

D 8‘12 X 14

::[C’m&'r

Depd Mo,

ri

Title o Description ; ; T

Blease compiete unshaded areagi’
forr o ds dgplicable. {4
regquirggdy;

2o Distribuie copies ag follows ¥
Cranary dnd Pink—Brinting At
Libraryor applicable . Coby Centre
Goldénrod-—-Rataly.

- 2..On. completiort.ot order, pitlc copy will

Signature Signing Authorily Seretuiped iwith privted nasriak

R R : ¥ : = : canzny. copy. witl be costed and
o S b returned-to reclisitioner, Feldin &5 2
record “of your charges.

Delivery 4.-Please. divest: engirias, ouoting

td Mait 1V Swetes reguisition pumber; lgﬂPr{inting/Graph%

[Pick-up {1 Othar Services: Extension 3451

ki

Dats

§

Department - o Resm

ol

Reproduction Requircments Number of Pages Humber of Coples

Offset [Bigns/Repra’s 1 Kerox
Type of Papor Stock
i Bond = Book 1 Cover 5 Brisiot o Suppiied

Paper Size

D«S’/zx‘!'! D 8Y2 x4 1 1rxAr

Pager Colour Ik

[7} White [] Other [T} Black

Printing o Kumbering

[} 8ide [} 2 Sides o

Binding/Finishing Cperations
= Coliating 0 Gotner Stitching] 3 Ring R Tape 1 Plastic'Ring 1 Perioraling

Folding Cutting
Finished Size Finished Size

Special nstryctions

fad<ic)
7

3tV
“Mav 68 4nges

3

hig &

Erap

PREDICATE LOGIC AS A LANGUAGE
FOR PARALLEL PROGRAMMING

by

M.H. van Emden, G.J. de Lucena*
& H. de M, Silva

Department of Computer Science
Department of Systems Design*

University of Waterloo
Waterloo, Ontario
Canada N2I, 3Gl

Revised Version November 1980

CS-79-15

*Present address: Departamento de Sistemas e Computacao
Universidade Federal da Paraiba
Campina Grande, Paraiba
Brasil

ABSTRACT

We describe the formulation, execution, semanticization, and
verification within first-order predicate logic of programs in Kahn's
model of computation. The relations computed by process activations
are defined in logic. The state of a network of communicating parallel
processes is specified in a single statement of logic which is a concise
textual representation of such a network. The state is understood to
comprise the configuration of the network of process activations, the
contents of the channels, as well as the state of each sequential com-
putation within a process activation.

It is possible to derive within logic results from the
process definitions and from the state specification in such a way that
each stage of the derivation can again be interpreted as a state of a
rarallel computation and that the transitions between stages is also
directly meaningful in terms of Kahn's model of computation.

We show that dataflow programs in Lucid are closely related
to our representation of these programs in logic. We give an example
of partial verification of a terminating program. Finally, we sketch
the application of recent results on greatest fixpoints and infinitary

Herbrand universes to verification of nonterminating programs.

1. INTRODUCTION

Kahn has proposed [LPP] an attractive model of computation,
together with a mathematical semantics for it. In a subsequent paper
[NPP] with McQueen an implementation of the model was described and
illustrated by examples which show that the model is conducive to
elegant and easy-to-verify solutions to interesting programming problems.

We introduce a description of Kahn's model of computation by
a simple programming problem. The problem is to perform 'balanced

addition' on a sequence of reals. Usually numbers are added as in
((((((al + az) + a3) + a4) + a5) + a6) + a7) + ag

With respect to rounding errors it is preferable to add them as in
((al + a2) + (a3 + a4)) + ((a5 + a6) + (a7 + a8))

which is an example of balanced addition. The programming problem re-
quires this to be done in a single pass over a sequence of reals which
has to be sequentially accessed. The length of the sequence is not
known in advance.

A Parallel) program consists of a network of processes
connected by channels which transmit data. In order to perform balanced
addition on the eight numbers of our example we use a network of three
processes which all perform the same computation (called 'add') of
getting two successive numbers out of their input channel and putting

the sum into their output channel.

*) We use the capitalized 'Parallel’ to denote that a feature is specific
to Kahn's model of computation.

-2 -

—() — () () —

The above network is of course not a satisfactory solution.
The number of add-processes in the network should depend on how many
reals have to be added. So instead of the above static network, which
does not change its configuration, we need a dynamic network, which

does. We define a process called 'sigma' with an input channel only.

x:y
sigma —

As soon as it has read two numbers x and vy, it changes the network

‘ x+y
Cam)2 () —

Sigma is an example of a dynamic process. The effect is to generate

to

exactly as many activations of the add-process as are necessary to
perform balanced addition on a sequence of reals of which the length

is initially unknown. As soon as sigma reads eof, it prints the number
previously read, if present, otherwise it prints 0.

In this paper we describe the formulation, execution, seman-
ticization, and verification within first-order predicate logic of
programs in Kahn's model of computation. We define the relations
computed by process activations. We specify a state of a Parallel
computation in a clear and concise way as a single statement of logic.
The state is understood to comprise the configuration of the network of
process activations, the contents of the channels, as well as the state
of each sequential computation within a process activation. We also show
hcw to transform a Lucid, data-flow program step by step into an equivalent

logic program.

-3 -

The basic discovery reported in this paper is that it is possible
to derive within logic results from the process definitions and from the
state specification in such a way that each stage of the derivation can
again be interpreted as a state of a Parallel computation and that the
transition between stages in the derivation is also directly meaningful
in terms of Kahn's model of computation.

We envisage the following advantages of our approach to Parallel
computation: because the programming language and specification language
are the same, correctness proofs are easy to formalize and remain under-
standable even after formalization. We include a proof that sigma indeed
produces the sum; the proof method is due to Clark and Tarnlund [FOT].

Kahn's model of computation is remarkably convenient for a wide
range of applications [NPP], but it does not cover the entire domain where
parallelism is useful. This paper shows that logic can be restricted to
coincide with Kahn's model. But one should keep in mind that, as a pro-
gramming language, it is not restricted to this model: examples are very
high level formulations of sorting [PLPL] and of the eight-queens problem
[CRLP], where parallelism is essential,.

There are two different methods for implementation of the logic
approach to parallelism, both based on the Prolog language [GDM]. Clark
and McCabe have made a new version of Prolog [ICP], with coroutining
control built into it. For the examples in this paper we have used the
existing Prolog language, taking advantage of its flexible data structures
to write a Parallel interpreter in Prolog for logic definitions. The
sequential computations are passed directly on to Prolog, while the inter-
preter only negotiates the scheduling among the different process activations

of the network.

2, A LANGUAGE FOR PARALLEL PROGRAMMING

In the paper by Kahn [LPP] Parallel programs are expressed in
an Algol-like language with some additional constructs and primitives
for dealing with parallel computation. We follow Kahn's method by
adhering as closely as possible to an Algol-like language, in our case,
Pascal.

A process is analogous to a procedure in that both execute a
computation which is defined in a declaration, see lines (2) and (3)
of Box 2.1. A call referring to a process declaration creates a pro-
cess activation, such as in lines (5) and (6). Whenever a process is
created it obtains channels as actual parameters, which are created by
declarations, such as in lines (1) and (4). Typically several processes
are created in unspecified order to be executed in parallel, such as
ADD and SIGMA in line (5). The par operation of line (5) is the

parallel counterpart of the sequential ";".

(1)
(2)

(3)
(4)

(5)
(6)

program var u: channelof real;
rocess ADD (inchannel u: real; outchannel v: real);
Eadds successive pairs in input stream and outputs their sums}
var x,y: real;
begin while not eof(u) do
begin get(x,u)
3 if eof(u)
‘then begin put(x,v); put(eof,v); stop end
else begin get(y,u); put(xty,v) end

end
3 put(eof,v); stop
end;
_process SIGMA (inchannel u: real);
Ewrites the sum of all numbers contained in u}
var x,y: real; ul: channelof real;
begin if in if eof(u)
then begin write(0); stop end
else begin get(x,u)
: if eof(u)
then begin write(x); stop end
else begin get(y,u); put(x+y,ul)
H ~ADD(u,ul) par SIGMA(ul)
end end end; {read numbers into u}
begin SIGMA(u) end.

Box 2.1: A Parallel Program.

The way a process operates on channels is specified (by inchannel

or outchannel) in the code of the process declaration which refers to

formal parameters which stand for channels.

When processes are created

this must happen in an environment where channels have been created by

suitable declarations, such as in lines (5) and (6). Those created

channels occur as actual parameters in the statements which create

processes.

A process which has a channel as actual parameter replacing
an inchannel (outchannel) formal parameter, is the consumer (producer)
of that channel. Processes and channels must be created in such a way
that no channel has more than one producer and also not more than one
consumer.

The primitives specific to Parallel computation are 'get' and
'put' which have as first argument a value of type t and as second
argument a value of type channelof t; and 'eof' which has one argument
of type channel.
get(x,u) removes the first element of u and assigns it to x; if no

element is present in u, then the call remains blocked until

the time when an element becomes present.
eof(u) returns true if the first element in the channel u is the

end-of-file marker eof and false if the first element of u

is not eof. While u 1is empty execution is blocked, as with

'get'.
put(x,y) inserts element x into channel u.

Note that none of these commands allows a terminating test for
emptiness of a channel. The 'get' and 'put' are adapted from Kahn's
work, which only gave examples of infinite histories. In this example
we do not want to specify what happens when a process reads past 'eof',t
hence the explicit 'stop', which halts forever the activation of a

process and causes it to vanish from the network.

One should distinguish 'static' from 'dynamic' process defini-
tions. A process with a static definition does not change the configur—
ation of processes and channels created. It contains only sequential
code. It typically executes a cyclic computation. A process with a
dynamic definition causes the configuration to change. It typically
contains a par statement creating new process activations and starting
their Parallel execution; the definition also creates new channels to
connect them, ADD is an example of a static process definition; SIGMA

is an example of a dynamic one.

3. LOGIC SPECIFICATION OF RELATIONS COMPUTED BY PROCESSES

The distinguishing feature of networks of process activations
is that control of the sequencing of the activations of the processes
is of no concern to the programmer; it is implicit in the way processes
are connected by channels in the network. The primitive operations on
the channels have been chosen in such a way that the programmer can
regard each process as computing a relation between the histories of
the channels to which the process is connected. We use here history
in Kahn's [LPP] sense: the set of all data items that have existed
in the channel at any time during the computation. This set is ordered
as follows.

Case I: X and y have been simultaneously present in the channel.
In this case, x before y in the history if x was in
front of y in the channel.

Case II: x and 'y were never simultaneously present in the channel.
In this case, x before y in the history if x was in
the channel at an earlier moment than y was.

Because the relation between histories as computed by each
process separately is central to our understanding of the network of
processes as a whole, it is natural to express each such relation
separately in a formal definition. As formal system we choose the
clausal form of first-order predicate logic.

We represent histories by terms. As variables we use
u, v, W, X, y, z, possibly with subscripts. In our examples the con-

stants are numbers or the symbol ‘'eof', which stands for a special

kind of history. The only thing we need to assume about eof is that
it contains no data to be processed. More typically, a history is a
term of the form x:y, where x 1is a number and y is a history and
is that part of x:y that comes after x.

The relation computed by the ADD process of Box 2.1 is defined

as the least model of the following clausal sentence:

{ add(eof, eof)
(3.1)... , add(x:eof, x:eof)

, add(x12:y, x1:x2:x) < sum(x1,x2,x12) & add (y,x)
}

where sum is a 'built-in' relation: the sentence is considered to contain

the clause 'sum(a,b,c)' for all numbers a, b, and ¢ such that a + b = c.

- 10 -

4. DERIVATIONS AND COMPUTATIONS

We have given a syntax for expressing definitions of relatioms.
It is now time to see how to use such definitions; for example, to be

able to use (3.1) for showing that

add(9:5:1:e0f, 5:4:3:2:1:e0f)

is an instance of the relation defined in (3.1). Such instances are
defined by means of derivations.

Suppose that we are given the input history 5:4:3:2:1:eof
and that we want to use (3.1) to obtain the corresponding, as yet

unknown, output history w. We write the goal statement

< add(w, 5:4:3:2:1:e0f)

We note that the third clause is applicable, which says that the above
goal statement is solvable if we can solve

<+~ sum(5,4,x12) & add(wl, 3:2:1:eof)

where w = x12:wl . We assume that sum(5,4,x12) is solvable immediately
with x12 = 9 . The remainder of the derivation is the following sequence

of gcal statements:

< add(wl, 3:2:1l:eo0f)
<« sum(3,2,x12) & add(w2, l:eof)
(using the third clause and having set wl = x12:w2)

< add(w2, 1l:eof)

(having set x12 = 5)

- 11 -

which is the empty goal statement obtained by using the second clause
of (3.1) and having set w2 = l:eof.

The empty goal statement ends the derivation with success.
The net result of the substitutions w = 9:wl, wl = 5:w2, w2 = l:eof
is w = 9:5:1ieof which is according to (3.1) the output history
corresponding to the input history 5:4:3:2:1:eof.

For us the most important property of derivations is the following.
Let P be a set of definite clauses and let there be a derivation from
~ A to[] and let 6 be the accumulated product of the successive sub-
stitutions in the derivation. Then [APT] each variable-free instance
of A6 is logically implied by P. It is in this sense that we can say
that results of derivations are logical implications of definitions.
We discuss next how derivations may be interpreted as either sequential
computations of procedure-oriented programs or as Parallel computations
of networks of process activations. In both cases the interpretation
guarantees that results of computatiors are logical implications of
procedure or process declarations. In this way the model theory of
first-order predicate logic provides a denotational semantics for
sequertial programs, which was pointed out in [SPL] where the relation-
ships with the fixpoint approach were discussed. The process inter-
pretation of logic, which is explained in this paper, shows that the
results of [SPL] also apply to the denotational semantics of Parallel

programs.

- 12 -

The 'procedural interpretation' [PLPL, LPS] of logic shows that
derivations are similar to computations, and that definite clauses are
similar to procedure definitions. The details of the latter similarity
are as follows.

The conclusion of a clause is the procedure heading. The pred-
icate symbol in the conclusion is the identifier of the procedure being
defined; its arguments are the formal parameters of the procedure defini-
tion. The premiss of the clause is the body of the procedure. Each atomic
formula of the premiss is analogous to a procedure call.

Before discussing the similarity between derivations and computa-
tions, we review what are, in our view, computations in the execution of a
procedure-oriented program. Such a computation is a sequence of states of
a stack of procedure calls, The transition from one state to the next is
obtained by procedure invocation: the replacement of the call at the top
of the stack by the body of a matching declaration. Part of the matching
process is the replacement of the formal parameters in the procedure heading
by the corresponding actual parameters in the procedure call. The compu-
tation terminates when the stack is empty.

The set of possible successors of a given goal statement in a
derivation depends on the selected atom of that goal statement., In the
procedural interpretation we regard goal statements and premisses as
ordered sets, in which the leftmost goal is always the selected atom. When
we identify goals with procedure calls, it is clear that the successive
goal statements of a derivation can be identified with the successive

states of the stack during a computation of a procedure-oriented program.

- 13 -

5. THE PROCESS INTERPRETATION

A procedure has a definition which is distinct from its zero
or more activations, each of which can be identified in the stack as
the remains of a body. So also a process has a definition which is
distinct from its activations in a network. We have already shown how
to express in logic the definition of a process. It remains to complete
what we call the process interpretation of logiec by showing how to
express a network of activations which execute according to Kahn's
model of computation.

Our starting point is the prccedural interpretation, which
models states of a sequential computation by a single stack.

In Kahn's model states of a parqllel computation are networks of
process activations, each of which carries out a sequential computa-
tion. We adopt from the procedural interpretation the representation
of the state of a computation by a goal statement. The difference in
the process interpretation is that the goal statement represents not
a single stack, but a network of process activations. Because each
of the process activations executes a sequential computation, it is
represented by a stack. As a result, in the process interpretation,
a goal statement is interpreted as a network of stacks connected by
channels with contents as given by the state of the computation being

represented.

- 14 -

We will give rules for reading off from the goal statement
which activations are connected by a channel, what its directiom is,
and what its contents are. We first show an example of a logic
derivation representing the successive states of a network of processes
following the definitions of Box 2.1 as they perform balanced addition
on the sequence of numbers 5, 4, 3, 2, 1. The relation computed by

the processes are

{ add(eof, eof), add(x:eof, x:eof)

(5.1)... , sigma(0:eof,eof), sigma(x:eof,x:eof)

, sigma(z,x1:x2:x) < [sum(x1,x2,%x12) & sigma(z, x12:y) |

& jadd(y,x)

The first goal statement of the derivation is:

< |sigma(z, 5:4:3:2:1:e0f)]

53:4:3:2:1:e0f
The corresponding network is: . We now continue

to list goal statements of the derivations with comments explaining their

process interpretation. Matching with the last clause for sigma gives:

<« [sum(5,4,x12) & sigma(z,x12:y)| & Jadd(y,3:2:1:eof)]

There are now two process activations, connected in a network as follows

x12 3:2:1:eo0f

.@)

- 15 -

The fact that there are two stacks of goals to be executed
in parallel, is copied from the premiss of the third clause for sigma.
The connection between the two follows from the fact that the input
history of sigma is x12 (which is going to be 5+4) followed by the
output history y of add. By the definition of history of a channel
as the sequence of all data items that are ever present in the
channel, it follows that there is a channel directed from add to sigma
containing 6+4 in the present state.

The goals sum and add can now be replaced in either order or

simultaneously, giving

< |sigma(z,9:x12,y)] & [sum(3,2,x12) & add(y,l:eof) |

This is interpreted as the network

9:eof l:eof
(e) ——

Both processes now have sufficient input to execute. We also execute

the goal sum(3,2,x12) which belongs to the sequential code of add.

After executing in any order sum and sigma, we obtain

< [sum(9,5,x12) & sigma(z,x12:y1)] & [add(y1l,y)]| & [add(y,1l:eof) |

This is interpreted as the network:

x12 . l:eof
(Cotome) (a0) (Lot)

- 16 -

Only the rightmost process has enough input. Hence

< |sigma(z,14:y1)]| & |add(yl,1l:eof)]

with network

14 l:eof
COE N EIE

Notice that in our formulation a stopped process vanishes. Again only

the rightmost process has enough input:

< |sigma(z,l4:1:eo0f]

14:1:eo0f
with network ——

< lsum(14,1,x12) & sigma(z,x12:y)| & |add(y,eof) |

14+1 eof
e ()G

< Isigma(z,15:eof) |

Now the second clause for sigma derives the empty goal statement and
hence finishes the derivation/computation. The resulting substitution
for 2z din this goal statement, and also in the initial goal statement,

is 15:eo0f.

- 17 -

After having seen examples of all its features, it is now

time to give explicitly the prccess interpretation of logic.

a)

b)

c)

Cyclical processes are defined as relations among histories, which
need not be finite. The definition is inductive where the induction
step refers only to finite subsequences of the histories involved.
The induction step in the definition corresponds to one cycle in
the execution of the cyclical process. If the histories are
finite, then the inductive definition has a basis.

For the purpose of the process interpretation, the premisses of
the clauses are partitioned into stacks. Each stack corresponds
to the state of a sequential computation. Hence, in the defini-
tion of a static process, where the body is a single sequential
computation, there is only one stack. In the definition of a
dynamic process, when the body specifies parallel execution of
process activations, there is more than one stack: one for each
process activation.

The goals of a goal statement consist of a number of stacks, one
for each process activation in the corresponding network. If two
stacks share a variable, then the corresponding activations share
a charnel. In one of the stacks the term containing the shared
variable consists of that variable only, say u. This stack is
the activation of the producer process. In the other stack the
term containing the shared variable has the form tl:...:tn:u.

This stack is the activation of the consumer process. The terms

- 18 -

tl,...,tn are the contents of the channel; t1 is received first,

t next, and so on. In case n = 0 the channel is empty and

2
there is no way to tell in which direction the data flow.

d) In Parallel computation, any activation is eligible for execution
except those which are blocked in a get or eof operation on an
empty channel. In logic, any goal of a goal statement may be
selected when performing a derivation step. For only certain
selections can such a derivation step be interpreted as a Parallel
computation step: the goal must be in an activation which is
eligible for execution., Once the activation has been determined,
the selected goal is also determined as the leftmost. Because in
logic there are no explicit 'get' operations, the rule which de-~
termines whether a process activation is ready for execution
varies from case to case. For example, unless the next item is
eof, always two items must present before the cycle of an 'add'
or 'sigma' process activation can be initiated.

We have seen that every computation step of a Parallel program
is a derivation step, but it is not so the other way around: the process
interpretation disallows in general the selection of most of the goals
of a goal statement. However, from the logical point of view the same
result is obtained whatever goal is selected at each particular deriva-
tion step. Some selections, although disallowed by the process inter-

pretation, are instructive variants on Kahn's model of computation.

- 19 -

For instance, take in the above example the goal statement

<« gigma(z, l4:yl) & add(yl, 1l:eof)

with network

14 l:eof
G (D)

Sigma is not eligible for execution as it requires two items in the
input channel. Suppose it would nevertheless be selected. Then the

rext goal statement would be

< |sum(14,x2,x12) & sigma(z, x12:y)| & [add(y,;x)| & [add(x2:x, 1:eof)]

(14+x2) x2 - 1l:eof
—— (s (e ——

With selections admissable under the process interpretation, the second

argument of add is always input and the first is always output. How-
ever, now (according to rule (c¢) above) the situation has been reversed
in the channel between the two activations of add: x2 has been sent
from left to right. x2 is a variable, not a data item, which also
occurs elsewhere, for example in the input channel of sigma. Next time
the rightmost activation of add sends an item it is not communicated in
the usual way: the variable x2 will be instantiated with the item
wherever the variable occurs. We see this by now executing the right-

most add:

< |sum(14,1,x12) & sigma(z, x12:y) & Jadd(y,eof)

(14+1) , eof
G- G-t

- 20 -

The resulting state is now one which also occurs in the previous example.
Apparently, process activations can be allowed (in logic) to run ahead
of their input. The missing items appear as variables in the internal
computations and are also sent as variables to where they should have
come from. When the missing items are eventually produced, the varia-
bles are instantiated with the items and everything ends up in the
situation as would also be obtained according to the rules of Parallel

computation.

- 21 -

6. OTHER FORMALTZATIONS OF KAHN'S MODEL OF COMPUTATION

Logic is not the only non-~imperative programming language in
which Kahn's model of computation can be expressed: other examples in-
clude Lisp [FP] and Lucid [LLPL]. 1In this section we briefly explain
the main idea of Lucid and compare data-flow programs in Lucid with
those in logic.

Lucid is a language developed by E. Ashcroft and W. Wadge,
and formally described in [LLPL]. Lucid has in common with logic that:
a) it is a single formal system which can be used both for writing

programs and for reasoning about programs;
b) it is assertional: each statement is an axiom, hence can be under-
stood without reference to an execution mechanism.

Here we are interested just in ULU, a subset of Lucid which
can be regarded as a data-flow language. We will briefly and informally
introduvce ULU by using examples.

In ULU, expressions denote infinite sequences of data objects;
functions transform sequences into sequences.

Let us assume that

>

<a0, al, az, aee

is the first element, a, is the second

is an infinite sequence where a 1

0

element, etc. .

- 22 -

x = <1, 2, 3, 4, ...>
three = <3, 3, 3, 3, ...>
T = <true, true, true, true, ...>
F = <false, false, false, false, ...>
P = <false, false, true, true, ...>

Here are some examples of Lucid functions:
first x = <1, 1, 1, 1, ...>

(note that first three = three)

next b4 <2, 3, 4, 5, ...>

three fby¥* X <3, 1, 2, 3, ...>

X + three <4, 5, 6, 7, ...>

(this is the pointwise extension of addition)

X eq three <false, false, true, false, ...>

X gsa** P <3, 3, 3, 3, ...>

(x asa P is a constant sequence corresponding
to x at the smallest index where P is true).

if P then x else zero = <0, 0, 3, 4, ...>

* fby dis pronounced "followed by".

*% asa is pronounced "as soon as'".

- 23 -

Consider now a simple ULU program to compute [/W]:

first x = one

first y = omne

next x = X + one

next y = y + two * x + one
result = (x-one) asa (y gt n);

if n = <20, 20, 20, ...>

then a solution for the above equation is:

x = <1, 2, 3, 4, 5, ...>
y = <1, 4, 9, 16, 25, ...>
y gt n = <false, false, false, false, true, ...>
x-one = <0, 1, 2, 3, 4, ...>
result = <4, 4, 4, 4, 4, ...>

A solution for the balanced-addition problem can be formalized

in ULU as follows:

(6.1)... add (x) = if first x eq eof
then eof
else if first (mext x) eq eof
then first x fby eof
else (first x + first(next.x))fby add(next(next x)
(6.2)... sigma(x) = if first x eq eof
then zero
else if first (next x) eq eof
then first x

else sigma (add (x))

- 24 -

As an illustration, if x = <1, 2, 3, 4, 5, eof >,

then the equation defining sigma implies:

sigma (x) sigma (add(<1l, 2, 3, 4, 5, eof >))
= sgigma (<3, add(3, 4, 5, eof >) >)
= gigma (<3, 7, add(<5, eof >) >)

= éiém; (<3, 7, 5, eof >)

= sigma (add(<10, 5, eof >))

= sgigma (<15, eof >)

15, eof >

We will illustrate how to transform an ULU program step by
step into an equivalent logic program. Consider the ULU definition

of sigma (6.2).

Step 1: We rewrite (6.2) as conditional equatioms,

i

(6.3)... sigma (x) = zero <~ first x eq eof

il

(6.4)... sigma (%) first x < = (first x eq eof)
& -t first (mext xX) eq eof

(6.5)... sigma (x) = sigma(add(x)) <« v (first x eq eof)
& -1 Eirst (next x) eq eof)
Step 2: With every non-boolean function f(xl, oo s xn) we associate

a relation F(result, x vee Xn), where result = f(xl, ..q,xn);

1’
also, with every boolean function'b(xl, ey xn), we associate
a relation B(xl,...,xn). In our example, we associate the

predicate symbols SIGMA, ADD, FIRST, NEXT and EQ, with the

funection symbols sigma, add, first, next and eq, respectively.

Step 3:

(6.6)...

(6.7)...

(6.8)...

Step 4:

(6.9) ...

(6.10) ... FIRST(XO:eof, X

- 925 —

We rewrite the conditional equations (6.3) - (6.5) using the

predicates above:

SIGMA(zero, x) < FIRST(eof, x).

SIGMA(XO, X) .- FIRST(XO, x) & = EQ(eof, xO)
& NEXT(xt, x) & FIRST(eof, xt).

SIGMA(z, x) < FIRST(XO, x) & —1 EQ(eof, XO)

& NEXT(xt, X) & FIRST(Xl, Xt) & —v EQ(eof, x.)

1
& ADD(x', x) & SIGMA(z, x').

The above program is representation-independent because no
commitment has been made concerning data representation.
Let us choose to represent by "eof" any sequence we are not
going to process, and let us use the right-to-left-binding

",
:

operator Lo represent sequences according to the def-

inition
<sequence> :: = eof l number : <sequence>

The following clauses provide an <nterface between the

representation-independent program (6.6) - (6.8) and our

chosen data representation:

FIRST(eof, eof).

0 %)

(6.11) ... NEXT(Xt, x :xt) .

0

- 26 -

Step 5: Using (6.10) to resolve the first occurence of FIRST in (6.7)

we obtain:

':X I)

.
(6.12) SIGMA(XO teof, x 0 ‘

O':xt') <= EQ(eof, xo':eof) & NEXT(xt,x

& FIRST(eof, Xt) .

Resolving all occurrences of FIRST and NEXT in (6.6) - (6.8)
by using (6.9) - (6.11), we obtain a representation-dependent

logic program:

(6.13) SIGMA(zero, eof)

(6.14) SIGMA(XO:eof, xo:eof) < - EQ(eof, xO:eof)
(6.15) SIGMA(z, XO:Xi:Xt) < -1 EQ(eof, xo:eof) & = EQ(eof, xl:eof)
& ADD(x', xO:xl:xt) & SIGMA(z, x").

Assuming that the clauses will be considered in textual order,
ard considering that our program does not involve backtracking, we may
drop the predicates EQ from (6.13) - (6.15), obtaining a program which
is almost identical to (5.1), obtained directly from the informal des~-
cription of the problem. The differences arise from the fact that now
we used "zero' where previously we had used O:eof, and also from the
fact that in (5.1) we defined sigma in such a way that, as soon as it

reads in two numbers x and y, it changes itself to

Com) 2 (G

while in the ULU program (and consequently in (6.13) - (6.16))it changes

itself to

: Xy
(sigma) add

- 27 -

7. CORRECTNESS FOR TERMINATING PARALLEL COMPUTATIONS

For verification of Parallel programs expressed in logic we
use the method proposed and demonstrated by Clark and Tarnlund [FOT].
According to their method the definitions used for computation are
proved as theorems from specifications in first-order predicate
logic. Unlike the definitions, the specifications are not mecessarily
in clausal form. The type of verification obtained is partial correct-
ness: 1if the computation terminates, the instance of the relation
derived by the computation is also an instance of the relation defined
by the specification.

We illustrate the method by a verification of example (5.1),
our logic version of the Parallel program in Box 2.1. As specification

for sigma we use:

(6.1)... sigma(0:eof ,e0f) A
(6.2)... ¥x,y,z. sigma(z,x:y) <> Jzl.sigma(zl,y) & sum(x,zl,z) A
(6.3)... ¥x,y. add(x,y) - 3ds.sigma(s,x) & sigma(s,y)

According to the specification, the sum in sigma is obtained in the
normal way. We can prove each of the clauses for sigma in (5.1) as

a theorem from the specification with the help of some general arith-
metical knowledge, such as the properties of 'sum'. We prove in effect
that, for associative addition of reals (it is this property that
rounding errors typically invalidate), balanced addition is equivalent

to naive addition.

~ 28 -

Proof of sigma(z,x1:x2:x) < sum(xl,x2,x12) & sigma(z,x12:y) & add(y,x):
sum(x1l,x2,x12) & sigma(z,x12:y) & add(y,x) + (6.2)

Js'.sum(x1l,x2,x12) & sigma(s',y) & sum(s',x12,z) & add(y,x) =+ (6.3)
Js'.sum(x1,x2,x12) & sum(s',x12,z) & sigma(s',y) & sigma(s',x) = (property of sum)
Js.s'.sum(s',x2,s) & sum(s,x1l,z) & sigma(s',x) =+ (6.2)

ds.sum(s,x1,z) & sigma(s,x2:x) - (6.2)

sigma(z,x1:x2:x).

- 29 _

8. CORRECTNESS FOR NONTERMINATING PARALLEL COMPUTATION

We introduce this section with an example involving infinite
histories. The example is from Kahn and McQueen [NPP]. It is a program
to solve Hamming's problem: to make a computer print in increasing
crder all positive integers having only 2, 3, and 5 as prime factors.
All processes are static, so the network remains unchanged during the
entire computation. The network is shown below. All channels are

initially empty except for the integer 1 in u.

W1 times(2) Vi

merge v

3 times (5)

b
3
Ao

times(i): output history is, element by element, i times the input
history;

merge: output history is the result of merging the input histories,
where duplicates are suppressed;

copy: each output history equals the input history; as a side

effect its input is printed.

- 30 -

These relations are specified as follows:

H = {times(wl:w,vl:v,u) < prod(vl,u,wl) & times(w,v,u)
,merge(x:u,x:wl,x:w2) < merge(u,wl,w2)
smerge (x1:u,xl:wl,x2:w2) < x1 < x2 & merge(u,wl,w2)
,mmerge (x2:u,x1:wl,x2:w2) < x1 > x2 & merge(u,wl,w2)
,copy(x:vl,x:v2,x:v3,x:u) < copy(vl,v2,v3,u)

}

The network can be read off from the following goal statement:

< copy(vl,v2,v3,1:u)
& times(wl,vl,2) & times(w2,v2,3) & times(w3,v3,5)

& merge(x,wl,w2) & merge(u,x,w3)

The set of sequences that can be printed out by the program is character-
ized by the predicate 'result' as defined in the clause below and

supported by the clause in H.

Result(l:u) < copy(vl,v2,v3,1:u)
& times(wl,vl,2) & times(w2,v2,3) & times(w3,v3,5)

& merge(x,wl,w2) & merge(u,x,w3)

Let us briefly review the main features of the fixpoint seman-
tics for logic prcgrasms as developed in [SPL]. With a set P of
definite clauses there is associated a monotone mapping T from inter-
pretations to interpretations such that I is a Herbrand model of P

iff I o T(I). Hence the least fixpoint of T is the set of all

- 31 -

variable-free atomic formulas which are true in all Herbrand models of
P and it is also the set of all possible results of derivations (and
hence finite computations) from P. The least fixpoint semantics of
[SPL] is adequate for terminating computation.

However, for the Hamming program the denotation of Result in
the least fixpoint of T 1is empty. And indeed, there is no finite
computation with <Result(x) as first goal statement. But surely
there must be a meaningful relationship between the Hamming program
and the infinite sequence substituted for x by the infinite derivation
starting with <Result(x). It is reasonable to require of a semantics
of logic programming to establish such a relationship, and therefore the
least fixpoint semantics of [SPL] requires at least an extension.

That this can be done for nonterminating computations in
general. has been shown in [ITS]. Without going into any details, we
will here illustrate the main idea with the simplest possible example.

Consider the following network consisting of a single process
Incr which continues reading a number, writing it, incrementing it by
one, and placing the result on its output channel, which is also the

input channel. This channel contains initially a single number O.

- 32 -

The definitior of the relation cecmputed by Incr is:

Incr(xl:y, x:z) < sum(x,1l,x1) & Incr(y,z)

The network is specified by the goal statement <+ Incr (x,0:x) . This
goal statement initiates an infinite computation, which substitutes for
x successively 1:...:n:xn for n=1,2,... .

Let us see what the sentence

P = {Incr(xl:y,x:z) < sum(x,1,x1) & Incr(y,z)
,Omega (0:x) < Incr(x,0:x)
}

says about the result 0:1:2:,.. of the computation starting with

< Omega(x). The result certainly is not in the denotation of Omega
in the least fixpoint of T, the transformation associated with P,
which is empty. One reason why we cannot expect otherwise is that
the underlying domain, the Herbrand universe, contains only finite
terms. In fact, with this domain, the denotation of Omega in any
fixpoint of T is empty. Thus, if we are to give a semantics for
infinite computations we must consider infinitary Herbrand universes
containing all terms of the usual Herbrand universe plus the infinite
terms that can be regarded as limits of monotone sequences of finite

terms.

- 33 -

Now the denotation of Omega in the least fixpoint of T, when
taken in the infinitary Herbrand universe, is also empty. This time,
however, the denotation of Omega in the greatest fixpoint of T is
exactly what we want, namely the sequence 0:1:2:... of all natural
numbers.

The results of [ITS] can be used to verify P. In the first
place, if we can show that no derivation from P exists with < Omega(x)
as first goal statement and X some variable~free term not equal to the
omega sequence, it would follow [NAF, APT] that any such Omega(x) is

false in all models of, and hence in the greatest model of

P' = {Iner(xl:y,x:z) - Sum(x,1,x1) & Incr(y,z)
,0mega(0:x) + Iner(x,0:x)

}

which is the converse of P. If we can show that all derivations from
P starting from < Omega(0:1:2:...) are infinite then it would follow
that Omega(0:1:2:,..) dis true in the greatest model of P', provided
that the infinitary Herbrand universe is the underlying domain. In
[APT] the greatest model of P is related to the greatest fixpoint
semantics of P. This example suggests that greatest fixpoints charac-
terize infinite computations in a way that is similar to the way least

fixpoints characterize finite computations.

- 34 -

9. RELATED WORK

Rowalski [PLPL, LPS] introduced the procedural interpretation
and discussed the possibility of coroutining among goals. Bruynooghe
and Clark [CRLP] have pursued this coroutining much further. They
arrived at a model of computation of great generality, having among
others as special cases both Kahn's model and lazy evaluation. Moreover,
Clark and McCabe have implemented this in a system called IC-Prolog.

This paper has in common with the work of Bruynooghe and Clark
that coroutining computations are obtained by a suitable choice of
selected atom. Another approach is taken by Pereira and Monteiro [PCLP]
who assume that, for efficiency reasons. the leftmost goal is always the
selected atom. They obtain the equivalent of parallel execution by a
systematic and very elegantly conceived transformation of the logic

definition.

- 35 -

10. REFERENGES

[LPP]

[NPP]

[FoT]

[PLPL]

[CRLP]

[GDM]

[ICP]

[MOL]

[ATP]

[APT]

[LPS]

[SPL]

[ITS]

[PCLP]

[FP]

[LLPL]

G. Kahn "The semantics of a simple language for parallel
programming' Proc. IFIP 74.

G. Kahn and D.B. McQueen '"Coroutines and networks of parallel
processes" Proc. IFIP 77.

K.L. Clark and S.A. Tarnlund "First-order theory of data and
programs" Proc. IFIP 77.

R.A. Kowalski '"Predicate logic as programming language" Proc.
IFIP 74.

M. Bruynooghe and K. Clark "A control regime for logic pro-
gramming" (in preparation).

A. Colmerauer '"Grammaires de metamorphose" in L. Bolec (ed).
"Natural language communication with computers'" Springer
LNCS.

K.L. Clark and F.G, McCabe "IC-Prolog manual' Department of
Computing and Control, Imperial Collecge.

J.A. Robinson "A machine-oriented logic based on the resolu-
tion principle" J.ACM 12 (1968).

D.W. Loveland "Automated Theorem-Proving" North Holland 1978.

K. Apt and M.H. van Emden "Contributions to the theorv of
logic programming" Research Report CS-80-12, Dept. of
Computer Science, University of Waterloo.

R.A. Kowalski "Logic for Problem-Solving" North Holland-
Elsevier, 1979.

M.H. van Emden and R.A. Kowalski "The semantics of predicate
logic as programming language: J.ACM 23 (1976).

H. Andreka, M. van Emden, I. Nemeti and J. Tiuryn "Infinite
term semantics for logic programs'" (in preparation).

L.M. Pereira and L.F. Monteiro "The semantics of parallelism
and co-routining in logic programming' Colloquium on Mathema-
tical Logic in Programming, Salgodtarjan, Hungary, Sept. 1978.

P. Henderson "Functional Programming'" Prentice-Hall, 1980.

E.A. Ashcroft and W.W. Wadge "Lucid - A Logical Programming
Language'" Academic Press (to be published).

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

