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A BSTRACT

A problem which can be considered dual to the Post's

Correspondence Problem is shown to be decidable.

The equality sets for homomorphisms on free monoids
with two generators are studied. In particular, for some
words all possible homomorphisms agreeing on them are shown.
If all such distinct homomorphisms are periodic, then the
word (set) is called periodicity forcing. A number of
periodicity forcing words or sets is shown. A number of
equality sets of the form F* with cardinality of F at
most two is shown. In particular all such equality sets

+, + + +
where F c a b U Db a are given.



1. Introduction

Decision problems of whether two homomorphisms on a free
monoid agree on at least one or all words from a given set are of crucial
importance in computability and formal language theory. The former is
the classical Post's Correspondence Problem while the latter played
a crucial role in proving the decidability of the DOL equivalence problem
[3]. Recently there has been much research done in this direction. For
example in [4] it was shown that given a context-free language L and
two homomorphisms it is decidable whether they agree on every word of L.
Already several years ago it was conjectured by A. Ehrenfeucht that for
every language L there exists a finite "test set" F so that any
pair of homomorphisms agree on L 1iff they agree on F . Very recently
this problem was answered positively for L over a binary alphabet [5]

but remains open in the general case.

In a somewhat different direction the notion of an equality set
for two homomorphisms, i.e. the set of all words on which the homomor-
phisms agree, has been introduced in [121. Equality sets have turned out
to be a powerful tool in the characterization of various language classes.
The reader is referred to [1, 2, 6] for further details. Equality sets
are also useful in some decidability proofs, in particular the result
that for elementary homomorphisms (see Section 2) the equality set is
always regular [7].

This paper approaches the topic of equality sets in still

another direction. We study equality sets for the specific case of a



binary alphabet. For this case we attempt to find all the sets which can
be expressed as equality sets for some homomorphisms. This goal was not
fully accomplished but we hope that our results can be extended in such a
way that they would lead to solutions of some important problems of the
kind discussed above. In particular we have in mind the decidability of
the emptiness problem for equality sets in some special cases, for example
for homomorphisms over a binary alphabet, which in other words is the
decidability of the Post's Correspondence Problem for lists of length

two.

After some preliminaries we show that a problem which can be
considered dual to the Post's Correspondence Problem is decidable. This
is shown by reducing it to the recent deep result of Makanin [11], namely
the decidability of the existence of a solution for a system of equations
over a free monoid.

Then we discuss some basic, mostly already known, properties
of equality sets for homomorphisms over a binary alphabet. The restric-
tion to binary alphabets ensures that every homomorphism is either
elementary or periodic and consequently every equality set is either
regular (it is not known whether this is effective) or of a very special
form, namely the set of all words with a fixed ratio of the two symbols.

Next we solve the following problem for some cases: Given a
word find all possible pairs of homomorphisms which agree on this word.

Sections 6 and 7 give some partial solutions to the problem
of characterizing all the equality sets for homomorphisms over a binary

alphabet. Such a characterization is difficult but very interesting since it



would probably imply the decidability of the emptinéss problem for

equality sets (Post's Correspondence Problem) in some special cases,

iand have other applications as discussed in Section 8.

We call a set of words over a binary alphabet periodicity
forcing if in every pair of distinct homomorphisms agreeing on every
word from the set both the homomorphisms must be periodic. We first
investigate the singleton periodicity forcing sets, that is periodicity
forcing words. Finally, in Section 7 we exhibit many two-element
periodicity forcing sets and also some two~-element sets which are not
periodicity forcing. We give some results to support our conjecture that
every set containing at least three r-primitive words (words for which no
prefix has the same ratio of symbol occurrences as the whole word) is
periodicity forcing. Equivalently this would mean that every equality
set for two elementary homomorphisms over a binary alphabet is the star

of a two element set.



2. Preliminaries

We give here the basic definitions and some known results,
which are needed later.

The free monoid generated by finite alphabet I 1is denoted

by Z* . TFor u,v ¢ Z* , we write u < v 1if u dis a prefix of v (not
necessarily proper). The length of w din I* is denoted |w| s
specifically |e| = 0 for the empty word, st o5t - {e} . For a set
A, |A| denotes the cardinality of A . For w in 5 and a in

Z , the number of occurences of a in w is denoted by #a(w). For
+
w in {a,b} , r(w) = #a(w)/#b(w) is the ratio of w . A vword W

in X* is ratio primitive (r~primitive) if r(u) + r(w) for every

nonempty proper prefix u of w .

% *
Consider two homomorphisms g and h mapping I into A

(possibly I = A). The equality set of g and h [12] is defined by
%
E(g,h) = {weX : g(w) = h(w)} .
The minimal equality set of g and h [1] is defined by

{w eZ+ : g(w) = h(w) and if

e(g,h)

w = uv where u,v ¢ Z+ , then g(u) + h(u)} .

For a binary alphabet 5 = {a,b} , and distinct g, h ,
e(g,h) = E(g,h) n P where P = {w e’z+ @ w is r4primitive}.r Indeed, if
X efE(g,h)’ighd x = yz where r(y) = r(x), then also vy e E(g,h).

For the converse see Lemma 4.1.



In this paper we study equality sets. We note that without
loss of generality we can restrict ourselves to a binary target alphabet
A since any alphabet T can be encoded over binary alphabet A , and
E(g,h) = E(g',h"'") where g' , h' are the compositions of g and h ,
respectively, with the encoding. On the other hand we clearly cannot
similarly encode the source alphabet X . Therefore results obtained
for a binary alphabet need not be valid im the general case.

*

%
A homomorphism h : Z - A is elementary [7] if there does

not exist a decomposition of h dinto f and g , h = gf ,
% *
5 < A
I

% %
A homomorphism h : Z > A is periodic if there is w in

so that || < |Z]

*
A" such that, for each a in X , there is an integer q such that

h(a) = w' . Tt is clear that for 1 = {a,b} every homomorphism on

* %
L is either elementary or periodic. A set L c X is periodicity

*
forcing if for any distinct homomorphé#sms g, h on I , the property

h(w) = g(w) for each w in L dimplies the periodicity of both g
and h . If L = {x} , then we say simply that x is periodicity
forcing.

%
For each w in X the primitive root of w is denoted

*
by p(w) and defined as the shortest word u din X  such that



n
=u for some n =2 1. 1In

W
It is-well known that p(w) .

to be useful for this paper,

p(u) = p(v) = o(w)

p(u) = ¢ iff u = g.

particular,
is unique. The following lemmas turn out

see e.g. [10].

Lemma 2.1: For wu,v in Z+', uv = vu 1iff p(u) = p(v).
*
Lemma 2.2: For u,v,w in 2 , if w <« um , W £ v for some m,n = 1,
and |w| = |u| + |v] , then p(u) = p(v).
* +
Lemma 2.3: For wu,v in Z and w in X , if wuv = vw , then
* k
there exist p,s in X and k =2 0 such that u =sgp , v = s(ps)
and w = ps,
Lemma 2.4: For u,v,w in Z+ and m,n,p 2 2 , if o o= WP , then



3. Dual Post's Correspondence Problem

Here we show that a problem which can be considered dual to
the Post's Correspondence Problem (PCP in short) is decidable.

The problem is : Given a string w in I* , do there exist
two distinct homomorphisms h,g : Z% > A* for some A , such that at
least one of them is aperiodic and h(w) = g(w) ?

Note that if the requirement that h and g are distinct or,
for w * a+ U b+ , that at least of of them is aperiodic is omitted then

such homomorphisms always exist.

We show the decidability of the dual PCP by reducing it to

Makanin's result concerning solvability of equations in free monoids.

Theorem 3.1l: The dual PCP is decidable.

%
Proof: Given w in I , we comstruct a finite number of systems of

equations over a free monoid at least one of which has a solution iff
there exist homomorphisms h and g satisfying the requirements of
the given instance of the dual PCP.

In view of the discussion in Section 2 we may assume that

A

{0,1}. For I = {al,...,an} let % =1{a :aec I} and

= - %
% {2 : a ¢} . The word obtained from £ din L by (double)

barring of all symbols will be denoted ¢ (E) . In all systems of
equations, the set of unknowns will be Tu b v {s,t,u,v,y,z} and the

constants 0 and 1. For each fixed i, j, k, <1 <.1i, jyk <mn, k,+ i and



a,B,Y,8 ¢ {0,1} , o+ B8 and Yy # § we construct the following three

*
systems of equations over A :

(1) W=w
(2) g‘kg'i = uov , Eiék = ufz
(3) either EjYy = Zj

or iny = 55

or Ej = yys , Zj = ydt

By [ll] we can test whether at least one of these systems has a
solution. 1If so, then the given instance of the dual PCP has a
solution. To see this consider homomorphisms g,h defined by g(a) = 5,
h(a) = a for each a 1in = , and verify that they satisfy the require-
ments of the dual PCP : (1) 1is equivalent to g(w) = h(w) . Equations
(2) are equivalént to g(ak)g(ai) + g(ai)g(ak) which, in turn,

holds true iff p(g(a,)) 4 p(g(a)), 8(a) $+ e and g(a,) e (Lemma 2.1).
‘Hence, g is monperiodic iff (2) is valid for some i and k (and o, B with
o § B). Finally, (3) holds for some j iff h “and g are distinct.

If none of the systems of equations has a solution, then,

clearly, also the dual PCP has no solution. O

Note, that it is easy to modify the above proof for the case

when both g and h are required to be aperiodic.

*
Corollary 3.2: Given w ¢ {a,b} , it is decidable whether there exist

% %
distinct elementary homomorphisms g,h : {a,b} = A for some A such

that g(w) = h(w).
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Proof: Over a binary alphabet a homomorphism is elementary iff it is

aperiodic. Hence, the result follows by the note above. a

Now we generalize Theorem 3.1. We show that it is decidable
whether there exist two homomorphisms as in Theorem 3.1 which agree on

every word from a given regular set.

Theorem 3.3: Given a regular set R , it is decidable whether there
exist two distinct homomorphisms g and h such that g is

aperiodic and g(x) = h(x) for each x in R .

Proof: By [4] , for every regular set R there effectively exists
a finite set F (called the test set) so that g(x) = h(x) for each x
in R iff g(x) = h(x) for each x in F . Hence, we can restrict
ourselves to the case when R is finite. For a finite R the proof
is obtained by an easy modification of the proof of Theorem 3.1, namely

by replacing equation (1) by equatioms x = x for each x in R .

In Theorem 3.3 as in Theorem 3.1, both g and h can be required to
be aperiodic. Furthermore, the theorem could clearly be extended to every
language family for languages of which there effectively exists a finite
test set. The results in [4] strongly suggest that the context-free lang-
uages are such a family.

Finally we note that it is also easy to see that it is decidable
whether there exist two distinct periodic homomorphisms agreeing on

every word of a given regular set,
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4. Properties of Equality Sets Over Binary Alphabets

From now on we will be investigating the properties of equality
sets and later on of their elements, that is of solutions of instances
of PCP. 1In doing this we will restrict ourselves to homomorphisms over
a binary alphabet, that is in terms of PCP to instances of PCP with

lists of length two. Henceforth we assume I = {a,b} .
* %
Example 4.1: Let the homomorphisms h,g : £ = I  be defined by

g : a > aab h: a-=+a
b+ a b -+ baa

Here every element of E(g,h) must start with a and "the continuation"

is uniquely determined. So we have a single minimal "solution" aabb

g(a) g(a) g(b)g(b)
I u Y i
a alb a aIP aa s

h(z)h(a) bb) Bd)

%
therefore E(g,h) = {aabb} .
Example 4.2: Consider homomorphisms g,h defined by

g : a - aab h: a-+a

b + aa b -+ baa

Here it is easy to see that e(g,h) = ¢ , i.e. E(g,h) = {e} , since
clearly each potential solution would have to start with a and then

to continue deterministically as indicated
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&: — 11 i | 1 { 10 L
aabaabaaaaaahbaahb .
h: it i i

that is we are forced to generate the infinite word of the form

aabb a4 b4 a8 b8 een a2 b cee

The following fact concerning ratios is mentioned in [5].

Lemma 4.1: Let g,h be distinct homomorphisms over a binary alphabet.

If u,v € E(g,h) , then r(u) = r(v).

The equality sets for periodic homomorphisms over a binary
alphabet are characterized by the following lemma which is easy to

verify.

Lemma 4.2: Let g and h be distinct periodic homomorphisms over a

binary alphabet with minimal periods p and q , respectively. Then

E(g,h) is of the form

() {e} v {w E‘Z+ | r(w) = k}

where k 2 0 is a rationél number Ol'k = o if p = q, and E(g,h) = {e} if p + q.

Every set of form (1) is an equality set for some periodic homomorphisms.

Lemma 4.3: A homomorphism over a binary alphabet is elementary iff it

is injective.

Proof: It is shown in [7, Thm, 3.7] that each elementary homomorphism is inf'

jective. Clearly, each injective homomorphism over an at least two-letter

alphabet is aperiodic and finally, by definition, an aperiodic
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homomorphism over a binary alphabet is elementary. i

Lemma 4.4: Let g and h be homomorphisms over a binary alphabet. The
equality set E(g,h) is either regular or of the form (1) for some

rational k > 0 .,

Proof: If g=h , then E(g,h) = Z* , a regular set. If g and h
are distinct and at least one of them is elementary then the regularity
of E(g,h) was shown in [8]7. Otherwise both g and h are periodic-
By Lemma 4.2, if E(g,h) # {e} , then we have

E(g,h) = {e} u {W<52+ | t(w) = k} where k 2 0 is a rational number or
k = «, This last set is regular in both cases k = 0 or k = «, which

completes the proof. ]

From the above proof and Lemma 4.3 we also have the following:

Lemma 4.5: Let g,h be distinct homomorphisms over a binary alphabet.

If at least one of them is injective, then E(g,h) is regular.

The above result does not hold for an arbitrary alphabet even
if both g and h are required to be injective, for a counterexample

see [9] .
The following result is shown in [9] .

Lemma 4.6: Let g and h be homomorphisms over a binary alphabet,
g elementary and h periodic. Then there exists effectively a word

L%
w so that E(g,h) = {w} .
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5. Homomorphisms Agreeing On a Given Word

In this section we consider the problem of finding all pairs
of homomorphisms agreeing on a given word over {a,b}. Obviously, this
problem is more difficult than the dual PCP and although we do not
know any "practical" algorithm even for the dual PCP we will solve this
more difficult problem in some special cases. Certainly, such solutions
throw light on the theory of equality sets as a whole.

We start with

Lemma 5.1: The word ab ¢ E(h,g) , with lh(a)l > lg(a)l , iff there

exist words o, B and <Yy such that B8 * £ and

oy h: a~>of g: a~>ao
b +>vy b > By .
Proof: Indeed, h(ab) = g(ab) with lh(a)[ > E(a)l iff there exists

a word z + € such that h(a) = g(a)z and zh(b) = g(b). Hence,

the lemma follows when we choose o = g(a) , 8 =z and v = h(). [

Formula (1) does not tell us very much about the equality sets,
since it includes three variables. If we require that ba is also in

E(h,g) we can say much more:

Theorem 5.2: The set {ab,ba}l < E(h,g) , with lh(a)| > |ga)]| , iff

t, and t. and words o, B and

there exist nonnegative integers tl’ 2 3

Y such that t2~> 0, aB + € and



15.

t.+t t
h: a~> a(Ba) 12 g : a > o(Ba) 1
t t, +t or
(2) b > B(aB) > b > B(B) 2 °
h: a-—+a g: a->c¢
b e b »>a

fér sdme wéfd ol eAZf;M-Méfeover,rzfil{ab;bg}ié E?ﬁ:é , h %ﬂém; aﬁ&w'ha-or

g 1is elementary, then E(h,g) = {ab,ba}* .

Proof: Obviously for amy pair (h,g) of the form (2) ab,ba ¢ E(h,g).
To prove the converse let {ab,ba} c E(h,g) . Then, by Lemma 5.1 ,
h: a~-a'B' g: a~>a'
‘b ,_>»Y' b __>B'Y| .

for some words o', B'and y' with' B8' # e. Hence, ha ¢ E(h,g) implies
y'a'8' = B'y'a' . So, by Lemma 2.1, either y'a' = € or else
P(B') = p(y'a') $+ €. In the first case we have h(a) = g(b) = B' and

h(b) = g(a) = €. In the second case there exist integers tl,t3 > 0 and t2 >0
t t
2, Y' = (Ba) 38 and

and words % and B, with aoBf + £, such that B' = (RBa)
a' = a(Ba) l. Thus the first sentence of the theorem follows.

To prove the second-sentence of-the theorem, let-h and g~
be of the form (2) and let h (resp. g) be elementary. Define homo-

morphisms hi’ 8, and ¢ by

t. +t t
h. : a > a(ba) 12 g. ¢ a ~> a(ba) 1
i i
t t.+t
b » b(ab) > b > b(ab) > °
and
c a~>ao
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Then h = chi and g = cgi . Moreover, c¢ 1is elementary since h(resp. g)

is elementary. So c¢ is injective implying E(h,g) = E(hi, gi) . Hence,
*

the theorem follows since clearly E(hi,gi) = {ab,ba} . 0

Corresponding to Lemma 5.1 we also prove

Lemma 5.3: The word aba ¢ E(h,g) , with |h(a)| > |g(a)| , iff there

exist an integer t 2 0 and words o, PR and Yy such that oB + € and

(3) h: a-=> u(Ba)tBu g : a +-a(8a)t

b >y b - BayoB .
Proof: Clearly, for any pair <(h,g) satisfying (3) aba ¢ E(h,g).
To prove the converse let aba ¢ E(h,g) with |h(a)| > |g(a)]. Then
h(a) = uvg(a) = g(a)v for some nonempty words u and v . Hence, by

Lemma 2.3, there exist an integer t = Q and words o, @B and 7Yy such
that g(a) = u(Ba)t , u=0aB and v =Ba . Since g(b) = vh(blu

the lemma follows if we choose vy = h(b) . O

Lemma 5.4: The word aab ¢ E(h,g) , with |h(a)| > Ig(a)[ , iff there

exist an integer t = 0 and words &, B and <y such that of + ¢ and

4) h: a +~(a8)taa6 g : a-~> (aB)ta
b >y b - BoaByY .
Proof: As above it is enough to show that if aab ¢ E(h,g) , with

|h(a)| > !g(a)| , then h and g are of the form (4) . Denote
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h(a) = g(a)u. Then ug(a)uh(b) = g(a)g(b). Let v be the word satis-
fying wug(a) = g(a)v which implies that wvuh(b) = g(b). By Lemma 2.3,
there exist an integer t = 0 and words o and B , with af + €, such that

t
(aB) & and v = Ba. Denote h(b) = y. Then

u=o0B, gla)

g(b) = wvuh(b) BooBY and h(a) = g(a)u = (aB)taaB. Hence the lemma
follows. O
As in Lemma 5.1 formulae (3) and (4) contain three variables
(and one parameter) and hence the equality set can not be immediately
determined. Actually, as we shall see later, both {aab}* and {aab,baa}*
are equality sets determined by (3). On the other hand, we shall show
(Theorem 7.2) that the only regular equality set obtained from (4) is
{aba}*.
Our next result gives another example of the case when the
conditions x ¢ E(h,g) , h # g and h is elementary imply that E(h,g) = x*.
Moreover, now all the homomorphisms agreeing on a given word are ob-

tained using only two variables.

Theorem 5.5: The word aabb ¢ E(h,g) , with lh(a)l > |g(a)| , iff

there exist nonnegative integers tl’ t2 and t3 and words o and
B such that of % £ and
Y £ t
(5) h : a-a(Ba) "a(Ba) "8 g: a~> () o
t3 t2 t3
b - a(Ba) b~ B(aB) “a(aB) o

Hence, aabb ¢ E(h,g) , h + g, and h or g elementary, imply

E(h,g) = {aabb}:’c



Proof:

of the first one (cf. the proof of Lemma 5.1).

any pair <(h,g)

So it remains to be shown

th(a)| > lg(a)l, then h and g

g(a) =a, gb) =b, h(a) = a

h(azbz) = g(azbz) becomes

(%) aabb =

Since |a| > |a| , then B[ < |B]

such that : =ax and b = yg .
xaxb =

which implies that

&
Il

Now we apply Lemma 2.3 to both of

existence of words u, v, z and r
X = uv = zr
- k
a= (uv) u

We first assume that lul > |zl

vu =

satisfying (5) also satisfies

that if

and h(b) = b .

18.

It is easy to see that the second sentence is a consequence

It is also clear that
aabb ¢ E(h,g)
aabb ¢ E(h,g) and

are of the form (5). Denote

Then the equality

aabb .

and so there exist words x and vy

Thus, from (*) it follows that

W]
<

ol
~

these equalities and conclude the

and integers k, k' > 0 such that
Yy =vu =1z
= 1
b = (zr)k'z .

. Hence equalities uy = zr and

rz lead, by Theorem 5.2, to the following three subcases:
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z = € for some nonempty

5
e
t
=y
)
N
el
I
3
o)
R
a
n
H
f
e
)
=)
o
<
1

t_ 4+t t
o (Ba) 12 z = a(Ba) 1

t t 4+t
B(aB) ° r = B(aB) 2 3

=
1l

<
Il

for some words o and B , with of + € , and for integers tl’t3 >0

and t2 >0 .

In the first case u =2 and v r and hence

h: a-= (uv)kuuv g : a +—(uv)ku
k' !
b > (uv) u b =+ vuu(vu)

In the second case

I, % S

| \i
b *‘Wk b +»ak +1

Finally, in the third case after setting t = tl + t2 + t3

(t+l)k+tl+t 9 t ( t+l)k+tl+t 9

h: a->a(Ba) o (Ba) R g: a > (0B) o

(t+1)k "+t t (t+1)k'+tl
b + o(Ba) 1 b BaB) o(aB) o

So in all the cases the homomorphisms are of the form (5).
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In the main case |u| < |z| the homomorphisms h and g are
obtained in all three subcases from above by interchanging u with =z
and v with r . It is straightforward to see that these homomorphisms

are still of the form (5). Hence the proof is complete. 0

As an application of Theorem 5.5 one can show the following.
The word a4b4 belongs to E(h,g), with [h(a)! > |g(a)| and h or

g elementary, iff there exist nonempty words o and B8 such that

p(a) + p(B) and

h: a »-a48 g: a-aqa

(6)
b +a b+ 8o’

So the pair (h,g) is now, in a sense, unique. The proof of this fact
is straightforward but long, therefore we omit it here.

It is interesting to note that the uniqueness of the pair (h,g)

, . 4 4
above is not a consequence of the fact that the exponents in a b are

"large". This is demonstrated in the following example with words a4b3

and a4b5 .

Example 5.1: Define, for all n,m > 1 , homomorphisms hl’ gl, h2 and

89 by setting
hl i a -~ (amnb)n g, ¢+ a~ an
b > a" b > (ba"™)™
and
h2 : a -~ (anban)mnanb g, a > abal
b>a b > ((ba”™™paMH® .



Then

and

E(hzsgz) =

(alnbn) *

mn+l, n *

21.
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6. Periodicity Forcing Words

In this section we are looking for periodicity forcing words
over {a,b }, i.e. words w having the property: w ¢ E(h,g) dimplies
h and g are periodic. By Theorem 3.1 , it is decidable whether a
given word is periodicity forcing. However, our proof of Theorem 3.1
does not give any example of a periodicity forcing word. Here we will
show that such words really exist.

It is a simple task to show that some words which are not
r~primitive are periodicity forcing. For example the word abaabb is
such since h(abaabb) = g(abaabb) implies h(ab) = g(ab) and
h(aabb) = g(aabb) which is (by Theorem 5.5 or a simple direct argument)
possible only if both h and g are periodic. It is a little more
complicated to show that there also exist r-primitive periodicity forcing
words. Before proving this we show that there is no periodicity forcing

word shorter than five,

Lemma 6.1: For any word w with lWl £ 4 there exist elementary

homomorphisms h and g such that h(w) = g(w)

Proof: By Example 5.1, {aibj}* is an equality set for all i,j = 1. Further
{aibaj}* » for all i,3 2 1 , is the equality set of the elementary homomor-
phisms defined by h(a) = a, h(b) = aibaj, g(a) = a2 and g(b) = b. Hence
the lemma follows. o

In the next result we characterize periodicity forcing words

of length five.
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%
Theorem 6.2: A word w in {a,b} of length 5 is periodicity forcing iff
W =7abaab!priw = aabab or w'is obtained from these by interchanging letters

or by taking mirror images or by making both the operations.

Proof: By symmetry, and by the fact that all words containing at most
one b are in equality sets of some elementary homomorphisms we may
assume that w contains two occurrences of b . Further, by symmetry,
it is enough to show that the words abaab and babaa. are periodicity for-

cing while the words' aaabb, ababa, abbaa and baaab are not.

The fact that aaabb is not periodicity forcing follows from

Example 5.1. The same holds true for ababa, abbaa and baaab since:

I
a

7]

abababdbababadbal

M
Jaa

1
a
L J

Ib abaa a]a bla hla“b abaa a a bab
L J

So it remains to be shown that the words abaab and

babaa are periodicity forcing. We consider each of them separately.

I. abaab . Assumethat aabab ¢ E(h,g) with |h(a)| > |g(2)].

_ = %
Define g(x) = x and h(x) = x for all x ¢ {a,b} . Let

¢ = ab . Then we have cac = cac . Moreover

|<] - |c| = |g(ab)| - |n(ab)| > 0 . Hence, by Lemma 5.3,

Cc

(@]

Il
ol
Tl

It
Q
~
oW
Q
~

ab = a(Bo) Ba

a =7 a = BayBa
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for some words o, B and Y and some integer t =2 0 .
Since PBayoB < a(Ba)t it follows that p(a) = p(B) and
hence also p(y) = p(@) . So p(a) = p(d) = O(Z) = O(E)

proving that abaab 1is periodicity forcing.

IT babaa. Mssumingthat babaa ¢ E(h,g) with |h(a)| > |g(a)|

and using the above notations we now have cca = cca

where ¢ = ba . So, by Lemma 5.4 , we get

-%a= @)%

ol

ba = (aB) ‘aoB

[eR!
I

[Vl
1l

[N
il

Y BooByY

for some words 0, B and <Y and some integer t = 0 .
== *

Since, ba is a suffix of a word in {Bo}  and BooBy

is a suffix of ba Boo = o , and hence p(a) = p(B) .

From this point onwards the proof continues as in Case I. U

At this point we want to summarize what kinds of not
periodicity forcing words are known to us. Let us call such a word
as a solution referring to PCP. By Example 5.1, any nonempty word in
* % ) + + + )
ab 1is a solution. In a b a all solutions known to us are as follows:
any word of the form a’bal (cf. the proof of Lemma 6.1), the words

abbaa and aabba (cf. the proof of Theorem 6.2) and the words ba21+l

b,
for i1 > 1 (cf. the proof of Theorem 6.2). The only other solutions known
to us are those pointed out by the referee of this paper, namely the

solutions of the form (ab)la for i 2 2 (cf. again the proof of Theorem

6.2).
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As regards to periodicity forcing words we want to mention
the following. 1In Theorem 6.2 there are examples of r~primitive
periodicity forcing words. Besides these we know that any r-primitive

. 3% 3 % 2 . ge s .
word in (a”a b™b )~ is periodicity forcing. However the proof of
this is tedious because of the many cases needed to be considered, and

hence we omit it.
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7. Periodicity Forcing Sets

In this section we consider periodicity forcing sets. We

start with

Theorem 7.1: Each of the following sets is periodicity forcing:

{ab,ax} , where X + b and ax is r-primitive’

{aab,ax} , where X4 ap and ax is r-primitive -

Proof: By Lemmé'A.l each subset containing two words u and v such that
r(u)r+ r(V)~isuperiodicity forcing. We shall therefore suppose that in
the first case r(ab) = r(ax) and in the second case r(aab) = r(ax). In

particular x + € in both cases. We consider these separately.

I. {ab,ax}. Let {ab,axt ¢ E(h,g) with |h(a)| > lg(a)| .

Then, by Lemma 5.1, there exist words o and B such
that
(1) h: a-=>aB g: a->o

b >y b > By

If o = ¢ then g is periodic and hence, hy Lemma 4.6, also
h must be periodic. Consequently o + €. Let ax = albz
for some word z and i > 0 . Since ax is r-primitive i > 1.

For i =2 2 we write

@B(&B)i—lYu = aai_lBYv

for some words u and v . Now we have two cases.

First, if |a| + |B] < lui'll, i.e. |B] < loci_2| , then by

Lemma 2.2 we have p(aB) = p(a) + € and therefore p(a) = p(B).
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‘we conclude that 0B € zaf . Hence, af = o

27,

_zz, z % ¢, and

i-1 i-1
z = zf

Secondly, if Ial—zl < |B] we write B = ai

showing that p(z) = p{a). So also in this case p(a) = p(B)
and therefore E(h,g) = {ab}* ,-a contradiction. Hence

the preof of case I is complete.

{aab,ax}. Let again {aab,ax}_g E(h,g) with Ih(a)[ > Ig(a)l.
Then, by Lemma 5.4 , there exist words &, B and <y and

an integer t = 0 such that
t t
h: a~> (oB) coB g : a~-> (aB) o
b >y b - BaoRy

Since ax 1is r-primitive it is either of the form ax = abu
i

for some word u or of the form ax = aaa bv for some

word v and some integer i > 1 . If ax = abu , then

for some w and =z
(aB)taaBYw = (aB)tuBuaBz .

%
Hence, p(a) = p(B) and E(h,g) = {aab}7 , a contradiction.

i
If ax = aaa"bz , then for some w' and 2z'

(@8) “aap (a8) FoaB (aB) Foasw' = (08) o (aB) fa(08) fupz!

Hence,also in this case p(a) = p(B), which completes the proof

of case II. 0
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We also prove
Theorem 7.2: Each of the following sets is periodicity forcing:
{aabb,x} , where p(x) + aabb,

{aba,x} , where p(x) + aba.

Proof: The first assertion is an immediate consequence of Theorem 5.5.
To prove the second claim let us assume that {aba,x} < E(h,g), with
In(a)] > lg(a)|. Now Lemma 5.3 gives general expressions for h and g
and using these and the arguments of the proof of Theorem 7.1 it is
straightforward to see that {aba,22V}, for any ¥, is periodicity forcing.
So it remains two cases: either x = abbu for some u or x = bv
for some v. Let us assume first that x = abbu . For each word 2z we
define so-called balance B(z) of z by setting B(z) = |h(z)| - |g(z)].
Let B(a) = n . Then clearly B(b) = -2n and B(x) = 0 . Obviously
for any word z B(z) is the multiple of =n . So the r-primitiveness
of x and the fact B(abb) < 0 guarantees that B(w) < 0 for all
proper prefixes of x different from a . Hence x has a suffix aa,
i.e. x = u'aa for some u' . But, by the beginning of this proof

and by symmetry {aba,u'aa} 1is periodicity forcing.

Finally, {aba,bv} is periodicity forcing for all v because

of exactly the same reasons as {aba,abbul} .-

a
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Our next aim is to characterize periodicity forcing sets

* * %
included in ab Uba . We start with

Example 7.1: Define, for i > 1 , homomorphisms h and g by

i i
h: a-=>aba g: a-—a

2i di-1

b+ (ba’l) b b +—(ba21)lﬁl i a21 i-1

ba (b )" b
It is straightforward to see that
%

E(g,h) = {a'b,ba’}" .

For instance, if 1 = 2 we have

| 1! R R )
a alb aaaabaabaaaa bI

and

b 1) R 1
Ib aaaabaabaaa a:151a
| ST
. %

The above example provides the only examples (besides {a,bl} )
known to the authors when a regular equality set over a binary alphabet
has two or more generators. These equality sets are also maximal in the

i i * i i* .
sense that any set {a'b,ba’,x} where x ¢ {ab,ba”} is not an equality
*
set, or even included in a regular equality set different from {a,b} , as

we will next show.
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Theorem 7.3: Let i 2 1. If the set {alb,bal} < E(h,g), h 4 g, and h
is elementary then E(h,g) = {a'b,ba’} . Consequently, {alb,bal,x} is

periodicity foreing for all i > 1 and x ¢ {alb,bal}+ .

Proof: The case 1 =1 1is covered by Theorem 5.2. So consider

i 22, By Lemma 4.6, g must be elementary, hence, we may assume that
. = - *

|h(a)| > |g(a)| . Again let h(x) = x and g(x) = x for x e {a,b} .

By Theorem 5.2, or its obvious interpretation, there exist words p

and s and integers n,m 2 0 and t 2 1 such that

_ s(ps)n+t 51

s(ps)™

(ps)™p b (ps)™p

©
[

ol
i

If n+ t 22, then by Lemma 3.2, p(z) = p(ps) . Hence also p(p) = p(s)

contradicting the nonperiodicity of h .

v

So we conclude that n =0 and t=1 . 1If |£1‘1| %l;| s
then clearly p(a) = p(z) and hence p(s) = p(p) , a contradiction .

Thus there exist words u,v and w such that

]
1
.
I
=
1
s
1
iy

and
u=av =wa .

From this last equality we conclude, by Lemma 3.3 , that

Il

(aB)ka s
v = Ba s

o .

g
It
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for some words o and B and some integer k = 0 . It is easily seen
that

((8)Xayt

0
Il

2)
B ((@8)X0) 21172 8o ((aB)¥a) 21208

o]
il

So the homomorphisms h and g are of the form

h:a-=+gq g: a->r

(3)
b > (ps)"p b > (ps)™p

where p and s are arbitrary words of the form (2) qi = gps, ri = s and m = 0.
From now on it is straightforward to see (cf. the proof of

. -
Theorem 5.2) that E(h,g) = {a’b,ba"} . 0

It is interesting to note that the proof of the above Theorem
gives a characterization of all pairs of homomorphisms having the equality
set {aib,bai}* , 1 =2 . All such pairs are obtained from (2) and (3)
by fixing the constants k and m and choosing Words o and B such
that p(o) + p(B). In particular, Example 7.1 is obtained with k = 0 ,
m=0, a=a and B =b . Hence the homomorphisms in Example 7.1 are
in a sense minimal. More precisely, if we define the size of the pair
(h,g) of homomorphisms to be max{lh(a)l, Ig(a)l ] a e L} , then the
smallest pair needed to define the language {a5b,ba5}* , for example,

as an equality language is of size 95.

In contrast to Example 7.1 we now show
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Lemma 7.4: Let d4,j,m and n be natural numbers satisfying in + 1

and jm ¥ 1 . Then the set {ale,bman} is periodicity forcing.
Proof: Assume that {ale,bman}_E E(h,g) with |h(a)! > |g(a){ . Let
i2n, then by Lemma 4.1 j 2m . We first consider the case when

i,j 2 3 . Again let h(x) = X and g(x) = x for all x ¢ {a,b}* . We
have two subcases.
(1) Ei| > |Z| (or symmetrically |§jl > |b|) . Then there
exist words p and s. and integer t = 1 such that

= (ps)tp and a = ps . But a is also a suffix of

(S|

a showing that p(p) = p(s) and hence p(a) = p(z) .
This gives us the equality

5 = p@* 5
for some k = 2 . Also since j > 2, o(b) = p(a) = p(b)
by Lemma 3.4 , so both g and h are periodic.

(i) |at] < |a] and |BI]| < |B] . Let 3 =3k and

ol
I

<
!

Then we have
BJ—ly = le_l

Since j -1, i -1 2 2 we conclude, by Lemma 3.2, that

there exist words q and r and natural numbers k

and k such that p(qr)

2 qr and

k _ k
B=(qo) ! , a= (@ .
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-1 *

Hence alqrqr is a prefix of a word in (rq) which implies that
-1 * . -n %
a~ € (rq) r (recall that p(rq) = rq). Symmetrically, a e q(rq)

These together guarantee that p(r) = p(q). Thus, also

p(b) = p(a) = p(a) = p(b)

So, there remains the cases where either i or j < 2. Since

i j m n . . . . PR . .

ab and b a has a fixed ratio and i 2n, j >2m, it is sufficient to

consider the sets X, = {atbz,bzat}, t 22, and X, = {athZ,bat}, t > 1. To see

2

that X, 1is periodicity forcing let X, < E(h,g) , with Ih(a)| > lg(a)[.

1 1

Using the earlier notation of this proof let Et = gtz and 52 = zgz

=) - T ) = ) e = /= *
Then zb2at = bzatz implying that p(z) = p(bzat) . So bzat € p(z)zp(z) ,
which means that

at = o)t

for some £ > 2 . Hence, by Lemma 2.4, p(b) = p(z) = p(z) . So both h
and g are periodic.
To see that also X2 = {aZt,bz,baZt} is periodicity forcing,

assume that XZ_E E(h,g) with h elementary. We define a homomorphism

h' : a +~h(a)t , b > h(b). Clearly h' is also elementary. Moreover,
. 2.2 .22 . .

since XZ_E E(h,g) , {a™",b"a”} c E(h',g) contradicting Theorem

7.2. So the proof of Lemma 7.4 is complete. 0
. + + R .
Lemma 7.5: Any two element set in a b is periodicity forcing.

Proof: The proof can be carried out, for example by employing the ideas of

the proof of Lemma 7.4. Moreover,Theorem 7.1 is also useful.

We omit the details. 0
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Now we are ready for

Theorem 7.6: The subset X of a+B+ u b+a+ is periodicity forcing

iff |x| 2 2 and X 1is not of the form {a'b,ba’} , i =1 (or
symmetrically of the form {ab ,bra}, i > 1).

Proof: By Examples 6.1 and 7.1 if |X| =1 or X is of the form
{alb,bal}, for some i 2 1, X is not periodicity forcing. The converse

follows from Lemmas 7.4, and 7.5. O

We want to conclude this section by mentioning the following
generalization of Theorem 7.1. One can show that any two element set in
+ % %

aba is periodicity forcing. In other words, for any pair of homo-

morphisms (h,g) , h + g , h elementary ,

*

%) le(h,g) naba| <1

and hence

% % % %
le(h,g) naba ublab |< 2.

The proof we know for the above fact is tedious, and since the result
itself is not so important, although it Supports our conjecture

(cf. Section 8) we omit it.
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8. Open Problems

Throughout this section only homomorphisms over a binary
alphabet are considered. In Section 7 it has been shown that‘{aib,bai}*
is an equality set for each i 2 1 . No other regular equality set (+{a,b}*)
freely generated by at least two words is known to us. Without claiming
that no such set exists we make a somewhat weaker conjecture in this
direction: Every regular equality set for homomorphisms over a binary
alphabet is of the form F* where F is of cardinality at most two.
Lemma 4.6, Theorems 7.1, 7.2, 7.3 and 7.6 give considerable support to this
conjecture. Further evidence is given in the discussion following

Theorem 7.6.

Actually, (4) in Section 7 indicates that an even somewhat stronger
statement than our conjecture would hold, namely that any two r-primitive ele-
ments of a regular equality set must start with distinct symbols. Hence, over a
binary alphabet there could be at most two. That also would mean that any pair
(g,h) where g is elementary, would have the "unique continuation property"
i.e. there would not exist two minimal solutions with common proper prefixes.

In conclusion, we want to mention two results which would follow
from the affirmative answer to our conjecture. A. Ehrenfeucht has con-
jectured that for every language L (over any alphabet) there exists a
finite "test set" F < L , that is a set F such that every pair of

homomorphisms agree Word by word on L iff they agree on F .,
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This has been shown to hold in the case of a binary alphabet in [5].
It is easy to see that our conjecture would imply a considerably simpler
proof and also sharpen the result given in [5], namely it would imply
that the test set could be always chosen (noneffectively) to be of the
cardinality at most three.

The DOL sequence equivalence problem is decidable [3]. 1In [13]
it is conjectured that equivalence can be determined after comnsidering
no more than first 2n words in both sequences, where. n. is the
cardinality of the alphabet. It is not hard to show that our conjecture
would imply this for n = 2

Finally, although our conjecture does not imply the decidability of
the Post's Correspondence Problem for lists of length two, it together with

results of this paper supports the belief that this problem is decidable.

Acknowledgement: The authors are grateful to the anonymous referee and

C. Choffrut for very useful comments and improvements and especially for

correcting a mistake in our original Theorem 6.2.
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