A Linear Time Implementation of the
Reverse Cuthill-McKee Algorithm

by

W.M. Chan and Alan George
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
N2L 3G1

Research Report CS-79-13
April 1979

Abstract

The Reverse Cuthill-McKee (RCM) algorithm is a method for
reordering a sparse matrix so that it has a small envelope. Given a start-
ing node, we provide an implementation of the algorithm whose run-time
complexity is proved to be linear in the number of nonzeros in the matrix.
Numerical experiments are provided which compare the performance of the

new implementation to a good conventional implementation.

1. Introduction

Consider the system of linear equations

Ax

b,

where the N by N matrix A is sparse, symmetric and positive definite.
If Cholesky's method is to be used to solve the system, the essential
first step is to reorder the system; that is, to find a permutation matrix

P with the aim of solving the equivalent system
(PAPT)(Px) = Pb ,

where P is chosen so that the Cholesky factor L of PAPT has desirable
properties. A common choice for P s one for which PAPT has a small
envelope [2], and one of the most widely used and effective algorithms for
finding such a permutation is the Reverse Cuthill-McKee (RCM) algorithm,
which we describe in Section 2.

In this paper we describe an implementation of the RCM algorithm
which can be proven to execute in O(|A|) time, where |A| denotes the
number of nonzeros in A . Since the number of inputs to the algorithm
is 0(|A]) , and the input must be read, it follows that our implementation
is asymptotically optimal. Moreover, we provide numerical experiments
comparing our implementation to a good existing implementation for which
no such execution time bound can be provided. The experiments indicate

that our new implementation is very competitive or superior.

2. Description of the RCM Algorithm

The algorithm operates on the unlabelled graph of the matrix A,

so we begin by 1ntroducing a few graph theory notions. For our purposes,
a graph G = (X, E) consists of a finite nonempty set X of nodes
together with an edge set E consisting of ordered pairs of nodes. The

labelled graph of A 1is a graph having N nodes, labelled from 1 to N,

with an edge set E consisting of edges such that {Xi’ xj} e E if and

only if aij aji # 0 . The unlabelled graph of A is simply the graph
obtained from A above with its labels removed. The RCM algorithm
generates a labelling for this graph, and hence a (symmetric) reordering
of A . We assume that the matrix A is irreducible, which implies that
the graph G obtained from A 1is connected [1]. If not, the algor:thm
can be applied to each connected component separately.

The application of the RCM algorithm requires that a starting
node be provided. There are a number of good (heuristic) algorithms for
finding such nodes [4, 6], and we do not consider that problem here.

Given a starting node r , the algorithm is as follows.

Step 1. Set Xp€r .
Step 2. (Main loop) For i =1,2,...,N, find all the unnumbered
neighbors of X; and number them in increasing order of degree.
Step 3. (Reverse the ordering) The RCM ordering is given by
Y1 Yoo coes Yy s where Yi = X4y i=1,2,...,N.

It is obvious that the complexity of the algorithm depends
essentially on the way the sorting is done in Step 2. In the implementa-

tions known to the authors, a simple sorting algorithm is used, such as

linear insertion. If o nodes are numbered during the i-th stage of
Step 2, the time requireq is 0(a§) . Under these circumstances Liu [6]
showed that the execution time of the algorithm is O(a|E[) , where

a = max{o; | 1 <1 <N},

For the majority of sparse matrix problems, such an implementation
is entirely satisfactory because the degrees of the nodes are small;
although the sorting algorithm used is theoretically inefficient, because
of its simplicity and the fact that the number of elements being sorted
is small, in practise more efficient algorithms such as quick sort or
merge sort are not as fast. However, occasionally one encounters probiems
where several nodes have very high degrees (a significant fraction of N),
and in these cases the conventional implementations are quite slow; that
is, the 0(N2) bound for these problems manifests itself. We are propos-
ing our implementation because it executes as fast as the conventional
implementations, but does not degrade for problems which have nodes of

high degree.

3. A Data Dependent Sorting Algorithm

In this sectiqn we develop a specialized sorting algorithm whose
execution time is dependent on the data being sorted. Suppose we wish to
sort N positive integers Pys Pys -oes Py - For our purposes in this
paper, we require an algorithm for sorting these numbers which has an
execution time of 0 ? pk) . While this may not in general be very
impressive for a sortsgé algorithm, in the context of our application it
is precisely what is required to achieve an optimal implementation of the
RCM algorithm.

Since our sorting algorithm is basically a simple modification
of the standard linear insertion sortinQ algorithm, we describe this

standard algorithm first. The version shown below works from the "bottom

up" to sort the N elements of the array P in increasing order.

Step 1. k< N
Step 2. k<« k-1 ; If k=0, stop.
Step 3. If P(k) < P(k+1) go to Step 2.
Step 4. TEMP < P(k) ; & < k+1
Step 5. P(2-1) « P(2) ; & « 2+
Step 6. If 2 >N or P(R) = TEMP

then {P(2-1) « TEMP ; go to Step 2}

else go to Step 5.

Now our objective is to produce an algorithm for sorting P

N
whose execution time is O() P(k)) . It is clear that if P contains
k=1

only distinct positive integers, this bound is immediate for the algorithm

above. Moreover, the bound is sharp, since it is achieved when P
contains the first N positive integers in descending order,

However, assume N 1is even, and consider the case when P
contains 2 in the first N/2 positions, and 1 in.the last N/2 positions.

N
Then § P(k) is O(N) , but the execution time is clearly 0(N2) , since
k=1

a string of N/2 consecutive ones will be individually shifted up one
position a total of N/2 times. The basic idea in our new algorithm is
to arrange that when such replications of integers occur in the partially
sorted list, these strings are effectively moved up one position (when
required) by removing the bottom member of the string and adding one to
the top of the string. Wé do this by recording information about the
lengths of such strings in an array B , parallel to the array P .

In our description of the algorithm below, the steps correspond
closely to those in the ordinary linear insertion algorithm described
above, with changes added to maintain the state of the array B and to

exploit the information contained in it.

Step1. k<« N; B(N)=0
Step 2. k<« k-1 ; If k=0, stop
Step 3. If P(k) < P(k+1)

then {B(k) <« 0 ; go to Step 2}

else if P(k) = P(k+1)

then {B(k) < B(k+1) + 1 ; go to Step 2}

Step 4. TEMP <« P(k) 5 2 < k#i
Step 5. P(2-1) « P(2 + B(2)) 5 B(2-1) « B(2)

2« &+ B(R) +1
Step 6. If 2 >N or P(2) = TEMP
then {P(2-1) « TEMP ;
if P(2) = TEMP
then B(2-1) < B(2)+1
else B(2-1) « 0]
go to Step 2}

else go to Step 5.

It should be apparent from the algorithm that if
P(m) = P(m*1) = ... = P(mtr) 1in the partially sorted 1ist, then B(m)
has the value r . Then the string can be "moved up" one position by
setting P(m-1) to P(m+r) . Figure 1 illustrates the algorithm applied
to an array P containing 8 arrays and the value of k, & and TEMP
after Step 2 has been executed, but before Step 3 has begun. The notation

o indicates that no assignment has been made to the variable.

)

N NN W = NN~ W

W N NN - N - W

TEMP :

(v)

Figure 1

jm]

o — — N O O

)
oo

3 o
1 o
2 o
2 o
1 o
k - 3 O
2 1
2 0
L 0
TEMP : o
(i)
P B
3 o
k > 1 =)
1 0
2 3
2 2
2 1
2 1
3 0
L5
TEMP : 2
(vi)

P B
3 0o
1 o
2 o
2 o
1 a]
2 1
2 1
3 0
29
TEMP : 3
(iii)

P B
3 o
1 o
1 0
2 3
2 2
2 1
2 1
3 0
25
TEMP : 2

(vii)

P B
3 o
1 o
2 o
2 o
1 o
2 1
2 1
3 0
L :9
TEM? : 3
(iv)
P B
1 1
1 1
2 3
2 3
2 2
2 1
3 1
3 0
2 : 8
TEMP : 3
(viii)

States of the arrays (after execution of Step 2)

sorting process.

4. Complexity of the RCM Algorithm

Lemma 1 Let P be an array of N positive integers. Then the time
complexity to sort P 1in order using the modified linear insertion sort-
ing algorithm described above is O(kg]min(k, P(k)) .
Proof: Clearly Step 1 is executed only once, and Steps 2, 3 and 4 are
executed exactly N times. Thus, the proof hinges on how many times
Steps 5 and 6 are executed.

Now observe that for each P(k) , there are at must P(k)
distinct positive integers not greater than P(k) . Thus, Steps 5 and 6

will be executed at most min(k, P(k)) times for each k , which proves

the Temma.

Remark. If the entries of P are non-negative integers instead, the

N
sorting algorithm can be proved to be 0(} P(k) + N) by & similar method.
k=1

Lemma 2 In the RCM algorithm, the time required to sort the unnumbered
A
neighbours x;, X5, ..., X, of y {is 0Of ¥ |Adj(x;)) -
i=1
The proof is a direct consequence of Lemma 1. Here Adj(xi)
is the set of nodes adjacent to x. in the graph, so |Adj(x1)| is the
degree of node X; - Since Xs is a neighbour of at least one node y ,

|Adj(x1)| is positive.

Theorem 3 The time complexity of the RCM algorithm is O(|E|) .
Proof: Let the number of nodes in the graph be N . The starting node
will be labelled as node 1. The unlabelled neighbours of each Tabelled
node are numbered by the RCM algorithm described in Section 3 successively
until all Tlabelled nodes are exhausted.

In other words, except the starting node, each node in the graph
is numbered exactly once as a neighbour of node i , for some 1 ,
1 <j < N-1. Thus, excluding the starting node r , we can partition

the node set X according to when they were numbered
N-1
X = ZPiU{Y'}
i=1

For each Pi , Step 2 of the algorithm in Section 2 is applied once, and
the time required to number Pi is

o(J [Adj(x)]) .

P.
Xe i

Thus, the time complexity for the numbering process for all the vertices

is
N-1
o()) [Adi(x)])
i=1 xeP.
i
N-1
But]] |Adi(x)| = J |Adj(x)| = 2]E| which proves the theorem.
i=1 XEP_i Xe X

1C

5. Numerical Experiments and Conclusions

In this section we provide a few numerical experiments to
illustrate the points made in Sections 1 and 2. In particular, we wish
to demonstrate that our new implementation is as efficient as convention .
implementations; that is, we want to show that the gauranteed behaviour
of the algorithm does not penalize its execution time.

Table 1 contains ordering times for two implementations of the
RCM algorithm, applied to a sequence of L-shaped graph problems taken
from [5]. These problems are sparse, and all node degrees are bounded by
7. The two implementations differ only in the way the sorting is
performed in Step 2 of the RCM a]gorithm; the "original" implementation
[3] uses linear insertion, while the "modified" algorithm uses the new
sorting scheme described in Section 3.

The execution times shown in Table 1 are quite satisfactory in
our opinion. Since the degree of the nodes for these problems are all
small, we simply want to confirm that our new scheme is competitive with

the conventional approach.

11

N Original Modified
Implementation Implementation
265 - 12 1
406 » .19 17
577 .27 .24
778 .36 .33
1009 .49 .42
1270 .60 .53
1561 .73 .66
1882 .88 .80
2233 _ 1.04 .95

Table 1 Ordering times for the original and
modified implementations of the RCM
algorithms, applied to a sequence
of problems from [5].

6.
[1]

(2]

[3]

(4]

[5]

[6]

[7]

12

References

C. Berge, The Theory of Graphs and Its Application, John Wiley and
Sons, Inc., New York, 1962.

E. Cuthill and J. McKee, "Reducing the bandwidth of sparse symmetric
matrices", Proc. 24th Nat. Conf., ACM Publ. p. 69, 1122 Ave. of the
Americas, New York, N. Y. 1969.

A. George and J.W.H. Liu, Computer Solution of Large Sparse
Positive Definite Systems, to be published by Prentice Hall, Inc.

A. George and J.W.H. Liu, "An efficient implementation of a pseudo-
peripheral node finder", ACM Trans. on Math. Software, (to appear).

A. George and J.W.H. Liu, "Algorithms for metrix partitioning and
the numerical solution of finite element systems", SIAM J. Numer.
Anal., 15 (1978), pp. 297-327.

N.E. Gibbs, W.G. Poole, and P.K. Stockmeyer, “An q]gorithm for
reducing the bandwidth and profile of a sparse matrix", SIAM J.
Numer. Anal., 13 (1976), pp. 236-250.

J.W.H. Liu, "On reducing the profile of sparse symmetric matrices",
Report CS-76-07, Department of Computer Science, University of
Waterloo, Waterloo, Ontario, Canada (February 1976).

	
	
	
	
	
	
	
	
	
	
	
	
	
	

