortest \(n \text{-full prefix of } uvw \) which contains every letter in \(\alpha(uvw) \) it follows that \(u = u_1a_1 \cdots u_na_n \) where \(u_1, \ldots, u_n \in A^*, a_1, \ldots, a_n \in A \) and \(\alpha(u_i) \not\subseteq \alpha(a_i) = \alpha(u) \) for \(i = 1, \ldots, n \). Similarly \(w = b_1w_1 \cdots b_nw_n \) where \(w_1, \ldots, w_n \in A^*, b_1, \ldots, b_n \in A \) and \(\alpha(w_i) \not\subseteq \alpha(b_iw_i) = \alpha(w) = \alpha(u) \) for \(i = 1, \ldots, n \). However \(\emptyset \neq \alpha(rs) \not\subseteq \alpha(u) = \alpha(w) \); therefore \(r \) is a proper suffix of \(u_na_n \) and \(s \) is a proper prefix of \(b_1w_1 \).

Say \(r = u'na_n \) and \(s = b_1w_1 \) where \(u' \) is a suffix of \(u_n \) and \(w_1 \) is a prefix of \(w_1 \). Then \(u'v'w' = rs = u'na_nb_1w_1 \). Since \(a_n \in \alpha(u'v'w') = \alpha(u') = \alpha(w') \supseteq \alpha(v') \) and \(a_n \not\in \alpha(u' \) \), \(u'na_n \) is a prefix of \(u' \). Similarly \(b_1w_1 \) is a suffix of \(w \). Therefore \(u' = u'na_n, w'' = b_1w_1', \) and \(v' = 1 \), contrary to the assumption that \(\alpha(v') \neq \emptyset \). Hence \(\alpha(u') \supseteq \alpha(u) \supseteq \alpha(v) \).

There are three cases to consider.

1. If \(r = u'1 \) and \(s = u'2v'w' \), where \(u' = u'1u'2, u'' = u'1v'u_2, v'' = v', \) and \(w'' = w' \). Since \(\alpha(v) \subseteq \alpha(u') \) it follows that \(\alpha(u'') = \alpha(u') = \alpha(w') \) and \(u'' \) is \(n \text{-full.} \) Then \(x = z_1uvwz_2 = z'1rvsz'2 = z'1u'1v'u'2v'w'z'2 = z'1u'v'w'w'z'2 \) which contradicts the assumption that \(x \) cannot be written in this form.

2. If \(r = u'v'1 \) and \(s = v'2w' \), where \(v' = v'1v'_2, u'' = u', v'' = v'1v'2 \), and \(w'' = w' \). Since \(\emptyset \neq \alpha(v) \subseteq \alpha(u') \) and \(\alpha(v) \subseteq \alpha(u'), \emptyset \neq \alpha(v') \subseteq \alpha(u'') \). Then \(x = z_1uvwz_2 = z'1rvsz'2 = z'1u'v'1v'v'2w'z'2 = z'1u'v'w'w'z'2 \) which contradicts the assumption that \(x \) cannot be written in this form.
3. For \(r = u'v'w'_1 \) and \(s = w'_2 \) where \(w' = w'_1w'_2 \) the argument is similar to case 1.

Therefore if \(x \) cannot be written in the form \(z'u'v'w'z'_2 \), where \(u' \) and \(v' \) are \(n \)-full and \(\alpha(u) = \alpha(u') = \alpha(w') \supseteq \alpha(v') \neq \emptyset \), then neither can \(z'u'w'z'_2 \).

Example Let \(x = abaaacbccaab \) and \(n = 1 \).

Consider the non-empty subsets of \(\alpha(x) = \{a,b,c\} \) in the following order: \(\{a,b,c\} \), \(\{a,b\} \), \(\{b,c\} \), \(\{a,c\} \), \(\{a\} \), \(\{b\} \), \(\{c\} \). Let \(z'_1u'v'w'z'_2 \) be any decomposition of \(x \) such that \(uw \) is 2-full and \(\alpha(v) \subseteq \alpha(u) = \alpha(w) \). These decompositions are illustrated in the following table.

<table>
<thead>
<tr>
<th>subset</th>
<th>decomposition of (x)</th>
<th>replace (x) by</th>
</tr>
</thead>
<tbody>
<tr>
<td>{a,b,c}</td>
<td>1 \quad abaaac \quad bc \quad caab \quad 1</td>
<td>abaaaccaab</td>
</tr>
<tr>
<td>{a,b}</td>
<td>ab \quad aaac \quad 1 \quad caa \quad b</td>
<td></td>
</tr>
<tr>
<td>{b,c}</td>
<td>abaa \quad ac \quad a \quad a \quad caaab</td>
<td>abaaaccaab</td>
</tr>
<tr>
<td>{a}</td>
<td>abaa \quad c \quad 1 \quad c \quad aab</td>
<td></td>
</tr>
</tbody>
</table>

Therefore the unique minimal element \(\equiv_{10} \) congruent to \(abaaacbccaab \) is \(abaaaccaab \).

Proposition 12 Let \(n \geq 1 \) and let \(\lambda_G(A,n) = \max\{\|x\| \mid x \in A \text{ and } x \text{ is the unique minimal element of its } \equiv_{n_G} \text{ class}\} \). Then \(\equiv_{n_G} \) is of finite index for any given alphabet \(A \) and, furthermore,

\[
\lambda_G(A,n) = 2n \left(\frac{(2n)^{\#A} - 1}{2^n - 1} \right).
\]

Proof: By induction on \(\#A \).

If \(\#A = 1 \), say \(A = \{a\} \), then the \(\equiv_{n_G} \) classes are \(\{1\} \), \(\{a\} \), \(\{a^2\} \), \(\ldots \), \(\{a^{2n-1}\} \) and \(\{a^i \mid i \geq 2n\} \).

Thus \(\equiv_{n_G} \) is of finite index on \(A \) and \(\lambda(A,n) = 2n \left(\frac{(2n)^{1} - 1}{2^n - 1} \right) \).

Assume the result is true for alphabets with cardinality \(\#A - 1 \). For \(a \in A \), let \(y \in (A - \{a\})^* \) be such that \(y \) is the unique minimal element of \([y]_{\equiv_{n_G}} \) and \(\|y\| = \lambda_G(A - \{a\},n) \).

Suppose \(x \in A^* \) is the unique minimal element of \([x]_{\equiv_{n_G}} \). If \(x \) is not \(2n \)-full then there exist
\[x_1, \ldots, x_{m+1} \in A \] and \(a_1, \ldots, a_m \in A \) where \(0 \leq m < 2n \), \(x = x_1 a_1 \cdots x_m a_m x_{m+1} \), \(\alpha(x_i a_i) = \alpha(x) \) for all \(i = 1, \ldots, m \), and \(\alpha(x_i) \subseteq \alpha(x) \) for \(i = 1, \ldots, m+1 \). Let \(a_{m+1} \in \alpha(x) - \alpha(x_{m+1}) \). Consider \(x_i \) where \(1 \leq i \leq m+1 \). If \(|x_i| > |y| \) then there exists \(x'_i \in \mathcal{R}(A - \{a_i\})' \) such that \(x'_i \equiv_{\mathcal{R}} x_i \) and \(|x'_i| < |x_i| \). But \(\equiv_{\mathcal{R}} \) is a congruence so \(x_1 a_1 \cdots a_{i-1} x'_i a_i \cdots x_{m+1} \equiv_{\mathcal{R}} x_1 a_1 \cdots a_{i-1} x_i a_i \cdots x_{m+1} = x \). Since \(|x_1 a_1 \cdots a_{i-1} x'_i a_i \cdots x_{m+1}| < |x| \) this contradicts the fact that \(x \) is the minimal element of \([x]_{\mathcal{R}}^{\equiv} \). Therefore \(|x| \leq |y| \) which implies \(|x| \leq m + \sum_{i=1}^{m+1} |y| = m(1+|y|) < 2n(1+|y|) \).

Now consider the case when \(x \) is \(2n \)-full. Then there exist \(x_1, \ldots, x_n, x'_1, \ldots, x'_n, z \in A \) and \(a_1, \ldots, a_n, a'_1, \ldots, a'_n \in A \), such that \(x = x_1 a_1 \cdots x_n a_n z a'_n x'_n \cdots a'_1 x'_1 \) and \(\alpha(x_i) \neq \alpha(x_i a_i) = \alpha(x) = \alpha(a'_i) \neq \alpha(x'_i) \) for \(i = 1, \ldots, n \). As above, it follows that \(|x_i|, |x'_i| \leq |y| \) for \(i = 1, \ldots, n \). Since \(x_1 a_1 \cdots x_n a_n \) and \(a'_n x'_n \cdots a'_1 x'_1 \) are \(n \)-full and \(\alpha(x_1 a_1 \cdots x_n a_n) = \alpha(a'_n x'_n \cdots a'_1 x'_1) = \alpha(x) \supsetneq \alpha(z) \), if \(z \neq 1 \) then \((x_1 a_1 \cdots x_n a_n)(a'_n x'_n \cdots a'_1 x'_1) \equiv_{\mathcal{R}} x \). This contradicts the minimality of \(x \). Thus \(z = 1 \), \(|x| = \sum_{i=1}^{n} |x_i a_i| + |a'_i x'_i| \leq 2n(1+|y|) \), and, since \(x \) was an arbitrary minimal element, \(\lambda_G(A, n) \leq 2n(1+|y|) \).

Let \(x = (ya)^n ay^n \). If \(x \) is not the minimal element of \([x]_{\mathcal{R}}^{\equiv} \) then there exist \(u, v, w, z_1, z_2 \in A \) such that \(x = z_1 uvwz_2 \), \(u \) and \(w \) are \(n \)-full, and \(\alpha(u) = \alpha(w) \supsetneq \alpha(v) \neq \emptyset \).

Now \((ya)^n \) is the shortest \(n \)-full prefix of \(x \) and \((ay)^n \) is the shortest \(n \)-full suffix of \(x \) containing all the letters in \(\alpha(x) \); therefore \(\alpha(uvw) \subseteq \alpha(x) \). If \(a \in \alpha(uvw) \) then \(a \in \alpha(u) \) and \(a \in \alpha(w) \) and since \(\alpha(v) \neq \emptyset \), it follows that \(uvw = z_3 ayaz_4 \) for some \(z_3, z_4 \in A \). But then \(\alpha(uvw) \supsetneq \alpha(ay) = \alpha(x) \), which is a contradiction. Therefore \(\alpha(uvw) \subseteq \alpha(x) - \{a\} \), so that \(y = z_5 uvwz_6 \) for some \(z_5, z_6 \in A \). However this implies that \(z_5 uvwz_6 \equiv_{\mathcal{R}} y \) which contradicts the fact that \(y \) is the minimal element of \([y]_{\mathcal{R}}^{\equiv} \).

Therefore \(x \) is the minimal element of \([x]_{\mathcal{R}}^{\equiv} \) and \(\lambda_G(A, n) \geq |x| = 2n(1+|y|) \). Thus
\[\lambda_G(A, n) \geq 2n(1+|y|) = 2n(\lambda_G(A-\{a\}, n)+1) \]

\[= 2n \left(2n \left(\frac{(2n)^{|A|-1}-1}{2n-1} \right) + 1 \right) \]

\[= 2n \left(\frac{(2n)^{|A|-1}}{2n-1} \right). \]

Since there are only a finite number of words of length less than or equal to \(\lambda_G(A, n) \) it follows that \(\mathcal{G}_\lambda \) partitions \(A \) into a finite number of distinct congruence classes.
4.2 G-Trivial Monoids

Finite J-trivial, R-trivial, and L-trivial monoids are characterized by the properties
\(eM_e \cup M_e e = e, \ eM_e = e, \) and \(M_e e = e, \) respectively, for all idempotents \(e \in M. \) A natural generalization is the following.

Definition 13 Let \(M \) be a finite monoid. Then \(M \) is G-trivial if and only if \(eM_e \cap M_e e = e \) for all idempotents \(e \in M. \)

As with the three other families of monoids there are various alternative characterizations for the family of G-trivial monoids.

Theorem 14 Let \(M \) be a finite monoid. The following conditions are equivalent.

1. \(M \) is G-trivial.
2. \(eM_e e = e \) for all idempotents \(e \in M. \)
3. There exists an \(n > 0 \) such that for all \(f_1, \ldots, f_m \in M \) and all \(g \in \{ f_1, \ldots, f_m \}^*, \)
\[
(f_1 \cdots f_m)^n g (f_1 \cdots f_m)^n = (f_1 \cdots f_m)^n.
\]
4. For all \(f, g, h, k \in M, \) \(fgkf = f \) implies \(fgkf = f. \)

Proof:

1 \(\Rightarrow \) 2 Suppose \(e \in M \) is idempotent and \(f \in eM_e e. \) Then \(f = ege \) for some \(g \in M_e. \) But \(e \in M_e \)
so \(eg, ge \in M_e. \) Therefore \(f = e(ge) \in eM_e \) and \(f = (eg)e \in M_e e \) so that \(f \in eM_e \cap M_e e. \) Since \(M \) is G-trivial, \(f = e. \)

2 \(\Rightarrow \) 1 Suppose \(e \in M \) is idempotent and \(f \in eM_e \cap M_e e. \) Then \(f = eg = he \) for some \(g, h \in M_e. \) Since \(e \) is idempotent, \(f = eg = eeg = ehe \in eM_e e. \) Therefore \(f = e. \)

2 \(\Rightarrow \) 3 Let \(f_1, \ldots, f_m \in M \) and let \(g \in \{ f_1, \ldots, f_m \}^*. \) Since \(M \) is finite, there exists an \(n > 0 \)
such that \(e = (f_1 \cdots f_m)^n \) is idempotent. Now \(f_1, \ldots, f_m \in P_e \) so \(g \in M_e. \) Thus
\[
(f_1 \cdots f_m)^n g (f_1 \cdots f_m)^n = ege = e = (f_1 \cdots f_m)^n.
\]

3 \(\Rightarrow \) 4 Let \(f, g, h, k \in M \) be such that \(fgkf = f. \) Then \(f = (fgk)^nf, \) so \(fgkf =
\((fghk)^n (fgk) (fghk)^n f = (fghk)^n f = f.\)

(4⇒2) Suppose \(e \in M\) is idempotent and let \(g \in M_e\). If \(g = 1\) then \(ege = ee = e\). Otherwise \(g = g_1 \cdots g_m\) where \(m \geq 1\) and \(g_i \in P_e\) for \(1 \leq i \leq m\). Since \(g_i \in P_e\) there exist \(f_i, h_i \in M\) such that \(e = f_i g_i h_i\).

Now \(e = eee = e(f_1 g_1 h_1)e = e f_1 (g_1 h_1)e = eg_1 h_1 e\), so suppose \(e = eg_1 \cdots g_i h_i e\) where \(1 \leq i \leq m-1\). Then \(e = ee = eg_1 \cdots g_i h_i e e = e(g_1 \cdots g_i) (g_{i+1} h_{i+1}) e = e(g_1 \cdots g_i) (g_{i+1} h_{i+1}) e\). By induction, \(e = eg_1 \cdots g_m h_m e\). Thus \(e = e(g_1 \cdots g_m) h_m e = e(g_1 \cdots g_m) 1 e = ege\).

Definition 15 Let \(M\) be a monoid. Then \(\equiv\) is the smallest congruence such that \(f \equiv f^2\) and \(fg \equiv gf\) for all \(f, g \in M\).

Theorem 16 Let \(M\) be a finite monoid. \(M\) is \(G\)-trivial if and only if \(M\) is aperiodic and for all idempotents \(e, f \in M\), \(e \equiv f\) implies \(MeM = MfM\).

Proof:

(⇒) Since \(M\) is finite there exists \(n > 0\) such that \(f^n\) is idempotent for all \(f \in M\). Let \(f \in M\) and let \(e = f^n\). Clearly \(f \in M_e\) so \(ef \in eM_e\) and \(fe \in M_e e\). Since \(ef = f^{n+1} = fe\), \(f^{n+1} \in eM_e \cap M_e e = e\). Therefore \(f^{n+1} = f^n\), i.e. \(M\) is aperiodic.

To prove that \(e \equiv f\) implies \(MeM = MfM\) for all idempotents \(e, f \in M\) it is sufficient to show that for \(g, h, k, l \in M\)

1. if \(e = ghk\) and \(f = gh^2k\) are idempotent then \(MeM = MfM\)
2. if \(e = ghkl\) and \(f = gkhl\) are idempotent then \(MeM = MfM\).

1. Since \(e\) is idempotent \(e = ee^2e = e(gh)(ghk)e = e(gh)(kg)(hk)e\). But \(M\) is \(G\)-trivial so \(e = e(gh)(hk)e = efe\). Therefore \(MeM = Me e M \subseteq M f M\). Similarly, \(f = f(gh)hk f f\) so \(f = f(gh)kf = fef\) and \(M f M \subseteq M e M\). Thus \(M e M = M f M\).

2. Since \(e\) is idempotent, \(e = ee^2e = e(ghkl)(ghkl)e\). Because \(M\) is \(G\)-trivial it follows
that $e = egklishkle$, $e = egkhkle$, and finally $e = egkhlle = efe$. Therefore $MeM \subseteq MfM$. By symmetry $MfM \subseteq MeM$; thus $MeM = MfM$.

(\Leftarrow) Let $e \in M$ be idempotent and $f \in eMe \cap Me$. Then $f = eg = he$ for some $g, h \in M_e$. If $g = 1$ then $f = e \equiv e$. Otherwise $g = g_1 \cdots g_m$ where $g_i \in P_e$ for $i = 1, \ldots, m$. For each i, $1 \leq i \leq m$, there exist $k_i, l_i \in M$ such that $e = k_i g_i l_i$. Then $f = eg = e^m g = e^m g_1 \cdots g_m \equiv (e g_1) \cdots (e g_m) = (k_1 k_g l_1) \cdots (k_m g_m l_m) \equiv (k_1 g_1 l_1) \cdots (k_m g_m l_m) = e^m = e$. By assumption $MeM = MfM$.

M is finite; therefore there exists $n > 0$ such that k^n is idempotent for all $k \in M$. Since $e \in MeM = MfM = MeM$, there exist $k, l \in M$ such that $e = k e g l = k^n e (g l)^n$. Then $e = k^n e (g l)^n = k^n e (g l)^n (g l)^n = e (g l)^n = e (g l)^{n-1} e e g M = f M$. This implies $e M = f M$ because $f \in e M_e \subseteq e M$. Similarly $M e = M f$.

Because M is finite and aperiodic, it is H-trivial; hence $f = e$. Therefore $e M_e \cap M_e e = e$.

An alternate proof of this theorem can be found in [5].

It is now possible to relate G-trivial monoids to the families of languages defined by the congruences in the previous section.

Proposition 17 If X is a \sim-language and there exists $n > 0$ such that for all $u, v \in A^*$, $\alpha(u) \supseteq \alpha(v)$ implies $u^n \sim u^n v u^n$ then the syntactic monoid, M, of X is G-trivial.

Proof: Let $f_1, \ldots, f_m \in M$ and let $g \in [f_1, \ldots, f_m]^*$. Then $g = f_1 f_2 \cdots f_r$ where $r \geq 0$ and $1 \leq i_j \leq m$ for $j = 1, \ldots, r$. Since the syntactic morphism is surjective, there exist $u_1, \ldots, u_m \in A^*$ such that $u_i = f_i$ for $i = 1, \ldots, m$. Let $u = u_1 \cdots u_m$ and let $v = u_1 \cdots u_r$.

Now $\alpha(u) \supseteq \alpha(v)$ so $u^n \sim u^n v u^n$. Since M is the syntactic monoid of X, $(f_1 \cdots f_m)^n g (f_1 \cdots f_m)^n = u^n v u^n = u^n = (f_1 \cdots f_m)^n$. By Theorem 14, M is G-trivial.
Lemma 18 Let M be a monoid and let $\phi: \mathcal{A} \to M$ be a surjective morphism. Then $\alpha(x) \supseteq \alpha(y)$ implies $\phi(y) \in M_{\phi(x)}$ for all $x, y \in \mathcal{A}$.

Proof: If $y = 1$ then clearly $\phi(y) = 1 \in M_{\phi(x)}$. Otherwise $y = a_1 \cdots a_n$ for some $n > 0$ where $a_i \in \mathcal{A}$. For $i = 1, \ldots, n$, $a_i \in \alpha(y) \subseteq \alpha(x)$ so $x = u_i a_i$ for some $u_i \in \mathcal{A}$. Since $\phi(x) = \phi(u_i) \phi(a_i) \phi(v_i)$, $\phi(a_i) \in P_{\phi(x)}$. Thus $\phi(y) = \phi(a_1) \cdots \phi(a_n) \in M_{\phi(x)}$.

Lemma 19 Let M be a finite G-trivial monoid and $\phi: \mathcal{A} \to M$ be a surjective morphism. Let n be the cardinality of M and let $u, v \in \mathcal{A}$. Then $u \not\equiv_n uvu$ implies $\phi(u) = \phi(uvu)$.

Proof: Suppose $u \not\equiv_n uvu$. By Lemma 2.5 there exist $u_1, \ldots, u_n \in \mathcal{A}$ such that $u = u_1 \cdots u_n$ and $\alpha(u_1) = \cdots = \alpha(u_n) = \alpha(vu)$. Let $u_0 = 1$. By the choice of n, the elements $\phi(u_0), \phi(u_0 u_1), \ldots, \phi(u_0 u_1 \cdots u_n)$ cannot all be distinct. Hence there exist i and j, $0 \leq i < j \leq n$, such that $\phi(u_0 u_1 \cdots u_i) = \phi(u_0 u_1 \cdots u_i u_{i+1} \cdots u_j)$.

Let $f = \phi(u_0 u_1 \cdots u_i)$, $g = \phi(u_{i+1} \cdots u_j)$, and $h = \phi(u_{j+1} \cdots u_n)$. Then $f = fg$ so $f = fg^n$ for all $m \geq 0$. Choose m such that g^m is idempotent. Now $\alpha(u_{j+1} \cdots u_n v u_0 \cdots u_i) \supseteq \alpha((u_{j+1} \cdots u_i)^m)$ so $h \phi(v) f = \phi(u_{j+1} \cdots u_n v u_0 \cdots u_i) \in M_{\phi((u_{j+1} \cdots u_i)^m)} = M_{e^m}$ by Lemma 18. Thus

$$\phi(uvu) = fgh \phi(v) fgh = fg^m h \phi(v) fg^m h$$

$$= fg^m h \quad \text{since } g^m M_{e^m} g^m = g^m$$

$$= fgh$$

$$= \phi(u).$$

Theorem 20 Let M be the syntactic monoid of $X \subseteq \mathcal{A}$. M is finite and G-trivial if and only if X is a $\equiv_\mathcal{O}$ language for some $n \geq 1$.

Proof:

(\Rightarrow) Suppose M is finite and G-trivial. Let n be the cardinality of M. Since $\equiv_\mathcal{O}$ is the smallest congruence such that $u \equiv_\mathcal{O} uvu$ for all $u, v \in \mathcal{A}$ such that u is n-full and $\alpha(u) \supseteq \alpha(v)$, it is
sufficient to show \(u \sim^*_\eta u v u \) implies \(u = u v u \). But this follows from Lemma 19 since
\[u \sim^*_\eta u v u \implies u \sim^*_\eta u v u. \] Thus \(X \) is a \(\sim^*_\eta \) language.

\((\Leftarrow\Rightarrow)\) Immediate from Propositions 4(d) and 17.

Some additional properties of these monoids and other related results are presented here for completeness.

Proposition 21 For all \(f, g \in M \), \(P_f = P_g \) if and only if \(MfM = MgM \).

Proof:
\((\Rightarrow)\) Since \(f \in P_f = P_g \), \(g \in MfM \) so \(MgM \subseteq M(MfM)M = MfM \). Similarly \(MfM \subseteq MgM \);

hence \(MfM = MgM \).

\((\Leftarrow)\) Let \(h \in P_f \). Then \(f \in MhM \) so there exist \(h, h' \in M \) such that \(f = h'hh'' \). Now \(g \in MgM = MfM \) so there exist \(f', f'' \in M \) such that \(g = f'ff'' \). Hence \(g = f'ff'' = f'h'hh''f'' \in MhM \) so that \(h \in P_g \). Thus \(P_f \subseteq P_g \) and by symmetry it follows that \(P_g \subseteq P_f \).

Lemma 22 If \(eM_ee = e \) then \(M_e = P_e \).

Proof: Clearly \(P_e \subseteq M_e \). Suppose \(f \in M_e \). Then \(efe = e \) and since \(efe \in MfM \), it follows that \(f \in P_e = \{ g \mid e \in MgM \} \). Hence \(M_e \subseteq P_e \).

Proposition 23 Let \(M \) be a \(G \)-trivial monoid and let \(\phi : A \rightarrow M \) be a homomorphism. For all \(x, y \in A \), if \(\alpha(x) = \alpha(y) \) and \(e = \phi(x) \) and \(f = \phi(y) \) are idempotent then \(P_e = P_f \) and \(eM_ef = ef \).

Proof: Suppose \(x, y \in A \) are such that \(\alpha(x) = \alpha(y) \) and \(e = \phi(x) \) and \(f = \phi(y) \) are idempotent. Clearly \(e = \phi(f) \) so, by Theorem 16, \(MeM = MfM \). Proposition 21 implies that \(P_e = P_f \). Since \(f \in P_f = P_e \subseteq M_e \), it follows from Theorem 14 that \(efe \in eM_ee = e \). Thus \(eM_ef = efeM_ef \subseteq efM_ef = efM_ef \).
Proposition 24 Let M be a G-trivial monoid. Then $\{x \mid x \text{ is } #M\text{-full}\} = \{e \in M \mid e \text{ is idempotent}\}$.

Proof: Let $n = #M$. Suppose x is n-full. Since $\alpha(1) \subseteq \alpha(x)$, $x \overset{n}{\sim} x1x = x^2$, so by Lemma 19 $x = x^2 = x^2$. Therefore x is idempotent.

Conversely if $e \in M$ is idempotent then, since the syntactic morphism is surjective, there exists $x \in A^*$ such that $x = e$. But e is idempotent, so $e = e^n = x^n = x^n$ and x^n is clearly n-full.

Corollary 25 If M is G-trivial and $n = #M$ then $M^n = \{e \in M \mid e \text{ is idempotent}\}$.

Theorem 26 Let M be a finite monoid. Then $eP_e e = e$ for all idempotent(s) $e \in M$ if and only if there exists an $n > 0$ such that $(fgh)^n (fgh)^n = (fgh)^n$ for all $f, g, h \in M$.

Proof:

(\Rightarrow) Since M is finite there exists $n > 0$ such that $e = (fgh)^n$ is idempotent. Now $e = fg[\theta (fgh)^{n-1}] \in MgM$ so that $g \in P_e$. Therefore $(fgh)^n g (fgh)^n = ege = e = (fgh)^n$ since $eP_e e = e$.

(\Leftarrow) Let $g \in P_e$. Then $e \in MgM$ so that $e = fgh$ for some $f, h \in M$. Since e is idempotent, $ege = e^nge = (fgh)^n g (fgh)^n = (fgh)^n = e^n = e$. Therefore $eP_e e = e$.

4.3 Automata and Expressions

The automata and regular expressions corresponding to the family of languages discussed in the previous two sections have also been investigated.

Proposition 27 Let $S = \langle A, Q, \sigma \rangle$ be a semiautomaton, and let M be its transformation monoid. Then M is G-trivial if and only if there exists $n > 0$ such that for all $q \in Q$, all n-full words x, and all $z \in (\alpha(x))^*$, $\sigma(q,zx) = \sigma(q,xz)$.

Proof:

(\Rightarrow) The proof follows directly from Lemma 19.

(\Leftarrow) Suppose $e \in M$ is idempotent. Let $f \in M_+$. If $f = 1$ then $ef \omega = e^2 = e$. Otherwise $f = f_1 \cdots f_m$ where $m \geq 1$ and $f_i \in P_\omega$. Then there exist $g_i, h_i \in M$ such that $e = g_if_ih_i$.

Since the syntactic morphism is surjective, there exist $x_1, \ldots, x_m, y_1, \ldots, y_m, z_1, \ldots, z_m \in A$ such that $x_i = g_i$, $y_i = f_i$, and $z_i = h_i$ for $i = 1, \ldots, m$.

Thus $e = e^n = g_1f_1h_1 \cdots g_mf_mh_m = x_1y_1z_1 \cdots x_my_mz_m$ and $f = f_1 \cdots f_m = y_1 \cdots y_m$. Let $u = x_1y_1z_1 \cdots x_my_mz_m$ and let $v = y_1 \cdots y_m$. Clearly $\alpha(u^n) \supseteq \alpha(v)$ and u is n-full. Therefore $\sigma(q, u^nv^nu^n) = \sigma(q, u^n)$ for all $q \in Q$ so that $e = e^n = u^n = u^nv^nu^n = e^nfe^n = efe$.

Hence $eM_+e = e$ for all idempotents $e \in M$.

Consider the following algorithm, a modification of Algorithm 11, which transforms the unique minimal element x of a \equiv class into a regular expression which denotes $\{x\}_{\equiv}$.

Algorithm 28

for $m = \# \alpha(x), \ldots, 1$ do

for $C \subseteq \alpha(x)$ such that $\# C = m$ do

for each decomposition $x = z_1\cdots z_2$ such that y is $2n$-full, $\alpha(y) = C$, and $t_1(z_1), f_1(z_2) \in C$
do

let u be the shortest prefix of y such that u is n-full and $\alpha(u) = \alpha(y)$.

let w be the shortest suffix of y such that w is n-full and $\alpha(w) = \alpha(y)$.

Replace x by $z_1 u C^* w z_2$. Note that since x is minimal, $y = uw$.

Since the subsets C are considered in order of decreasing cardinality the largest possible subset is always inserted. For example, the factorization $x = ab(aac)(caab)b$ does not have to be considered because any new words this would introduce would have already been introduced when $C = \{a, b, c\}$. It follows from the correctness of Algorithm 11 that this algorithm is also correct.

Example Let $x = abaaaccaab$. This is the unique minimal element of $\{abaaaccaab\}_{1^G}$ which was determined in the example following Algorithm 11.

<table>
<thead>
<tr>
<th>subset</th>
<th>decomposition of x such that uw is 2-full</th>
<th>replace x by</th>
</tr>
</thead>
<tbody>
<tr>
<td>${a, b, c}$</td>
<td>1 $abaac$ $caab$ 1</td>
<td>$abaac(a, b, c)^*caab$</td>
</tr>
<tr>
<td>${a, b}$</td>
<td>ab a $c(a, b, c)^*caab$</td>
<td>$abaac(a, b, c)^*caab$</td>
</tr>
<tr>
<td>${a, c}$</td>
<td>$abaa\cdot ac(a, b, c)^* c$ a a b</td>
<td>$abaac(a, b, c)^*caab$</td>
</tr>
<tr>
<td>${b}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>${c}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Therefore the regular expression which denotes $\{x\}_{1^G}$ is $abaac(a, b, c)^* caa^* ab$.

Now in the algorithm $C \subseteq A$ so $C^* = \bigcap_{a \in A-C} \overline{AaA} \in B_1$. Thus $\{x\}_{1^G} \in (\{C^* | \emptyset \neq C \subseteq A \} \cup A)^*$ is a language in B_1M and hence any $\{x\}_{1^G}$ language is an element of $B_1M = B_2$.

However, the family of languages with G-trivial syntactic monoids is incomparable with B_1. Consider the language in B_1 denoted by the expression $(ab)^*$. The graph of its automaton
is illustrated in Figure 1.

![Diagram](image)

Figure 1

Let $f = ab$, $g = a$, $h = b$ and $k = 1$. Then $fghkf = ababab = ab = f$ since $\sigma(q_0, (ab)^3) = q_0 = \sigma(q_0, ab)$, $\sigma(q_1, (ab)^3) = q_2 = \sigma(q_1, ab)$, and $\sigma(q_2, (ab)^3) = q_2 = \sigma(q_2, ab)$. But $fghk = abaab \neq ab = f$ since $\sigma(q_0, abaab) = q_2 \neq q_0 = \sigma(q_0, ab)$. From Theorem 14 it follows that the syntactic monoid of this language is not G-trivial.

Since $e M_e = e$ implies $e M_e \cap M_e e = e$, every finite R-trivial monoid is also G-trivial. But the family of languages with R-trivial syntactic monoids contains languages which are not in B_1, hence the family of languages with G-trivial syntactic monoids also does.
4.4 Noncounting Languages

The family of noncounting languages is also important in the study of star-free languages. In [10], [20], [22], and [26] it is proved that every star-free language is noncounting and, moreover, that a regular language is noncounting only if it is star-free.

Definition 29 For \(n \geq 0 \) define \(\pi_n \) to be the smallest congruence such that \(u^n \equiv u^{n+1} \) for all \(u \in \mathcal{A} \). A language is noncounting if and only if it is a \(\pi \)-language for some \(n \geq 0 \).

Given some alphabet, \(\mathcal{A} \), let \(N_n \) denote the set of all \(\pi \)-languages over this alphabet. That is, \(N_n = \{ X \subseteq \mathcal{A}^* \mid X \text{ is a } \pi \text{ -language} \} \). The set of all noncounting languages is represented by \(N = \bigcup_{n \geq 0} N_n \). Clearly \(N_n \) and \(N \) are Boolean algebras. It is immediate from the definition that \(x \pi_n y \) implies \(x \pi y \) for all \(x, y \in \mathcal{A} \) and \(n \geq 0 \). Thus \(N_0 \subseteq N_1 \subseteq \cdots \). Each containment is proper; consider, for example, the languages \(\{ a^n \} \in N_{n+1} - N_n \) for \(n \geq 0 \).

Green and Rees [16] proved that \(\pi \) is a congruence of finite index for any alphabet. Thus every language in \(N_1 \) is regular and hence star-free. However in [5], Brzozowski, Culik, and Gabrielian showed that for an alphabet of cardinality greater than 1, \(N_2 \) contains languages which are not even recursively enumerable.

Here attention will be focused on the relationship between \(N_1 \) and the languages of \(G \)-trivial monoids.

Proposition 30 Let \(u, v \in \mathcal{A} \). If \(\alpha(u) \supseteq \alpha(v) \) then \(u \pi uvu \).

Proof: By induction on \(|v| \).

Assume the result is true for all \(v' \in \mathcal{A} \) such that \(|v'| < |v| \). If \(|v| = 0 \) then \(v = 1 \) so \(u \pi u^2 = uvu \). Otherwise \(v = v'a \) for some \(a \in \mathcal{A} \), \(v' \in \mathcal{A} \). Now \(a \in \alpha(v) \subseteq \alpha(u) \) so \(u = ras \) for some \(r, s \in \mathcal{A} \). Since \(\alpha(v) \subseteq \alpha(v) \subseteq \alpha(u) = \alpha(ras) \) and \(|v'| < |v| \), it follows by the induction hypothesis that \(aras \pi (aras)v'(aras) \). Thus \(u = ras \pi reras \pi rarsv'aras \).

74
\(ras\'aras = uvu. \)

Definition 31 Let \(x \in \mathbb{A}^* \) and suppose \(a \in A \) and \(u,v \in \mathbb{A} \) are such that \(x = uv \) and \(\alpha(u) \subseteq \alpha(ua) = \alpha(x) \). Then the initial mark of \(x \) is \(a_L(x) = a \) and the initial segment of \(x \) is \(f(x) = u \). Symmetrically, if \(x = uv \) and \(\alpha(v) \subseteq \alpha(av) = \alpha(x) \) then the terminal mark of \(x \) is \(a_R(x) = a \) and the terminal segment of \(x \) is \(t(x) = v \).

The initial segment of a word is just its longest prefix which does not contain every letter occurring in the word. The initial mark is the letter in the word whose first appearance occurs furthest to the right. Analogous remarks can be made concerning terminal segments and terminal marks.

The following characterization of \(\vdash \) from [6] provides a useful working definition.

Lemma 32 Let \(x,y \in \mathbb{A} \). Then \(x \vdash y \) if and only if \(a_L(x) = a_L(y) \), \(a_R(x) = a_R(y) \), \(f(x) = f(y) \), and \(t(x) = t(y) \).

Clearly \([1]_\vdash = 1\). From this lemma it follows that for \(x \in \mathbb{A}^* \), \([x]_\vdash = [f(x)]_{a_L(x) (\alpha(x))} \cap (\alpha(x))_{a_R(x) [t(x)]} \).

Lemma 33 Suppose \(n \geq 0 \), \(a_1, \ldots, a_n \in A \) and \(a_i \neq a_j \) for \(1 \leq i < j \leq n \). Then \(a_1 \cdots a_n \) is the unique element of minimal length in \([a_1 \cdots a_n]_\vdash \).

Proof: By induction on \(n \).

For \(n = 0 \) the result is immediate from the fact that \([1]_\vdash = 1\). Assume the result is true for \(n \) and suppose \(a_1, \ldots, a_n, a_{n+1} \in A \) are such that \(a_i \neq a_j \) for \(1 \leq i < j \leq n+1 \).

Now \([a_1 \cdots a_{n+1}]_\vdash = [a_1 \cdots a_n]_{a_{n+1}}(a_1, \ldots, a_{n+1})^* \cap [a_1, \ldots, a_{n+1}]^* a_1[a_2 \cdots a_{n+1}]_\vdash \). By the induction hypothesis the unique minimal element of \([a_1 \cdots a_n]_\vdash \) is \(a_1 \cdots a_n \). Since \(1 \) is the unique minimal element of \([a_1 \cdots a_n]^* \), \(a_1 \cdots a_n a_{n+1} \) is the unique minimal element of \([a_1 \cdots a_n]_{a_{n+1}}[a_1 \cdots a_{n+1}]^* \). Similarly,
$a_1 \cdots a_{n+1}$ is the unique minimal element of $[a_1 \cdots a_{n+1}]^* a_1[a_2 \cdots a_{n+1}]_1$ and hence is the unique minimal element of $[a_1 \cdots a_{n+1}]_1$. By induction the result is true for all $n \geq 0$.

Proposition 34 Let $a \in A$, $X \subseteq A^*$, and $Y, Z \subseteq (A-\{a\})^*$. Then

(a) $X a (Y \cap Z) = (X a Y) \cap (X a Z)$, and

(b) $(Y \cap Z) a X = (Y a X) \cap (Z a X)$.

Proof:

(a) It is easily verified that $X a (Y \cap Z) \subseteq (X a Y) \cap (X a Z)$. Now $w \in (X a Y) \cap (X a Z)$ implies $w = x_1 ay$ and $w = x_2 az$, where $x_1, x_2 \in X$, $y \in Y$, and $z \in Z$. If $|y| > |z|$ then $a \in \alpha(y)$; this contradicts the fact that $Y \subseteq (A-\{a\})^*$. Therefore $|y| \leq |z|$. Similarly, $|z| \leq |y|$. Consequently $|y| = |z|$ and $y = z$. Thus $w = x_1 ay \in X a (Y \cap Z)$ and $(X a Y) \cap (X a Z) \subseteq X a (Y \cap Z)$.

(b) This follows by left-right duality.

Proposition 35 Let $x \in A^*$. The language corresponding to the congruence class $[x]_1$ can be expressed as a finite intersection of languages X_j for j in some index set J, such that $\alpha(X_j) = \alpha(x)$ and $X_j \in B_1 M$ for all $j \in J$. That is, $[x]_1 = \bigcap_{j \in J} X_j$.

Proof: By induction on $|x|_1$.

If $|x|_1 = 0$ then $x = 1$ and $[x]_1 = \{1\} \in B_1$. Assume that the claim holds for all $w \in A^*$ with $|w|_1 \leq n$. Consider $x \in A^{n+1}$. Let $A_x = \alpha(x)$ to simplify notation.

By the remark following Lemma 32,

$$[x]_1 = [f(x)]_1 a_L(x) A_x^* \cap A_x a_R(x) [t(x)]_1.$$

Since $|f(x)|, |t(x)| < |x|_1$ it follows from the induction hypothesis that

$$[f(x)]_1 = \bigcap_{j \in J} U_j \text{ and } [t(x)]_1 = \bigcap_{k \in K} V_k$$

where $\alpha(U_j) = \alpha(f(x))$, $\alpha(V_k) = \alpha(t(x))$, and $U_j, V_k \in B_1 M$ for all $j \in J, k \in K$.

Using Proposition 34,
\[
[x] = \left(\bigcap_{j \in J} (U_j a_L(x) A_x^*) \right) \cap \left(\bigcap_{k \in K} (A_x^* a_R(x) V_k) \right).
\]

Clearly \(\alpha(U_j a_L(x) A_x^*) = \alpha(x) = \alpha(A_x^* a_R(x) V_k) \) for all \(j \in J, k \in K \). Also,

\[
A_x^* = \left\{ \begin{array}{ll}
\bigcap_{c \in A \alpha(x)} \{ B_0 MB \subseteq B_1 M \text{ if } \alpha(x) \subseteq A \\
\emptyset \subseteq B_0 \subseteq B_1 M \text{ if } \alpha(x) = A.
\end{array} \right.
\]

Hence \(U_j a_L(x) A_x^* A_x^* a_R(x) V_k \subseteq B_1 M \) for all \(j \in J, k \in K \). The result is therefore true for \(n+1 \).

Corollary 36 \(N_1 \subseteq B_1 MB = B_2 \).

Definition 37 Let \(n \geq 0, m \geq 1 \) and \(x, y \in A \). Then \(x \overset{(m)}{\rightarrow} y \) if and only if for every decomposition \(x = x_1 \cdots x_m \) there exists a decomposition \(y = y_1 \cdots y_m \) such that \(x_i \not\rightarrow y_j \) for \(i = 1, \ldots, m \) and vice versa. \(N_m^n \) denotes the set \(\{ X \subseteq A \mid X \text{ is a } \overset{(m)}{\rightarrow} \text{ language} \} \).

In [7] it is shown that \((N_m^n)MB = \{ X \subseteq A \mid X \text{ is a } \overset{(m)}{\rightarrow} \text{ language} \} \). This justifies the notation \(N_m^n \). Since \(\overset{(1)}{\rightarrow} \) is of finite index, \(\overset{(m)}{\rightarrow} \) is also of finite index for \(m \geq 1 \). Hence every \(\overset{(m)}{\rightarrow} \) language is star-free.

Proposition 38 For \(n \geq 1, N_1^n B \subseteq N_{2n-1} \).

Proof: Let \(x \in A \). If \(x = 1 \) then \(x^{2n-1} = x^n \), so assume \(|x| \geq 1 \).

Consider any decomposition of \(x^{2n} \) into \(n \) pieces \(x_1, \ldots, x_n \). Since \(|x_1| + \cdots + |x_n| = |x_1 \cdots x_n| = |x^{2n}| = 2n|x| \) there exists \(i, 1 \leq i \leq n \), such that \(|x_i| \geq 2|x| \). Let \(y = f_{2|x|}(x_i) \).

Then \(x_i = yz \) for some \(z \in A \). Now \(x^{2n} = (x_1 \cdots x_{i-1})y(zx_{i+1} \cdots x_n) \); thus there exist \(u, v \in A \) such that \(y = uv x \) and \(x = vu \). Let \(x_i' = uvz \) and \(x_j' = x_j \) for \(j = 1, \ldots, i-1, i+1, \ldots, n \).

Then \(x_1' \cdots x_n' = (x_1 \cdots x_{i-1})uvz(x_{i+1} \cdots x_n) = x^{2n-1} \) and, since \(x_i = uvxv = uvuvz \rightarrow uvz = x_i', x_j \not\rightarrow x_j' \) for \(j = 1, \ldots, n \).

Conversely, consider any decomposition \(x^{2n-1} = x_1' \cdots x_n' \). Since \(|x_1'| + \cdots + |x_n'| = |x_1' \cdots x_n'| = |x^{2n-1}| = (2n-1)|x| \geq n|x| \) there exists \(i, 1 \leq i \leq n \), such that \(|x_i'| \geq |x| \). As above, let \(y = f_{|x|}(x_i') \), let \(x_i' = yz \) where \(z \in A \), and let \(u, v \in A \) be such that \(y = uv \) and \(x = vu \).
Now, if \(x_i = uvvw \) and \(x_j = x'_j \) for \(j = 1, \ldots, i-1, i+1, \ldots, n \), then \(x_1 \cdots x_n = x^{2n} \) and \(x_j' = x_j \) for \(j = 1, \ldots, n \).

Thus \(x^{2n} \stackrel{(n)}{\cong} x^{2n-1} \) for all \(x \in A \). But \(\frac{x}{2n-1} \) is, by definition, the smallest congruence satisfying this property. Hence \(x \frac{x}{2n-1} y \) implies \(x \stackrel{(n)}{\cong} y \) for all \(x, y \in A \) and thus \(N_1^n \subseteq N_{2n-1} \). Since \(N_{2n-1} \) is a Boolean algebra \(N_1^n \cap B \subseteq N_{2n-1} \).

Proposition 39 For \(n \geq 1 \), \(N_1^n \nsubseteq N_{2n-2} \).

Proof: Let \(A = \{a_1, \ldots, a_n\} \), let \(x = (a_1 \cdots a_n)^{2n-2} \), and let \(y = (a_1 \cdots a_n)^{2n-1} \). Clearly \(x \frac{x}{2n-2} y \). Consider the decomposition \(y = y_1 \cdots y_n \) where \(y_1 = a_1 \cdots a_{n-1}a_n a_1 \cdots a_{n-1} \), \(y_n = a_2 \cdots a_n a_2 \cdots a_n \), and \(y_i = a_{n+2-i} \cdots a_n a_1 \cdots a_{n+2-i} \cdots a_n a_1 \cdots a_n \) for \(i = 2, \ldots, n-1 \). From the remark following Lemma 32 it is clear that \(y_i \) is the unique minimal element of \([y_i]_{2n-1} \). Since \(|x| < |y| \) there do not exist \(x_1, \ldots, x_n \in A \) such that \(x = x_1 \cdots x_n \) and \(x_i
subseteq y_i \) for \(i = 1, \ldots, n \). Therefore \(x \frac{x}{2n} y \) and \(N_1^n \nsubseteq N_{2n-2} \).

It is possible to relate noncounting languages with the languages of \(G \)-trivial monoids.

Proposition 40 A monoid \(M \) is idempotent if and only if \(fM_f f = f \) for all \(f \in M \).

Proof: Clearly, if \(fM_f f = f \) for all \(f \in M \) then \(M \) is idempotent since for any \(f \in M, 1 \in M_f \) and thus \(f^2 = f1f = f \).

Now suppose \(M \) is idempotent, \(f \in M \), and \(g \in M_f \). Then \(g \in P_f^\# \) for some \(n \geq 0 \). The proof proceeds by induction on \(n \). The case \(n = 0 \) is trivial since \(f = f^2 = f1f \) in an idempotent monoid.

Let \(g \in P_f \). Then \(f = h g k \) for some \(h, k \in M \) so that

\[
\begin{align*}
f &= h g k \\
&= h (g k) \\
&= h (g k) (g k) = (h g k) g k \\
&= (f g k) k = (f g) k \quad \text{(note that } f = f g k) \\
&= (f g) (f g) k = (f g) (f g k)
\end{align*}
\]
\[= fg(f) = fg. \]

Assume now that \(f = fgf \) and \(f = fhf. \) Then

\[
\begin{align*}
 f &= fgf = (f)gf \\
 &= (fhf)gf = f(hfg)f \\
 &= f(hfg)(hfg)f = (fhf)gh(fgf) \\
 &= (f)gh(f) = fgfh.
\end{align*}
\]

It now follows that \(f = fgf \) for all \(g \in M_f. \)

Clearly a language is in \(N_1 \) if and only if its syntactic monoid is idempotent. From the above proposition and Theorem 14 it follows that every idempotent monoid is \(G \)-trivial. Thus every \(\tilde{_} \) language has a \(G \)-trivial syntactic monoid.

Note that idempotent monoids are not necessarily \(R \)-trivial or \(L \)-trivial. Consider \(M \), the free idempotent monoid on the two generators \(\{a, b\} \). It is the transformation monoid of the automaton depicted in Figure 2.

![Figure 2](image)

Here \(abM = \{ab, aba\} = abaM \) and \(Mab = \{ab, bab\} = Mbab \), but \(aba \neq ab \neq bab. \)

Thus \(M \) is neither \(R \)-trivial nor \(L \)-trivial.
By Lemma 4(c) \(u^n \equiv^\sigma G u^{n+1} \) for all \(u \in A \). But \(\sigma \) is the smallest congruence such that \(u^n \equiv^\sigma G u^{n+1} \) for all \(u \in A \); thus \(x \equiv^\sigma y \) implies \(x \equiv^\sigma_0 y \) for all \(x, y \in A \).

In the special case when \(n = 1 \) the following interesting relationship holds. It is a direct consequence of the above results and Proposition 30.

Proposition 41 Let \(x, y \in A \). Then \(x \equiv^\sigma y \) if and only if \(x \equiv^\sigma_0 y \).

The congruences \(\equiv^{(n)} \), for \(n \geq 2 \), do not fare as well.

Proposition 42 There does not exist an \(n \geq 1 \) such that \(x \equiv^\sigma_0 y \) implies \(x \equiv^{(n)} y \) for all \(x, y \in A \).

Proof: Let \(x = (ab)^n b (ab)^n \) and let \(y = (ab)^{2n} \). Since \(\alpha((ab)^n) \geq \alpha(b) \) and \((ab)^n \) is \(n \)-full, it follows that \(x \equiv^\sigma_0 y \).

Now consider the decomposition \(x = x_1 x_2 \) where \(x_1 = (ab)^n \) and \(x_2 = b (ab)^n \). Suppose \(y = y_1 y_2 \) where \(x_1 \equiv^\sigma y_1 \). Then \(y_1 = (ab)^i \) for some \(i, 1 \leq i \leq 2n \). However this implies \(y_2 = (ab)^{2n-i} \not\equiv x_2 \). Therefore there does not exist a decomposition \(y = y_1 y_2 \) such that \(x_1 \equiv^\sigma y_1 \) and \(x_2 \equiv^\sigma y_2 \). Thus \(x \not\equiv^{(n)} y \).

Corollary 43 For \(n \geq 2 \), \(N_1^n \) contains languages whose syntactic monoids are not \(G \)-trivial.
4.5 Some Negative Results

A number of other congruences, also generalizations of the congruences used to characterize the languages of R-trivial and L-trivial monoids, were initially conjectured to be characterizations of the family of G-trivial monoids.

In this section properties of these congruences and the relationships between them and the congruences of Section 4.1 are investigated.

Definition 44 Let $x,y \in A$ and $n \geq 0$. Then $x \equiv_0^n y$ if and only if $x \equiv_R^n y$ and $x \equiv_L^n y$.

Definition 45 Let $x,y \in A$ and $n \geq 0$. Then $x \equiv^{(2)}_n y$ if and only if for every decomposition $x = x'x''$ there exists a decomposition $y = y'y''$ such that $x' \equiv_R^n y'$ and $x'' \equiv_L^n y''$ and vice versa.

Definition 46 Let $x,y \in A$ and $n \geq 0$. Then $x \equiv_G^n y$ if and only if there exist $u,v,w \in A$ such that $x = uw, y = uvw, u \equiv_R^n uv, \text{ and } w \equiv_L^n vw$. \equiv_G^n is the symmetric transitive closure of \equiv_G^n.

Definition 47 Let $x,y \in A$. Then $x \equiv_0 y$ and $x \equiv_{+1} y$ if and only if for each decomposition $x = x'ax''$ with $a \in A$ there exists a decomposition $y = y'ay''$ such that $x' \equiv_R^n y'$ and $x'' \equiv_L^n y''$ and vice versa.

Definition 48 Let $x,y \in A$. Then $x \equiv_R y$ and $x \equiv_{+1} y$ if and only if for each decomposition $x = x'ax''$ with $a \in A$ there exists a decomposition $y = y'ay''$ such that $x' \equiv_R y'$ and $x'' \equiv_R y''$ and vice versa.

This congruence and the congruence \equiv_n defined by Definition 2.48 are both special cases of a more general congruence which is discussed in [32].

Proposition 49 Let $u \in A$ and let $n \geq 0$. Then

(a) $u^n \equiv_0^n u^{n+1}$,

(b) $u^{2n} \equiv^{(2)} u^{2n+1}$,
(c) \(u^{2n} \equiv_{n-1} u^{2n+1} \),

(d) \(u^{2n-1} \equiv_n u^{2n} \), and

(e) \(u^{2n-1} \equiv_{n-1} u^{2n} \).

Proof:

(a), (b), and (c) follow immediately from Proposition 2.8(a) and its dual.

(d) If \(n = 0 \) the result is trivial so assume \(n > 0 \). Suppose \(x'ax'' \) is a decomposition of \(u^{2n-1} \).

Since \(a \in \alpha(u^{2n-1}) = \alpha(u) \), \(|ul| \geq 1 \). Therefore either \(u^{n-1} \) is a prefix of \(x' \) or \(u^n \) is a suffix of \(x'' \). Since these two cases are symmetrical, assume, without loss of generality, that the former is true.

Let \(y' = ux' \) and \(y'' = x'' \) so that \(y'ay'' = ux'ax'' = uu^{2n-1} = u^{2n} \). Since \(u^n \) is a prefix of \(x' \) and \(u^{2n-1} \equiv_{n-1} u^n \) it follows that \(x' \equiv_{n-1} ux' = y' \).

Conversely, for any decomposition \(u^{2n} = y'ay'' \) there exists a decomposition \(u^{2n-1} = x'ax'' \) such that \(x' \equiv_{n-1} y' \) and \(x'' \equiv_{n-1} y'' \). Thus \(u^{2n-1} \equiv_n u^{2n} \).

(e) If \(u = 1 \) then \(u^{2n-1} = 1 \equiv_{n-1} 1 = u^{2n} \). Therefore suppose \(|ul| \geq 1 \). For \(n = 0 \), the result is clearly true, so assume it is true for \(n-1 \).

Let \(x'ax'' \) be a decomposition of \(u^{2n-1} \). Then either \(u^{2n-1} \) is a prefix of \(x' \) or \(u^{2n-1-1} \) is a suffix of \(x'' \). In the first case let \(y' = ux' \), \(y'' = x'' \), and \(x' = u^{2n-1-1}z \) where \(z \in A \).

Then \(y'ay'' = ux'ax'' = uu^{2n-1} = u^{2n} \). Clearly \(x'' \equiv_{n-1} y'' \) and, by the induction hypothesis, \(x' = u^{2n-1}z \equiv_{n-1} u^{2n-1}z = ux' = y' \). The second case follows by symmetry.

Let \(y'ay'' \) be a decomposition of \(u^{2n} \). If \(u^{2n-1} \) is not a prefix of \(y' \) then \(y'a \) is a prefix of \(u^{2n-1} \); hence \(u^{2n-1} \) is a suffix of \(y'' \). These two cases are symmetric, thus it suffices to consider the first. Let \(y' = u^{2n-1}z \) for some \(z \in A \), let \(x' = u^{2n-1-1}z \), and let \(x'' = y'' \). As above, \(x'ax'' = u^{2n-1}z \), \(x' \equiv_{n-1} y' \), and \(x'' \equiv_{n-1} y'' \).

Hence \(u^{2n-1} \equiv_{n-1} u^{2n} \).

In all five cases no stronger result can be achieved. To see this consider the example where \(u \in A \).
Lemma 50 Let \(u, v \in A \) and \(n > 0 \). Then \(u \nmid n \sum u v u \) if and only if \(u \) is \(n \)-full and \(\alpha(u) \supseteq \alpha(v) \).

Proof: Suppose \(u \nmid n \sum u v u \). Then \(u \nmid n \frac{1}{n} u(vu) \) so by Lemma 2.11 there exist \(u_1, \ldots, u_n \in A \) such that \(u = u_1 \cdots u_n \) and \(\alpha(u_1) \supseteq \cdots \supseteq \alpha(u_n) \supseteq \alpha(vu) \). But \(\alpha(u) \supseteq \alpha(u_1) \) and \(\alpha(vu) \supseteq \alpha(u) \). Therefore \(\alpha(u) = \alpha(u_1) = \cdots = \alpha(u_n) = \alpha(uv) \), which implies that \(u \) is \(n \)-full.

Also \(\alpha(u) = \alpha(uv) \) so that \(\alpha(u) \supseteq \alpha(v) \).

Conversely, if \(u \) is \(n \)-full and \(\alpha(u) \supseteq \alpha(v) \) then, since \(\alpha(vu) \), \(\alpha(uv) \subseteq \alpha(u) \), \(u(vu) \nmid n \frac{1}{n} u(uv) \), that is \(u \nmid n \sum u v u \).

Corollary 51 Let \(x, y \in A \) and \(n \geq 0 \). Then \(x \nmid n \sum y \) implies \(x \nmid n \sum y \).

Proof: Since \(x \nmid n \sum y \) for all \(x, y \in A \) the result is true for \(n = 0 \). For \(n > 0 \) the result follows from Lemma 50, since \(\nmid n \sum \) is the smallest congruence satisfying \(u \nmid n \sum u v u \) for all \(u, v \in A \) such that \(u \) is \(n \)-full and \(\alpha(u) \supseteq \alpha(v) \).

Lemma 52 Let \(u, v, u', v' \in A \) and let \(n \geq 0 \). If \(uv u \nmid n \sum u' v' u' \) and \(u \nmid u' \) then \(u \nmid u' \).

Proof: If \(uv u \nmid n \sum u' v' u' \) then \(u(vu) \nmid n \sum u'(v' u') \). Since \(u \nmid u' \) it follows from Proposition 2.8(c) that \(u \nmid n \sum u' \). Similarly \(u \nmid n \sum u' \). Thus \(u \nmid n \sum u' \).

Proposition 53 Let \(x, y \in A \) and \(n \geq 0 \). Then \(x \nmid n^{(2)} y \) implies \(x \nmid n \sum y \).

Proof: Suppose \(x \nmid n^{(2)} y \). Let \(u \) be a prefix of \(x \); say \(x = uv \). Then there exists \(u', v' \in A \) such that \(y' = u' v' \), \(u \nmid u' \) and \(v \nmid v' \). Therefore \(x \nmid n \sum y \). Similarly \(x \nmid n \sum y \), hence \(x \nmid n \sum y \).

Proposition 54 Let \(x, y \in A \) and \(n \geq 0 \). If \(x \) is \(2n \)-full then \(x \nmid n \sum y \) implies \(x \nmid n^{(2)} y \).

Proof: If \(x \) is \(2n \)-full then, since \(x \nmid n \sum y \) implies \(x \nmid y \), it follows that \(y \) is \(2n \)-full. Since \(x \) is \(2n \)-full, there exist \(x_1, \ldots, x_{2n} \in A \) such that \(x = x_1 \cdots x_{2n} \) and \(\alpha(x) = \alpha(x) \). Similarly there exist \(y_1, \ldots, y_{2n} \in A \) such that \(y = y_1 \cdots y_{2n} \) and \(\alpha(y) = \alpha(y) \).

Let \(x = u_1 u_2 \) be a decomposition of \(x \). Then either
1. \(u_1 = x_1 \cdots x_n z \) where \(u_2z = x_{n+1} \cdots x_{2n} \)

or 2. \(u_2 = x_{n+1} \cdots x_{2n} \) where \(u_1z = x_1 \cdots x_n \).

1. Since \(x_{2n} \vdash y \), \(x \vdash y \) and hence \(x \vdash y \). Since \(u_2 = x_{n+1} \cdots x_{2n} \)

\[(x_1 \cdots x_n)(x_{n+1} \cdots x_{2n}) = x \quad \text{and} \quad y_{n+1} \cdots y_{2n} \vdash (y_{n+1} \cdots y_n) = y, \quad y_{n+1} \cdots y_{2n}. \]

Therefore there exists a suffix \(v_2 \) of \(y_{n+1} \cdots y_{2n} \) such that \(v_2 \vdash u_2 \). Let \(v_1 \) be such that \(y = v_1 v_2 \). Since \(x_1 \cdots x_n \) is a prefix of \(u_1 \), \(y_1 \cdots y_n \) is a prefix of \(v_1 \), \(x_1 \cdots x_n \)

and \(y_1 \cdots y_n \) are \(n \)-full, and \(\alpha(x_1 \cdots x_n) = \alpha(x) = \alpha(y) = \alpha(y_1 \cdots y_n) \), it follows that

\[u_1 \vdash x \vdash y \vdash v_1. \]

2. is symmetrical.

Similarly for any decomposition \(y = v_1 v_2 \) there exists a decomposition \(x = u_1 u_2 \) such that \(u_1 \vdash v_1 \) and \(u_2 \vdash v_2 \). Thus \(x \vdash y \).

Proposition 55 Let \(x, y \in \mathcal{A} \) and \(n \geqslant 0 \). Then \(x \vdash y \) if and only if for every decomposition \(x = x'x'' \) there exists a decomposition \(y = y'y'' \) such that \(x' \vdash y' \) and \(x'' \vdash y'' \) and vice versa.

Proof:

(\(\Rightarrow \)) Suppose \(x \vdash y \). From Proposition 53 \(x \vdash y \), therefore \(x \vdash y \) and \(x \vdash y \). Let \(x = x'x'' \)

be any decomposition of \(x \). Then there exist \(y', y'' \in \mathcal{A} \) such that \(y = y'y'', \quad x' \vdash y' \), and \(x'' \vdash y'' \). But by Proposition 2.8(c) and the corresponding result for \(\vdash \) it follows that \(x' \vdash y' \) and \(x'' \vdash y'' \). Similarly, for any decomposition \(y = y'y'' \) there exist \(x', x'' \in \mathcal{A} \)

such that \(x = x'x'' \), \(x' \vdash y' \), and \(x'' \vdash y'' \).

(\(\Leftarrow \)) The result follows directly from Proposition 2.8(a) and its dual.

Proposition 56 Let \(x, y \in \mathcal{A} \) and \(n \geqslant 0 \). Then \(x \vdash y \) if and only if \(x \vdash y \).

Proof: It is sufficient to show that \(x \vdash y \) if and only if \(x \vdash y \). Assume \(x \vdash y \). Then there exist \(u, v, w \in \mathcal{A} \) such that \(x = uvw \), \(y = uv \), \(u \vdash uv \), \(u \vdash vw \), \(u \vdash uvw \), and \(w \vdash uvw \).

Let \(x = x'x'' \) be a decomposition of \(x \). Then either \(x' \) is a prefix of \(u \) or \(u \) is a prefix of \(x' \). In the first case \(u = x'z \) and \(x'' = zw \) for some \(z \in \mathcal{A} \). Let \(y' = x' \) and \(y'' = zv \). Then
$x' \triangleright_{\sigma}^{\pi} y'$ and, since $w \triangleright_{\pi}^{\sigma} v w$, $x'' = z w \triangleright_{\pi}^{\sigma} z v w = y''$. If u is a prefix of x' then x'' is a suffix of w and the result follows from symmetry with the first case.

Let $y = y'y''$ be a decomposition of y. There are three cases to consider. If y' is a prefix of u (say $u = y' z$ where $z \in A$) then choosing $x' = y'$ and $x'' = z w$ gives the result as above. Likewise, if y'' is a suffix of w. The only other case is when $y' = u v_1$ and $y'' = v_2 w$ where $v = v_1 v_2$. Let $x' = u$ and $x'' = w$. Since $u \triangleright_{\pi}^{\sigma} u v$ and v_1 is a prefix of u, $\mu_n(u) \subseteq \mu_n(u v_1) \subseteq \mu_n(u v) = \mu_n(u)$ so $u \triangleright_{\pi}^{\sigma} u v_1$, and thus by Proposition 2.8(c), $x' = u \triangleright_{\pi}^{\sigma} u v_1 = y'$. Similarly, $x'' = w \triangleright_{\pi}^{\sigma} v_2 w = y''$.

Therefore $x \equiv_{\pi}^{\sigma} y$.

Proposition 57 Let $x, y \in A$ and $n \geq 1$. Then $x \equiv_{\pi}^{\sigma} y$ implies $x \equiv_{\pi}^{\sigma} y$.

Proof: It is sufficient to show that $x \equiv_{\pi}^{\sigma} y$ implies $x \equiv_{\pi}^{\sigma} y$. Suppose $x \equiv_{\pi}^{\sigma} y$. Then there exist $r, s, u, v, w \in A$ such that $x = r u w s$, $y = r u v w s$, u and w are n-full, and $\alpha(u) = \alpha(w) \supseteq \alpha(v)$. Since u is n-full and $\alpha(u) \supseteq \alpha(v)$, $u \triangleright_{\pi}^{\sigma} u v$ and by Proposition 2.8(b), $u \triangleright_{\pi}^{\sigma} u v$. Thus $r u \triangleright_{\pi}^{\sigma} r u v$. Likewise $w s \triangleright_{\pi}^{\sigma} v w s$. Hence $x = (r u) (w s) \equiv_{\pi}^{\sigma} (r u) (v w) = y$.

Proposition 58 Let $x, y \in A$ and $n \geq 0$. Then $x \equiv_{\pi}^{\sigma} y$ implies $x \equiv_{\pi}^{\sigma} y$.

Proof: Suppose $u, v, w \in A$ are such that u and w are $(n+1)$-full and $\alpha(u) = \alpha(w) \supseteq \alpha(v)$. By the remark following Definition 2.6, there exist $u_1, \ldots, u_{n+1} \in A$ such that $u = u_1 \cdot \ldots \cdot u_{n+1}$ and $\alpha(u_1) = \ldots = \alpha(u_{n+1})$.

Let $x' a x''$ be a decomposition of $u w$. If $x' a$ is a prefix of u then $u = x' a z$ and $x'' = z w$ for some $z \in A$. Let $y' = x'$ and $y'' = z v w$. Then $y' a y'' = x' a z v w = u v w$, and since $\alpha(v) \cup \alpha(z) \subseteq \alpha(u) = \alpha(w)$ and w is n-full, $x'' = z w \triangleright_{\pi}^{\sigma} w \triangleright_{\pi}^{\sigma} z v w = y''$. Similarly, if $a x''$ is a suffix of w then there exist $y', y'' \in A$ such that $y' a y'' = u v w, x' \triangleright_{\pi}^{\sigma} y'$, and $x'' \triangleright_{\pi}^{\sigma} y''$.

Now let $y' a y''$ be a decomposition of $u v w$. If $y' a$ is a prefix of u then $u = y' a z$ and $y'' = z v w$ for some $z \in A$. Let $x' = y'$ and $x'' = z w$. As above $x' a x'' = u w, x' \triangleright_{\pi}^{\sigma} y'$, and $x'' \triangleright_{\pi}^{\sigma} y''$. If y'' is a suffix of w then by symmetry it follows that there exist $x', x'' \in A$ such that
\[x'ax'' = uw, \ x' \sim y', \text{ and } x'' \sim y''. \]

The remaining case is when \(u \) is a prefix of \(y' \) and \(w \) is a suffix of \(y'' \). Then there exist \(v_1, v_2 \in \mathcal{A} \) such that \(v = v_1av_2, \ y' = uv_1, \) and \(y'' = v_2w. \) Since \(a \in \alpha(v) \subseteq \alpha(u_{n+1}), \ u_{n+1} = ras \) for some \(r, s \in \mathcal{A}. \) Let \(x' = u_1 \cdots u_nr \) and \(x'' = sw \) so that \(x'ax'' = u_1 \cdots u_nrasw = u_1 \cdots u_nu_{n+1}w = uw. \) Now \(u_1 \cdots u_n \) is \(n \)-full and \(\alpha(u_n) \supseteq \alpha(u_{n+1}v_1) \supseteq \alpha(r) \) so that \(x' = u_1 \cdots u_nr \sim u_1 \cdots u_n \sim u_1 \cdots u_nu_{n+1}v_1 = uv_1 = y'. \) Also, \(w \) is \(n \)-full and \(\alpha(w) \supseteq \alpha(s) \cup \alpha(v_2); \) hence \(x'' = sw \sim w \sim v_2w = y'. \)

Therefore \(uw \sim uvw. \) But \(\frac{\alpha}{n+1} \) is the smallest congruence satisfying \(uvw \sim uvw \) for all \(u, v, w \in \mathcal{A} \) such that \(u \) and \(w \) are \((n+1)\)-full and \(\alpha(u) = \alpha(w) \supseteq \alpha(y). \) Hence \(x \sim y \) for all \(x, y \in \mathcal{A}. \)

Proposition 59 Let \(x, y \in \mathcal{A} \) and \(n \geq 0. \) Then \(x \sim_{n+1} y \) implies \(x \sim^{(2)}_n y \).

Proof: By induction on \(n. \)

Since \(x \sim^{(2)}_0 y \) for all \(x, y \in \mathcal{A} \) the result is true for \(n = 0. \) Suppose \(n \geq 0 \) and \(x \sim_{n+1} y. \) If \(x = 1 \) then \(y = 1 \) so there is nothing to prove. Therefore assume \(x \neq 1. \)

Let \(x = x_1x_2 \) be a decomposition of \(x. \) Since \(x \neq 1 \) either \(x_1 \neq 1 \) or \(x_2 \neq 1. \) Without loss of generality, assume \(x_1 \neq 1. \) Then \(x_1 = x_0a \) for some \(a \in \mathcal{A}, \ x_0 \in \mathcal{A}. \) But \(x \sim_{n+1} y \); therefore there exists a decomposition \(y = y_0ay_2 \) such that \(y_0 \sim x_0 \) and \(y_2 \sim x_2. \) Let \(y_1 = y_0a. \) Since \(\sim \) is a congruence \(y_1 = y_0a \sim x_0a = x_1, \) so that \(y = y_1y_2 \) is the required decomposition of \(y. \)

Similarly, for any decomposition \(y = y_1y_2 \) of \(y \) there exists a decomposition \(x = x_1x_2 \) of \(x \) such that \(x_1 \sim y_1 \) and \(x_2 \sim y_2. \) Hence \(x \sim^{(2)}_n y. \)

Proposition 60 Let \(x, y \in \mathcal{A} \) and \(n \geq 0. \) Then \(x \sim_n y \) implies \(x \sim_{n+1} y. \)

Proof: By induction on \(n. \)

The result is clearly true for \(n = 0 \) since \(x \sim y \) for all \(x, y \in \mathcal{A}. \) Assume the result holds for \(n, \) and suppose \(x \sim_{n+1} y. \)
Let $u \in \mu_{n+1}(x)$. If $u = 1$ then $u \in \mu_{n+1}(y)$. Otherwise $u = av$ for some $a \in A$, $v \in \mathcal{A}$. Since $u \in \mu_{n+1}(x)$, $x = x'ax''$ for some $x',x'' \in \mathcal{A}$ such that $v \in (\mu_{n}(x'))^\ast$. But $x \not\leq_{n+1} y$ so there exist $y',y'' \in \mathcal{A}$ such that $y = y'ay''$, $x' \not\leq_{n} y'$, and $x'' \not\leq_{n} y''$. By the induction hypothesis $x'' \not\leq_{n-1} y''$, therefore $v \in (\mu_{n}(y''))^\ast$. Thus $u = av \in \mu_{n}(y'ay'') = \mu_{n+1}(y)$. Hence $\mu_{n+1}(x) \not\leq_{n+1} \mu_{n+1}(y)$. Similarly, $\mu_{n+1}(y) \not\leq_{n+1} \mu_{n+1}(x)$, so that $x \not\leq_{n+1} y$.

Corollary 61 Let $x,y \in \mathcal{A}$ and $n \geq 0$. Then $x \not\leq_{n} y$ implies $x \not\leq_{n} y$.

Clearly $x \not\leq_{1} y$ if and only if $x \not\leq_{1} y$ if and only if $x \not\leq_{1} y$. From Definitions 47 and 48 it then follows that $x \not\leq_{n} y$ if and only if $x \not\leq_{n} y$.

Proposition 62 There does not exist an $n \geq 1$ such that $x \not\leq_{n} y$ implies $x \not\leq_{n} y$ for all $x,y \in \mathcal{A}$.

Proof: Let $x = (ab)^n$ and $y = (ab)^na(ab)^n$. By Proposition 4(d), $x \not\leq_{n} y$.

Now consider the decomposition $y = y'ay''$ of y where $y' = y'' = (ab)^n$. The decompositions of x of the form $x = x'ax'$ are

$$x' = (ab)^{n-1-i} \text{ and } x'' = b(ab)^i$$

where $0 \leq i \leq n-1$. But $x'' = b(ab)^i \not\leq_{n} (ab)^n = y''$ for any i, since there does not exist a decomposition $v'bv''$ of y'' such that $1 \not\leq_{n} v'$. Therefore $x \not\leq_{n} y$.

Proposition 63 There does not exist an $n \geq 0$ such that $x \not\leq_{n} y$ implies $x \not\leq_{n} y$ for all $x,y \in \mathcal{A}$.

Proof: Without loss of generality, assume $n \geq 4$, since $x \not\leq_{n} y$ implies $x \not\leq_{n} y$ for all i and j such that $i \geq j \geq 0$. Let $x = (ca)^n(ab)^n$ and $y = (ca)^n a(ab)^n$. The decompositions of x and y of the form udv where $d \in A$ are summarized in the following table. The value of i ranges from 0 to $n-1$.

<table>
<thead>
<tr>
<th>decompositions of x</th>
<th>decompositions of y</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>d</td>
</tr>
<tr>
<td>u</td>
<td>d</td>
</tr>
<tr>
<td>$(ca)^i$</td>
<td>c</td>
</tr>
</tbody>
</table>
Since \((ca)^n\) and \((ab)^n\) are \(n\)-full it follows that \((ca)^n \overset{\pi}{\sim} (ca)^n a\) and \((ab)^n \overset{\pi}{\sim} a(ab)^n\). Hence for every decomposition \(x = x'dx''\) there exists a decomposition \(y = y'dy''\) such that \(x' \overset{\pi}{\sim} y'\) and \(x'' \overset{\pi}{\sim} y''\) and vice versa. Thus \(x \overset{\pi}{\sim} y\) and so \(x \overset{\pi}{\sim} y\).

Now \((ca)^4 a(ab)^4\) is the unique minimal element of its \(\mathbb{F}_6\) class and hence \((ca)^4 a(ab)^4 \overset{\pi}{\sim} (ca)^4 (ba)^4\). But \((ca)^4(ab)^4 = (ca)^2(ab)^2(ab)^4 \overset{\mathbb{F}_6}{\sim} (ca)^2(ab)^4 = (ca)^2(ab)^2(ab)^4 \overset{\mathbb{F}_6}{\sim} (ca)^2(ab)^2(ab)^4\). Therefore \(x = (ca)^4 a(ab)^4 \overset{\pi}{\sim} (ca)^4 a(ab)^4 = y\).

Proposition 64 There does not exist an \(n \geq 0\) such that \(x \overset{\pi}{\sim} y\) implies \(x \overset{\pi}{\sim} y\) for all \(x,y \in \mathcal{L}\).

Proof: Let \(x = (ac)^n (ba)^n\) and \(y = (ac)^n a(ab)^n\). Since \((ac)^n \overset{\pi}{\sim} (ac)^n a\) and \((ba)^n \overset{\pi}{\sim} a(ba)^n\), \(x \overset{\pi}{\sim} y\).

Consider the decomposition \(y = y_1 ay_2\) of \(y\) where \(y_1 = (ac)^n\) and \(y_2 = (ba)^n\). The decompositions of \(x\) of the form \(x = x_1 ax_2\) are:

\[x_1 = (ac)^i\] and \(x_2 = c(ac)^{n-1-i} (ba)^n\)

and \(x_1 = (ac)^n (ba)^{n-1-i} b\) and \(x_2 = (ba)^i\)

where \(0 \leq i \leq n-1\).

In the first case \(\alpha(x_2) = \{a,b,c\} \not= \{a,b\} = \alpha(y_2)\) so that \(x_2 \not\sim y_2\), and in the second case \(\alpha(x_1) = \{a,b,c\} \not= \{a,c\} = \alpha(y_1)\) so that \(x_1 \not\sim y_1\).

Hence there does not exist a decomposition \(x = x_1 ax_2\) such that \(x_1 \not\sim y_1\) and \(x_2 \not\sim y_2\). Thus \(x \not\sim y\).

The relationships proved in this section between the various congruences can be conveniently represented in the following diagram. A solid line from one congruence symbol to another indicates that the family of languages generated by the first set of congruences contains the family of languages characterized by the second set of congruences. A line with an \(\times\) through it indicates that such a containment was shown not to hold. By transitivity, other relationships not explicitly drawn can be deduced.
Figure 3
CHAPTER 5 DEFINITE AND RELATED LANGUAGES

The families of finite J-trivial, R-trivial, L-trivial, and G-trivial monoids can all be characterized by a condition involving the monoid and its idempotents. Specifically, M is

- **J-trivial** if and only if $e^3 \cap M_e = e$ for all idempotents $e \in M$
- **R-trivial** if and only if $e^3 = e$ for all idempotents $e \in M$
- **L-trivial** if and only if $M_e = e$ for all idempotents $e \in M$
- **G-trivial** if and only if $e^3 \cap M_e = e$ for all idempotents $e \in M$

By replacing M_e by S, four other well known families are obtained. The first, finite semigroups in which $eS \cup Se = e$, characterize the set of finite and cofinite languages. Finite semigroups which satisfy $Se = e$, $eS = e$, and $eS \cap Se = e$ for all idempotents $e \in S$ are respectively definite [18], reverse definite [2], and generalized definite [13].

The following four theorems summarize some of their properties. Proofs of these results can be found in [8], [12], [23], [24], [30], and [34]. In all cases $X \subseteq A^*$ is a regular language, S is its syntactic semigroup, and $A = \langle A, Q, q_0, F, \sigma \rangle$ is the reduced automaton recognizing X. $W = \{[x] | x \in A\}$ is the family of languages containing exactly one word. F and C represent the families of finite and cofinite languages respectively.

Theorem 1 (Finite/Cofinite Languages) The following are equivalent:

X1. X is a $\hat{\cdot}$ language for some $n \geq 0$, where $x \hat{\cdot} y$ if and only if $|x|, |y| \geq n$ or $x = y$

and $|x| < n$.

E1. $X \in (W \cup A)B$

E2. $X \in F \cup C$

S1. For all idempotents $e \in S$, $eS \cup Se = e$. (Every idempotent is a zero.)

A1. There exists an $n > 0$ such that for all $x \in A^n$, $y \in A$, and $q \in Q$, $\sigma(q, xy) = \sigma(q, x)$

$= \sigma(q, xy)$. 90
Theorem 2 (Reverse Definite Languages) The following are equivalent:

X1. X is a \mathcal{L}_n language for some $n \geq 0$ where $x \mathcal{L}_n y$ if and only if $f_n(x) = f_n(y)$.

E1. $X \in (W \cup W\mathcal{A})B$

E2. $X \in (F^2 \cup FC \cup C^2)B$

S1. For all idempotents $e \in S$, $eS = e$. (Every idempotent is a left zero.)

A1. There exists $n > 0$ such that for all $x \in A^n$, $y \in A^n$, and $q \in Q$, $\sigma(q,xy) = \sigma(q,x)$.

Theorem 3 (Definite Languages) The following are equivalent:

X1. X is a \mathcal{L}_n language for some $n \geq 0$ where $x \mathcal{L}_n y$ if and only if $t_n(x) = t_n(y)$.

E1. $X \in (W \cup A\mathcal{W})B$.

E2. $X \in (F^2 \cup CF \cup C^2)B$.

S1. For all idempotents $e \in S$, $Se = e$. (Every idempotent is a right zero.)

A1. There exists $n > 0$ such that for all $x \in A^n$, $y \in A^n$, and $q \in Q$, $\sigma(q,x) = \sigma(q,xy)$.

A2. There exists $n > 0$ such that for all $x \in A^n$, $p,q \in Q$, $\sigma(q,x) = \sigma(p,x)$.

Theorem 4 (Generalized Definite Languages) The following are equivalent:

X1. X is a \mathcal{L}_n language for some $n \geq 0$ where $x \mathcal{L}_n y$ if and only if $f_n(x) = f_n(y)$ and $t_n(x) = t_n(y)$.

E1. $X \in (W \cup A)^2B = (W \cup WA \cup A\mathcal{W})B$.

E2. $X \in (F \cup C)^2B$.

S1. For all idempotents $e \in S$, $eS \cap Se = eS = e$. (Every idempotent is a middle zero).

A1. There exists $n \geq 0$ such that for all $x \in A^n$, $y \in A^n$, and $q \in Q$, $\sigma(q,xyx) = \sigma(q,x)$.

In J-trivial monoids every idempotent is a local zero over its alphabet. R-trivial, L-trivial, and G-trivial monoids are such that every idempotent is a local left, local right, and local middle zero respectively. The congruences have this local nature too. Only letters from the alphabet of a word can be added to the word without changing its contents and hence its congruence
class.

If, in addition, the concept of 'length n' is replaced by 'n-full' the definitions of $\frac{\pi}{n}$, $\frac{2}{n}$, and $\frac{3}{n}$ parallel those of $\frac{\pi}{n}$, $\frac{\pi}{n}$, $\frac{\pi}{n}L$, and $\frac{\pi}{n}G$.

A similar analogy between the automata of reverse definite and R-trivial, definite and L-trivial, and generalized definite and G-trivial monoids is also apparent. Look in particular at Theorem 2.65 property A4, Theorem 3.3 properties A3 and A4, and Proposition 4.27. In light of the above, Property A1 of Theorem 1 corresponds to Property A1 of Theorem 2.1.

Languages denoted by expressions in $(D \cup DA)B$, where $D = [C' a | a \in A, C \subseteq A - \{a\}]M$, are clearly generalizations of those in $(W \cup WA)B$ since $W = \{[a] | a \in A\}M = \{\emptyset' a | a \in A\}M$. The dual result for L-expressions also holds. If $D' = \{A' a A | a \in A\}M$ then $(D' \cup A)B$ is the family of all languages with J-trivial monoids.

The correspondence between G-trivial expressions and generalized definite expressions is not presently clear. When $\#A \leq 2$, expressions more similar to those for finite/cofinite reverse definite, definite, and generalized definite have been found for languages with J-trivial, R-trivial, L-trivial, and G-trivial syntactic monoids, respectively. (See [3] and [5].) However, those results do not generalize to larger alphabets.

The families of finite/cofinite, definite, reverse definite, and generalized definite languages are just the beginning of an infinite hierarchy ([4] and [28]) whose next element is the family of locally testable languages and whose union is B_1. Can the J-trivial, L-trivial, R-trivial, G-trivial hierarchy be extended in a similar manner to yield B_2? If so, do there exist comparable hierarchies for each B_i, $i \geq 3$?

It is also unknown whether the families of languages defined in Section 4.5 are an important part of this hierarchy, nor is the relationship between them well understood. Providing alternate characterizations would certainly aid in the solution of these problems.
Bibliography

[22] Papert, S. and McNaughton, R., On Topological Events, Theory of Automata, University

Appendix

The SNOBOL4 program on the following page finds the unique minimal word \((\text{minimal}) \) congruent to the input word \((\text{word}) \). Some sample output from this program can be found on pages 99 and 100.

The primary data structure is an \(m \)-ary trie representing all subwords of length less than or equal to \(n \) found so far. Interior nodes are arrays of \(m \) pointers; leaves are integers in the range 0 to \(n \). Label each edge in this structure by the index of the array cell in which the pointer that represents it is stored. In this way each path in the trie can be associated with a subword. A leaf with value \(i \) indicates that all subwords of length \(i \) have been found which have the same prefix as the labelled path to this leaf. This compression makes the searching faster as portions of the trie which are full (consisting of an array of \(n \)'s) do not have to be examined.

97
This function succeeds, returning the null string, if concatenating letter to
the end of minimal increases the n-contents of minimal. It fails otherwise.

```
update update = 'false'
  i = 1
  do update = ident(datatype(root[i]),'array') update(root[i]):f(for)
      root[i] = full(root[i]) n :s(for)
  for i = 1t(i,m) i + 1 :s(do)
      (ident(datatype(root[letter]),'integer') lt(root[letter],n)) :f(done)
      root[letter] = eq(root[letter], n - 1) n :s(true)
      root[letter] = array(m,root[letter] + 1) :s(true)
  true update =
  done ident(update):s(return)f(f(return)
```

This function succeeds, returning the null string, if the trie with 'root' a
is full.

```
full j = 1
test j = le(j,m) ident(a[j],n) j + 1 :s(test)
    gt(j,m) :s(return)f(f(return)
```

Initialization for the main program.

```
main &anchor = 1
  &trim = 1
  define('update(root)i')
  define('full(a)j')
  m = input
  output = le(m,0) 'invalid alphabet size':s(end)
  output = 'alphabet size is ' m
  n = input
  output = lt(n,0) 'invalid index':s(end)
  output = 'index of the congruence is ' n
```

Read the next word and perform the necessary initialization.

```
read word = input :f(end)
  output =
  output = word
  contents = gt(n,0) array(m,0) :f(write)
  minimal =
```

Process the word one letter at a time.

```
while word break('123456789') span('0123456789') . letter = minimal = update(contents) minimal ' ' letter
  full(contents) :f(while)
write output = 'minimal congruent word is ' minimal :f(while)
end main
```
alphabet size is 3
index of the congruence is 2

1 2 3 3 2 3 1 3
minimal congruent word is 1 2 3 3 2 1

2 2 1 1 2
minimal congruent word is 2 2 1 1 2

1
minimal congruent word is 1

minimal congruent word is

2 2 1 2 2 2 3
minimal congruent word is 2 2 1 2 3

2 2 1 1
minimal congruent word is 2 2 1 1

alphabet size is 1
index of the congruence is 5

1 1 1 1 1 1 1
minimal congruent word is 1 1 1 1 1

1 1 1 1 1
minimal congruent word is 1 1 1 1 1

1 1
minimal congruent word is 1 1
alphabet size is 3
index of the congruence is 1

1 2 3
minimal congruent word is 1 2 3

minimal congruent word is
3 3 1 1 3 3 1 2
minimal congruent word is 3 1 2

alphabet size is 3
index of the congruence is 0

minimal congruent word is
3 1 2 1
minimal congruent word is

alphabet size is 12
index of the congruence is 6

10 3 10 10 10 10 10 10 10 3
minimal congruent word is 10 3 10 10 10 10 10 3
<table>
<thead>
<tr>
<th>Report No.</th>
<th>Author</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-79-01*</td>
<td>E.A. Ashcroft</td>
<td>Generality Considered Harmful - A</td>
</tr>
<tr>
<td></td>
<td>W.W. Wadge</td>
<td>Critique of Descriptive Semantics</td>
</tr>
<tr>
<td>CS-79-02*</td>
<td>T.S.E. Maibaum</td>
<td>Abstract Data Types and a Semantics for the ANSI/SPARC Architecture</td>
</tr>
<tr>
<td>CS-79-03*</td>
<td>D.R. McIntyre</td>
<td>A Maximum Column Partition for Sparse Positive Definite Linear</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Systems Ordered by the Minimum Degree Ordering Algorithm</td>
</tr>
<tr>
<td>CS-79-04*</td>
<td>K. Culik II</td>
<td>Test Sets and Checking Words for Homomorphism Equivalence</td>
</tr>
<tr>
<td></td>
<td>A. Salomaa</td>
<td></td>
</tr>
<tr>
<td>CS-79-05*</td>
<td>T.S.E. Maibaum</td>
<td>The Semantics of Sharing in Parallel Processing</td>
</tr>
<tr>
<td>CS-79-06*</td>
<td>C.J. Colbourn</td>
<td>Linear Time Automorphism Algorithms for Trees, Interval Graphs, and</td>
</tr>
<tr>
<td></td>
<td>K.S. Booth</td>
<td>Planar Graphs</td>
</tr>
<tr>
<td>CS-79-07*</td>
<td>K. Culik, II</td>
<td>A Homomorphic Characterization of Time and Space Complexity Classes</td>
</tr>
<tr>
<td></td>
<td>N.D. Diamond</td>
<td>of Languages</td>
</tr>
<tr>
<td>CS-79-08*</td>
<td>M.R. Levy</td>
<td>Continuous Data Types</td>
</tr>
<tr>
<td></td>
<td>T.S.E. Maibaum</td>
<td></td>
</tr>
<tr>
<td>CS-79-09</td>
<td>K.O. Geddes</td>
<td>Non-Truncated Power Series Solution of Linear ODE's in ALTRAN</td>
</tr>
<tr>
<td>CS-79-10*</td>
<td>D.J. Taylor</td>
<td>Robust Implementations of Compound Data Structures</td>
</tr>
<tr>
<td></td>
<td>J.P. Black</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D.E. Morgan</td>
<td></td>
</tr>
<tr>
<td>CS-79-11*</td>
<td>G.H. Gonnet</td>
<td>Open Addressing Hashing with Unequal-Probability Keys</td>
</tr>
<tr>
<td>CS-79-12</td>
<td>M.O. Afolabi</td>
<td>The Design and Implementation of a Package for Symbolic Series Solution of Ordinary Differential Equations</td>
</tr>
<tr>
<td>CS-79-13*</td>
<td>W.M. Chan</td>
<td>A Linear Time Implementation of the Reverse Cuthill-McKee Algorithm</td>
</tr>
<tr>
<td></td>
<td>J.A. George</td>
<td></td>
</tr>
<tr>
<td>CS-79-14</td>
<td>D.E. Morgan</td>
<td>Analysis of Closed Queueing Networks with Periodic Servers</td>
</tr>
<tr>
<td>CS-79-15*</td>
<td>M.H. van Emden</td>
<td>Predicate Logic as a Language for Parallel Programming</td>
</tr>
<tr>
<td></td>
<td>G.J. de Lucena</td>
<td></td>
</tr>
<tr>
<td>CS-79-16*</td>
<td>J. Karhumäki</td>
<td>A Note on Elementary Homomorphisms and the Regularity of Equality Sets</td>
</tr>
<tr>
<td></td>
<td>I. Simon</td>
<td></td>
</tr>
<tr>
<td>CS-79-17*</td>
<td>K. Culik II</td>
<td>On the Equality Sets for Homomorphisms on Free Monoids with two Generators</td>
</tr>
<tr>
<td></td>
<td>J. Karhumäki</td>
<td></td>
</tr>
<tr>
<td>CS-79-18*</td>
<td>F.E. Fich</td>
<td>Languages of R-Trivial and Related Monoids</td>
</tr>
</tbody>
</table>

* Out of print - contact author
<table>
<thead>
<tr>
<th>Report No.</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-79-19*</td>
<td>D.R. Cheriton</td>
<td>Multi-Process Structuring and the Thoth Operating System</td>
</tr>
<tr>
<td>CS-79-20*</td>
<td>E.A. Ashcroft, W.W. Wadge</td>
<td>A Logical Programming Language</td>
</tr>
<tr>
<td>CS-79-21*</td>
<td>E.A. Ashcroft, W.W. Wadge</td>
<td>Structured LUCID</td>
</tr>
<tr>
<td>CS-79-22</td>
<td>G.B. Bonkowski, W.M. Gentleman, M.A. Malcolm</td>
<td>Porting the Zed Compiler</td>
</tr>
<tr>
<td>CS-79-23*</td>
<td>K.L. Clark, M.H. van Emden</td>
<td>Consequence Verification of Flow-charts</td>
</tr>
<tr>
<td>CS-79-24*</td>
<td>D. Dobkin, J.I. Munro</td>
<td>Optimal Time Minimal Space Selection Algorithms</td>
</tr>
<tr>
<td>CS-79-25*</td>
<td>P.R.F. Cunha, C.J. Lucena, T.S.E. Maibaum</td>
<td>On the Design and Specification of Message Oriented Programs</td>
</tr>
<tr>
<td>CS-79-26*</td>
<td>T.S.E. Maibaum</td>
<td>Non-Termination, Implicit Definitions and Abstract Data Types</td>
</tr>
<tr>
<td>CS-79-27*</td>
<td>D. Dobkin, J.I. Munro</td>
<td>Determining the Mode</td>
</tr>
<tr>
<td>CS-79-28</td>
<td>T.A. Cargill</td>
<td>A View of Source Text for Diversely Configurable Software</td>
</tr>
<tr>
<td>CS-79-29*</td>
<td>R.J. Ramirez, F.W. Tompa, J.I. Munro</td>
<td>Optimum Reorganization Points for Arbitrary Database Costs</td>
</tr>
<tr>
<td>CS-79-30</td>
<td>A. Pereda, R.L. Carvalho, C.J. Lucena, T.S.E. Maibaum</td>
<td>Data Specification Methods</td>
</tr>
<tr>
<td>CS-79-31*</td>
<td>J.I. Munro, H. Suwanda</td>
<td>Implicit Data Structures for Fast Search and Update</td>
</tr>
<tr>
<td>CS-79-32*</td>
<td>D. Rotem, J. Urrutia</td>
<td>Circular Permutation Graphs</td>
</tr>
<tr>
<td>CS-79-33*</td>
<td>M.S. Brader</td>
<td>PHOTON/532/SET - A Text Formatter</td>
</tr>
<tr>
<td>CS-79-34*</td>
<td>D.J. Taylor, D.E. Morgan, J.P. Black</td>
<td>Redundancy in Data Structures: Improving Software Fault Tolerance</td>
</tr>
<tr>
<td>CS-79-35</td>
<td>D.J. Taylor, D.E. Morgan, J.P. Black</td>
<td>Redundancy in Data Structures: Some Theoretical Results</td>
</tr>
<tr>
<td>CS-79-36</td>
<td>J.C. Beatty</td>
<td>On the Relationship between the LL(1) and LR(1) Grammars</td>
</tr>
<tr>
<td>CS-79-37</td>
<td>E.A. Ashcroft, W.W. Wadge</td>
<td>R x for Semantics</td>
</tr>
</tbody>
</table>

* Out of print - contact author
<table>
<thead>
<tr>
<th>Technical Reports 1979</th>
<th>- 3 -</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-79-38</td>
<td>E.A. Ashcroft</td>
</tr>
<tr>
<td></td>
<td>W.W. Wadge</td>
</tr>
<tr>
<td>CS-79-39</td>
<td>J. Albert</td>
</tr>
<tr>
<td></td>
<td>K. Culik II</td>
</tr>
<tr>
<td>CS-79-40</td>
<td>F.W. Tompa</td>
</tr>
<tr>
<td></td>
<td>R.J. Ramirez</td>
</tr>
<tr>
<td>CS-79-41*</td>
<td>P.T. Cox</td>
</tr>
<tr>
<td></td>
<td>T. Pietrzykowski</td>
</tr>
<tr>
<td>CS-79-42</td>
<td>R.C. Read</td>
</tr>
<tr>
<td></td>
<td>D. Rotem</td>
</tr>
<tr>
<td></td>
<td>J. Urrutia</td>
</tr>
</tbody>
</table>

- Some Common Misconceptions about LUCID
- Test Sets for Homomorphism Equivalence on Context Free Languages
- Selection of Efficient Storage Structures
- Deduction Plans: A Basis for Intelligent Backtracking
- Orientations of Circle Graphs

* Out of print - contact author
<table>
<thead>
<tr>
<th>Report No.</th>
<th>Author</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-80-01</td>
<td>P.T. Cox, T. Pietrzykowski</td>
<td>On Reverse Skolemization</td>
</tr>
<tr>
<td>CS-80-02</td>
<td>K. Culik II</td>
<td>Homomorphisms: Decidability, Equality and Test Sets</td>
</tr>
<tr>
<td>CS-80-03</td>
<td>J. Brzozowski</td>
<td>Open Problems About Regular Languages</td>
</tr>
<tr>
<td>CS-80-04</td>
<td>H. Suwanda</td>
<td>Implicit Data Structures for the Dictionary Problem</td>
</tr>
<tr>
<td>CS-80-05</td>
<td>M.H. van Emden</td>
<td>Chess-Endgame Advice: A Case Study in Computer Utilization of Knowledge</td>
</tr>
<tr>
<td>CS-80-06</td>
<td>Y. Kobuchi, K. Culik II</td>
<td>Simulation Relation of Dynamical Systems</td>
</tr>
<tr>
<td>CS-80-07</td>
<td>G.H. Gonnet, J.I. Munro, H. Suwanda</td>
<td>Exegesis of Self-Organizing Linear Search</td>
</tr>
<tr>
<td>CS-80-08</td>
<td>J.P. Black, D.J. Taylor, D.E. Morgan</td>
<td>An Introduction to Robust Data Structures</td>
</tr>
<tr>
<td>CS-80-09</td>
<td>J.L.L. Morris</td>
<td>The Extrapolation of First Order Methods for Parabolic Partial Differential Equations II</td>
</tr>
<tr>
<td>CS-80-10*</td>
<td>N. Santoro, H. Suwanda</td>
<td>Entropy of the Self-Organizing Linear Lists</td>
</tr>
<tr>
<td>CS-80-11</td>
<td>T.S.E. Maibaum, C.S. dos Santos, A.L. Furtado</td>
<td>A Uniform Logical Treatment of Queries and Updates</td>
</tr>
<tr>
<td>CS-80-12</td>
<td>K.R. Apt, M.H. van Emden</td>
<td>Contributions to the Theory of Logic Programming</td>
</tr>
<tr>
<td>CS-80-13</td>
<td>J.A. George, M.T. Heath</td>
<td>Solution of Sparse Linear Least Squares Problems Using Givens Rotations</td>
</tr>
<tr>
<td>CS-80-14</td>
<td>T.S.E. Maibaum</td>
<td>Data Base Instances, Abstract Data Types and Database Specification</td>
</tr>
<tr>
<td>CS-80-15</td>
<td>J.P. Black, D.J. Taylor, D.E. Morgan</td>
<td>A Robust B-Tree Implementation</td>
</tr>
<tr>
<td>CS-80-16</td>
<td>K.O. Geddes</td>
<td>Block Structure in the Chebyshev–Padé Table</td>
</tr>
<tr>
<td>CS-80-17</td>
<td>P. Calamai, A.R. Conn</td>
<td>A Stable Algorithm for Solving the Multi-facility Location Problem Involving Euclidean Distances</td>
</tr>
</tbody>
</table>

* In preparation
<table>
<thead>
<tr>
<th>Research Reports 1980</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-80-18</td>
<td>R.J. Ramirez</td>
</tr>
<tr>
<td>CS-80-19</td>
<td>D. Therien</td>
</tr>
<tr>
<td>CS-80-20</td>
<td>J. Buccino</td>
</tr>
<tr>
<td>CS-80-21</td>
<td>N. Santoro</td>
</tr>
<tr>
<td>CS-80-22</td>
<td>R.L. de Carvalho, T.S.E. Maibaum, T.H.C. Pequeno, A.A. Pereda, P.A.S. Veloso</td>
</tr>
<tr>
<td>CS-80-23</td>
<td>G.H. Gonnet</td>
</tr>
<tr>
<td>CS-80-24</td>
<td>J.P. Black, D.J. Taylor, D.E. Morgan</td>
</tr>
<tr>
<td>CS-80-25</td>
<td>N. Santoro</td>
</tr>
<tr>
<td>CS-80-26</td>
<td>J.A. Brzozowski</td>
</tr>
<tr>
<td>CS-80-27</td>
<td>J. Bradford, T. Pietrzykowski</td>
</tr>
<tr>
<td>CS-80-28</td>
<td>P. Cunha, T.S.E. Maibaum</td>
</tr>
<tr>
<td>CS-80-29</td>
<td>K. Culik II, Arto Salomaa</td>
</tr>
<tr>
<td>CS-80-30</td>
<td>T.F. Coleman, A.R. Conn</td>
</tr>
<tr>
<td>CS-80-31</td>
<td>T.F. Coleman, A.R. Conn</td>
</tr>
<tr>
<td>CS-80-32</td>
<td>P.R.F. Cunha, C.J. Lucena, T.S.E. Maibaum</td>
</tr>
<tr>
<td>CS-80-33</td>
<td>Karel Culik II, Tero Harju</td>
</tr>
</tbody>
</table>