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Abstract. A periodic network is a queueing network whosgr stea:fay state behaviour is not constant in time, but re-
peats itself in a cycle. This behaviour may be caised: by the mtrod:uctlon of periodic servers, e.g. paging drums. The model
presented is a generalization of some other models of queueing networks, and pr0v1dcs a more general definition of steady
state behaviour. A theoretical solution is presented. Examples of theoretical and approx1mate solutions are presented for a
well known queueing network model of a computer system.

1. Introduction.

A Periodic network is a queueing network whose steady state behaviour is not constant
in time, but repeats itself in a cycle. One important cause of this behaviour is the introduction of
periodic servers in the network. A periodic server is a special kind of server that starts service of
its customers in the queue only at certain points in time. A rotating memory device used for swap-
ping equal size blocks, such as a paging drum or disk, is an example of a periodic server. Figure I
shows a schematic graph on the behaviour of a periodic server. Coffman and Denning [5] and
Fuller and Baskett [7] have comprehensively studied the behaviour of paging drums and disks.
However the authors are not aware of any comprehensive work that analyzes the effect such
periodic servers have on queueing networks that contain them.

The classic analyses of queueing networks containing disks or drums (Baskett et al [2],
Kleinrock [12,13], Jackson [10,11], Gordon [9], etc.) are based on the assumption that the requests
to servers are started at random (not synchronous) times. In this case an exponential server is a
good approximation. The interservice time may be considered random when we have a very low
arrival rate, or the lengths of the records (i.e. service time) are variable. At the other extreme,
when there is a heavy swapping activity of equal size pages and the queue waiting for service is
essentially never empty, we may assume that the service time is constant and approximate the
behaviour of the devices with an M/D/1 server. However because the assumptions that support
such approximations are different, they are not valid to describe situations between these two ex-
treme cases. Considering the periodic nature of certain devices in a system allows us to model sys-
tem behaviour better across a broad spectrum of cases while including both extremes as special
cases.

The purpose of this study is to develop theoretical solutions of queueing networks con-
taining periodic servers. Section 2 of the paper defines terms and notation. Section 3 provides a
steady state solution for a periodic network Sectlon 4 presents an example of a queuemg network

analyzed with these techmques
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2. General Definitions and Assumptions.

Consistently we denote vectors and matrices in boldface capital letters (e.g. A, W, P).
Flements of matrices or vectors are denoted by the corresponding lower case boldface, with the
proper subscripts (e.g. a;;). A superscript + or — indicates the limit to the quantity by the right or
left respectively (e.g. 71). Superscript T (e.g. P7) on a vector matrix means the transpose of that
vector or matrix.

A queueing network will be defined by a directed graph in which each node represents
a particular queue-server pair, and each edge represents a possible path for customers from one
server to another.

We assume that there is a fixed number, n, of indistinguishable customers circulating
through the network, i.e., it is a closed network. Let k = k,+k, be the total number of servers
(exponential + periodic) in the network. Each server has arbitrary mean service time. Associated
with each server there is a queue of capacity at least n. The analysis given here is essentially the
same for any simple queueing discipline, i.e. FIFO, LIFO, etc.

The state of the network will be defined by the number of customers in each exponen-
tial server, and by the number of customers in queue and in service in each periodic server. Notice
that for a periodic server, the server may be idle although its queue may have customers awaiting
service. If R(k,.k,,n) is the number of possible distinguishable states, then we have [12]:

R(k,.0n) = (2.1)

n+k,—1
n

if there are no periodic servers. The following recursion formula yields the number of distinguish-
able states, r, counting both exponential and periodic servers. The formula results from consider-
ing how the number of states changes when one replaces an exponential server with.:a periodic



Server.

r o= Rkekpn) = 2R(ke+1k,—1.m)=R (kokp—1.1) (2.2)

We {ind that

(2.3)

We will number each state with an unique integer from 1,2,...,r.

Let P(¢) be any r —dimensional column vector that contains the probability that each
of the r states is the state of the network at time £. Normally P(¢) is a function of the topology of
the network (reflected by the global balance equations), the initial state and time.

We say that the network is in periodic steady state if the probability state vector P (1),
is a function of time which repeats its behaviour every 7 units of time (e.g., see Figure II). 7 will
be called the eycle of the network. Because a network that is 7-periodic is also 27-periodic, we will
take as canonical form the smallest possible 7. Thus we have:

Px(r) = P,\'([ +7) [0<t <T] (2.4

Note that this definition of steady state covers the normal notion, since given any P(7)
for which P'(z) = 0 => P(r) = const = P(t+7).
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3. Theoretical solution.

First we will consider only the tmc intervals where the periodic servers do not cause a
change in state of the network; that is, those intervals that do not include points in which an
instantaneous state transition occurs as a result of any periodic server activity. An
instantaneous State transition at time T is a discontinuity of P(z) at t =7. An instantaneous state
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iransition may occur by the starting or completion of service in a synchronous server. In any of
irese intervals, the global balance equations yield:

P'(1) = APQ). (3.1

A ‘s ar Xy matrix that defines all possible state transitions for the exponential servers.
Lach elemen: a;; of the matrix A is determined by the global balance equations (or flow-
conservation equations, as in Kleinrock [12]) and results in: a;;=0 if there exists no single custo-
mer transition that takes the network from state j to state i; a; = uj; iff departures from state j
to state 7 occur at a rate g j; and finally a; = —E;.L,-_,- (total rate of departure from state /).

j

It follows immediately that the number of nonzero terms of each row of A is bounded
by the topology of the network (i.e., the bound is the number of outgoing edges from exponential
server nodes + 1), Moreover this matrix A is constant with respect to time, and the maximum
norm, || Al| <2Zuy. (where py is the departure rate from exponential server k), is bounded by the
characteristics of the network, but independent of the number of customers and possible states.

et e be defined in the usual way (Frazer [6]) as:

2 3
(.A=I+A+A‘+A_+A.. (3.2)
2 3!

In the ‘ntervals (¢g.0) where no activity in the periodic servers occurs, the solution of
the system (3.1) 1s:

P([) = (’Al.P([()), (3.3)

where P(t¢) is the initial state vector. It is important to note that the behaviour of the P(z) vector
in intervals with no periodic-server activity is completely characterized by P(z ().

3.1. Single periodic server networks.

Suppose there is only one periodic server in the system, and it has both cycle and ser-
vice time equal to 7. Let R be the matrix that defines the state transition caused by the start or
completion of service in the periodic server, based on the probability state vector before such an
operation, hence:

P(+t) = RP(") (3.1.1)

R is an rXr matrix consisting of ones and zeros only. R describes the discontinuous transitions
that occur in the network.

Now we will define P.(0%) = P.. a probability state vector, that will characterize the
steady state solution, P (1), of the periodic network. Using 2.4, 3.1.1 and 3.3 we obtain:

P(OT) = P(+1) = RP(r7) = ReA PO (3.1.2)

2, tisfy:

P, = R.eA™P, (3.1.3)

P« ihe cigenvocior of R.eA7 whose corresponding eigenvalue is 1), Since P, is a probability
for.we normalize Py oin such a way that the sum of all its elements is 1.



P.(1) = MNP, [0<1<7] (3.1.4)

dltines the periodic steady state. Note that if R.eA7 contains no unit eigenvalue then there is no
rossible steady state solution for the nctwork.

Let Q7) = WP(t) = (wwa....w,.Ps(t) be a performance index that character-
izes behaviour of the network that we want to cvaluate (e.g. probability of certain configuration;
mean queue length; utilization of certain server: or simply moments of marginal distributions).
Clearly we are interested ' the average behaviour of Q(¢) rather than in its value for a certain 1.
Bocause of the periodic behaviour of Py(#) and consequently Q(z), we only need to consider the
average over a 7 period of time. Then the averaged Q(r). denoted Q, will be:

T T
Q = 7 YWPir dr = WorTlfeA qrP, (3.1.5)
0 0

We will call

T [eAdLP, (3.1.6)

the average probability state vector (APSV). Notice that for a given network this vector does not
depend on W. so we mnan codeulate any vatue Q for any vector W while only having to perform the
APSY calculation once.

3.2. Multiple periodic servers.

Assume now that there is more than one periodic server, or that there is more than one
discontinuous event in the cycle of the periodic server. Both situations imply that we will have
more than one discontinuity in the probability state vector. If there is no rational relation between
their periods, it is intuitively clear that there is no way to define a periodic steady state as before.
Suppose then. that there exists a rational relation between their cycles, such that after a sequence

O0=719<7y< - -+ <7;=7 ol transition points in time. we complete a period, and the network is in
the same state as in time 0. Associated with the end of each interval [7;_; ;] there is a
corresponding transition matrix Ry, Let &; = 7,—7, .

The solution of this general system. using similar notation to that of Scction 3.1 is as
follows.
For cach period of {0 fween transitions we have:

Piry = AP > P+r) = AMPE) [0<r<A; 4] (3.2.1

F o each iransition we

P = RoPir (3.2.2)

in vhe perodic steady state, putting this together we have:

P, now is calculated as the cigenvector of the product of all the matrices whose eigen-
value v i and is normalized so that its elements add up to 1. P(7) is sectionally defined by:

P r47) = eMP(r)  [0<1<A; 4] (3.2.4)
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FooTy = ROTTPUE) (3.2.5)

R
Pt = P (3.2.6)
The average probability state vector is calculated as follows:

.
APSY = 13 [ eA dLP(rit ). (3.2.7)
=1 0

3.3. Complexity of the computations.

In the following cvaluations we will assume that k =o(r). The fact that A is sparse
becomes quite important for the numerical computation. The common Taylor expansion is best
suited to compute the exponential forms. Since ||Al| is bounded, only a fixed number of terms of
the expansion will be used. Since the number of non-zero elements in A is O (r), each power of A
can be calculated in O (r2) multiplications. Moreover, since the number of terms in the expansion
is constant, the evaluation of ¢® takes also O (r2) operations.

.

The same arguments apply for the evaluation offeA’ dt.
0

Sirce R s a matrix of # 1’s, the product R.¢eA will be performed in 0(r2) operations.

suation of ihe cigenvalue that determines P is accomplished by the solution of

systew o Ujear cauntions oo dimension »—1. The solution of such a system of equations could

boodone = 7 4r?) operations donending on some conditions of the matrices that are not always truc

“orga [167) Unfortunately ¢ we cannot use O (r2) techniques or if we have j>1 and we have to
actually multiply the matrices in 3.2.3, the solution process becomes O (r).

The actus] size acd. in some cases. exponential growth of the problem indicates that
Byosmall neiworks mav be solved exactly.

3.4. General Approv nate Solution of Periodic Networks.

I~ obtata an apr mate solution we ohserve the fact that in periodic networks (as
describc - e 2.2) ali ithe comoanrents of the network oscillate with the same cycle. In this steady
siate. eoc1 node has an arrive - ~rohability distribution and probability state vector (of the node

tisell. “eroring the rest of the network) that repeats its behaviou: every 7 units of time.

5 [8] we discuss o method of computine :noroximate solutions based on the above
remark  Fhese approximate solutions are most accura’« vhen we have only one periodic server.

4. Example Results

o othis seeon we ol analvze taree soowerks The firs s a simple loop containing .o

~each weih te cacue. 0 the seecsd and thied are wvell kerown models of a time sharing svs-

q 1144 The B exampic will be used mainly to illustrate the mechanisms of the theoretical
<fuiron. The other cxamples vill be coo suted for 57 r»"ans similar to the ones studied in [1.14].

<0 we can compare results.



4.1. Simple Loop.

The following figure illustrates the topology of the first example.

— % ||

Exponential server

| [e—

Periodic Server

Figure TI1

A fixed number ol customers, n, circulate through the network. For this example
(using the exact derivation). assume that 7 =2. The number of possible states of the network, using

(2.2). is
F=R(1.1,2) = 2R(2,0,2)=R (1.0.2) = 5. (4.1.1)

A detailed description of each state is:

State Periodic Exponential
server server
! 0-0 2
2 0-1 1
3 1-0 1
4 0-2 0
5 1-1 0

where (he two numbers for the periodic server give the number of customers in service and in

euce

he globul halance equations define the matrix A so that:

P —u 0 0 0 0 P
P'v) ( © —u 0 0 0 P>
Py = {p3|= | 0 0 —u 0 0 R
P4 0 g0 0 0 P4
P's 0 0 u 0 0 P's

In this case we compute e Al explicitly, i.e.



e M 0 0 0 0

ute ~H e TH 0 0 0

eAl = 0 0 e M 0 0
I—(14put)e ~H | — M 0 1 0

0 0 |—e M 0 1

The matrix R is derived from the transitions that occur at 7 caused by the periodic
server. This in words is: for the periodic server, when the customer in the server (if any) completes
its service, one of the customers in the queue (if any) starts service.

1 0 1 0 0
0 0 0 0 O
R = O 1 0 0 1
0 0 0 0 O
O 0 0 1 O

If we denote o = u7, then the matrix that describes a complete transition, from time
0" to time 7%, using [3.1.2], is:

e @ 0 e ® 0 0

0 0 0 0

R.eA7 = ae @ e @ |—e™¢ 0 1
0 0 0 0 0

I—(l+a)e ™™ 1—e™¢ 0 1 0

The eigenvector whose eigenvalue is 1, that defines the steady state solution, is:

1
P et I—(1+a)e @
po 0
e“—1
73 — X -
= e+l =(1+a)e
P4 0
[—(1+a)e @
P =
e I—(1+a)e @

Clearly this is not the way one would normally compute solutions; instead, they would
be numerically computed.

4.2. Resource [.oop Model of a Time Sharing System.

The following figure illustrates the network with which we intend to model part of a
time sharing system. This model has been carclully described and analyzed in [1,3,14], among oth-
ers. The model consists of three servers: CPU, Secondary Memory and other /0O in the form of a
file disk. The secondary memory is likely to behave like a periodic server since we will probably
use o drum or disk to swap fixed size pages in and out. In this model the secondary memory plays

d-¢isive role in the behaviour of the overall performance, so an inaccurate representatior n iis
modclling may invalidate the results.
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In this case we {ind 16 different states. They are indicated by (customers in CPU, in
periodic server - in periodic queue, file disk).

1 0.003) 5 (1,0:0.2) 9 (2,0-1,0) 13 (0,1-2,0)
> 0.0-12) 6 (1.0-1.1) 10 (3,0-0,0) 14 (1,1-0,1)
3 0.0-2.1) 7 (1.0-2.0) 1 (0.1-0,2) 15 (1,1-1,0)
4 (0.0-3.0) 8 (2,0-0.1) 12 (0,1-1,1) 16 (2,1-0,0)

The following paragraph shows a typical output of the program that computes the exact
solution,

SOLUTION OF RESOURCE L.LOOP MODEL

degree of multiprograming (number of customers) = 3
number of available memory pages= 128

mean compute time between 1/0 requests= 20.0

~1ean total compute time= 1000.0

locality and memory management parameter= 1.50
sccondary memory service time= 5.0

file-disk mean service time= 30.0

DERIVED VALUES
mean time between memory faults= 2.787
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rate of cpu= 0.4098

rate of file disk=0.0333

probability of exit from the resource loop= 0.00244

probability of memory fault= 0.87555

probability of i/o fault= 0.12201

Average Probability State Vector (APSV)

0.08146 0.06053 0.01127 0.00189 0.05430 0.01513 0.00332 0.02179 0.00634
0.00959 0.10023 0.16283 0.17247 0.10645 0.15199 0.04040

probability of 0,1,..., 3 customers at node 0
0.590669011 0.331203296 0.068537984 0.009589709
expected number of customers= 0.4970484  variance= 0.666787

probability of 0,1,..., 3 customers at node 1
0.167146126 0.329084019 0.329416604 0.174353252
expected number of customers= 1.5109770  variance= 0.965856

probability of 0.1,..., 3 customers at node 2
0.386003520 0.317475401 0.215064009 0.081457069
expected number of customers= 0.9919746  variance= 0.962721

CPU UTILIZATION 0.4093310

The following table and graph show the exact values for several degrees of multipro-
gramming. These results compare very well to those obtained by [1,14]. The graph shows a slight
shift to the right that may be interpreted in terms of the behaviour of the secondary memory
server, which is a periodic server.

Degree of CPU Queue length
multiprogramming  Ultilization at Second. Mem.
1 0.330 0.174
2 0.410 0.662
3 0.409 1.511
4 0.339 2.780
5 0.257 4.143
6 0.197 5.391



CPU Utilization

- 11 -

Mean compute time between 1/0
continuous line 20ms.
dashed line 10ms.

Degree of Multiprogrammirg

Figure V
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“4.3." Résource Loop Model'of a Timesharing System with 2 Periodic Servers.

Figure VI shows the topology
memory devices modelled as periodic ser
7o=15ms respectively. Note that the tota

the previous example.
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The following table shows the average number of customers (7;) and utilization factor

1 SM. |

3 =—

EXPONENTIAL SERVER

4 ] =—

Figure VI

(u;) of each server for various numbers of customers.

Degree of
Multiprogramming  u;
1 0.2725
2 0.3015
3 0.2822
4 0.2369

)

0.2725
0.3539
0.3567
0.3074

K2

0.0993
0.2777
0.4400
0.5452

)

0.0993
0.3041
0.5511
0.7882

Table 1

M3

0.2198
0.6114
0.8593
0.9631

n3

0.2198
0.7764
1.5368
2.4535

14

0.4048
0.4506
0.4112
0.3375

of a particular timesharing model with two secondary
The service time of these servers are 7{=7.5ms and
| throughput of the secondary memory is the same as for
In this case we use the solution described in 3.2.

0.4048
0.5655
0.5554
0.4509
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5. Conclusions and further work.

In this paper we present a method for the exact solution of queueing networks that con-
tain periodic servers. The method is primarily applicable to networks with a small number of
Servers.

The example applications presented here deal with computer systems, featuring values
of the period 7 in the order of milliseconds. Neither the problem statement, nor the assumptions,
nor the methods of solution presented depend on the periods of the periodic server been small.
Thus, the method is applicable to any kind of system that can be modelled as a queueing network
having either periodic or exponential servers, regardless of the values of 7. A wide variety of kinds
of systems can be modelled, from banks to supermarkets to computer networks. Note that any
daily process is by nature periodic.

A number of example queueing networks were analyzed using these methods, and the
results were compared with simulations. Discrepancies were found to be very small. No attempt
has yet been made to compare measurements of a real system with results of using these methods.
The necessary measurement tools are available [15], and plans exist to make such comparisons in
the near future.

The work extends the class of functions that can be used as service distributions to
include the class of all bounded variation periodic functions.

It appears possible to extend this work to provide solution of open networks, i.e., when
external arrivals and departures are allowed. Further research should be done to see if it is possi-
ble to generalize the class of non-periodic service distributions (e.g., M/G/1) that can be included
with periodic servers in queueing networks.
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