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1. INTRODUCTION

When analyzing hashing algorithms, it is usually assumed that all keys in the table
are equally likely to be accessed. In practice, however, this is generally not true. As
Knuth [7] points out, the keys most likely to be accessed tend to appear first during
the creation of the table; consequently, estimates based on an equal probability of
accessing -all keys are frequently pessimistic. In this paper we compute the expected
number of accessed in a model of open-addressing hashing, assuming a variety of
distributions for the probability of accessing individual keys in the table. The results
presented here correspond to tables which are created by inserting keys in decreasing
order of probability; this is the optimal ordering when we do not know the specific
hashing function. The optimal order when we know the hashing function is described
in [3).

2. RESULTS

Let n be the number of keys we are working with, and let m be the size of our table
(m >n). Also let p,,p,,...p, be the probability of accessing the keys k;, ky,..., k.
We require that p, > p, > --- >p, > 0 and furthermore that the table be created by
inserting the keys in decreasing order of probability. This is the optimal insertion
order when we do not know the particular hashing function. In practice, of course, we
seldom know the probability distribution of accessing the keys; normally, however,
the keys are inserted into the table as they appear, and the keys with the highest
probabilities tend to appear first. Thus, our optimal order may be considered an
optimistic approximation to the real situation. _

We will be dealing here with the open-addressing hashing scheme. Under this
scheme collisions are resolved by computing additional hashing functions until an
empty position in the table is found. New probe positions for coilision resolution are
assumed to be independent of the previous ones; this is what Knuth calls uniform
probing [7]. Double hashing, and schemes without secondary or higher clustering 14,
5], behaves similarly to uniform probing up to a certain load factor.
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In the open-addressing scheme, the probability of requiring more than i accesses to
insert the (n + 1)st key into the table is

o (m— [ym=r
e

Pr{more than i accesses}| = — = —
mt m

where m* denotes the descending factorial, m* =m(m — 1) ... (m — k + 1). Conse-
quently the expected number of accesses to insert the key is

Elaccesses to insert (n + 1)st key|

= N iPr{exactly i accesses|
i>0
- . < (m—iy=r
= N Pr{more than i accesses} = N
i>0 i>0 m

Using the summation formula for descending factorial this simplifies to

l)m—n+1 1
Elaccesses to insert (n + 1)st key| = (m(rj:+ 1)m£l’: mri:+ 1

Thus the expected number of accesses to locate a given key in the table containing n
keys is

" D; m+1 D,

E = DS L = N d

[accesses| = (m + )i‘:m+2—f my2 e ) ;

m+2
n o0 k e¢) i
ELEESCIS (;) pi:m_+1< S _”_k)
m+24 = \m+2 m+2 = (m+2)
where = 31| i*p; is the kth moment of the distribution of p,.

This general result does not provide much insight on how a particular distribution
may behave. Thus we will analyze our algorithm using several specific probability
distributions, some of which come from experimental observation. The rest of this
section will summarize our results. The asymptotic expansion results assume that
m— oo, and that a =n/m (0 < a < 1) is a constant independent of m. The derivations
of all these results will be given in Section 3 along with a brief description of each
probability distribution used here. These derivations are quite straightforward for the
most part, except for the geometric distribution where we have to consider three
different cases, and the 80-20% rule.

In Table I we follow Knuth [6] by using H, to denote the nth harmonic number,
ie.,

1

1 1
H = = 1 _— —4 R
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TABLE 1
Type of distribution P Closed form
. m+1
Uniform " " (Hpsy — Hy i)
Wedge 26— 1) 2m+ D)(n+ 6 —m—D(Hpy i~ Huopyr))
(general) n(2b—n—1) n(2b—n—1)
Wedge 2(n+1—1i)
(b=n+1) n(n + 1)
Zipf’s law 1 m+1 1+H,,,H—H,,,_,,H
(harmonic) iH, m+2 H,
Generalized (i+a)! m+1 ( L Hew —Hun
harmonic vie+n+1)—y@+1) m+a+2 v,(a+n+1)_w(a+1))
L'otka’slav‘v _ 1(2) m+1 (1 Hm+l_Hm~n+l+Hn)
bi-harmonic i*H m+2 H®(m + 2)
Geometric (1-a)a"™!
—min(a)=f=ow(l) 1—a"
i-1
—m1n(a) =B=0(1) {(-aa”
I—a"
—a)a-!
—mIn(@) =B =o0(1) (_._Q.‘i__
I—a"
B __ (7 1 (]
80-20% rule ’——('—rl
n

where y is Euler’s constant, y = 0.57721 56649.... Similarly

n 2 1 1 1
HP =Y it =2 =g et 0(n™).

= 6 n 2n

Ei(x) denotes the exponential integral [1]

Ei(x) = f°° et~ dt.
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TABLE 1| (continued)

a=n/m Full table
—a~'In(1 —a)+O0(m™") In(m) + y — 1 + O(In(m)/m)
20 a+ (1 —a)In(l —a)] + O(m~ ") 2 4+ O(In(m)/m)
In(1 —a) . - -1
a In(n) +y +0(m™) In(m)+y +0(m™)
14+ 6”1122" +0(m™) Same
1+ 2, 2 +0(B7) Same
(—-aym (I —a)lmm-—1)
-8 -8
%B— [Ei(8) - Ei(B(1 — a))] + O(m™") lﬁ_e—ﬂ [Ei(B) — | — InB) + In m] + O(m ™)
_ 11 _
e 'In(l —a) + (1 +(;—7) In(1 ~a)) B (nm+y—1)1—B/2)+ B+ OF>) + O(m~")
+ 0B + O(m=")
C(a) + O(1/m) 1+ 61n(m) + C, + o(1)

The values for the constants and the function C(a) are given in the next section. Our
asymptotic notation follows the conventions used by Knuth [6].

f(n)=0(g(n)) if there exist k and n, such that
|f(n)| < kg(n)  forn> ny.

f=o(ge) it tim L0

S =w(egn) if gn)=o(f(n))
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f(n)=06(gn)) if there exist k,, k, and n, such that
|k, g < f(MI<Ik, g(m)|  forn > n,.

Table II lists some exact numerical results for the different distributions, rounded to
five decimal places. For each distribution the first row gives figures for a hash table
with m = 100, while the second is for a hash table with m = 1000. Each case was
examined for the five different occupancy factors shown.

3. DERIVATION OF RESULTS

For the uniform distribution, p; = 1/n and thus

n

. . D;
o S —_—
Elaccesses]| =(m+ 1) —m+2—i
(m+1)
= n (Hm+1_‘Hm—"+1)’

In the case of a full table (n = m) this becomes
m+ 1
Elaccesses] = — (Hpy i — 1) =In(m) +y— 1 + O(In(m)/m),
while in a partly filled table with load factor a = n/m,
E|accesses] = —a~'In(l —a) + O(m™1).

TABLE 11

Occupancy Factors

Distribution 50% 80% 90% 95% 100%
Uniform 1.37050 1.95930 2.44353 2.92079 4.23925
1.38468 2.00633 2.54609 3.12697 6.49296
Wedge 1.21978 1.47789 1.62904 1.73907 1.91605
(b=n+1) 1.22664 1.49245 1.65115 1.76966 1.98703
Harmonic 1.13951 1.29967 1.41440 1.51982 1.79140
1.10072 1.21957 1.30887 1.39779 1.86468
Lotka’s law 1.02113 1.02895 1.03333 1.03702 1.04592
1.00354 1.00438 1.00487 1.00531 1.00748
Geometric 1.03201 1.03201 1.03201 1.03201 1.03201
(a=3/4) 1.00302 1.00302 1.00302 1.00302 1.00302
(a=9/10) 1.10684 1.11327 1.11396 1.11428 1.11477
1.00917 1.00917 1.00917 1.00917 1.00917
(a=0.99) 1.33246 1.77291 2.09726 2.40001 3.19530
1.11936 1.12792 1.12902 1.12958 1.13130
80-20% rule 1.08120 1.19327 1.27574 1.35200 1.54897

1.08561 1.20340 1.29445 1.38596 1.86998
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The general wedge (or truncated wedge) probability distribution is defined by

2b— i)

= ithb > n.
b n(2b —n—1) withb > n

From this we obtain

E|number of accesses| = T i M
A i=1 -
__2m+1)
_n(2b—n—1) (n+C—m=2)Hyy—Hy_ i)

If we set b =n+ 1 we obtain the wedge distribution for which the probabilities are
proportional to the integers 1, 2,..., n. The expected value in this case becomes

Elaccesses] =2a7*a+ (1 —a)In(1 —a)] + O(m™").

For a full table we have n=m =5b —1 and

Elaccesses| =% [m— (H, — 1]

=2 + O(In(m)/m).

For keys distributed according to Zipf’s law, the harmonic distribution [7] we have
p;=1/H,i. Consequently

E[accesses]:m%‘l\* ! __mtl < (L_F_LA)
H, m—m m+2—-0i Hm+2)—m\i m+2-i
m+ 1
= (H ~H
Hn(m+2) ( n+Hm+1 m7n+1)
:m+1 (1 Hm+1_Hm—n+l)
m+ 2 H, ’

For the full table result we set n = m to obtain

1
Elaccesses] =2 — T+ O(m™").

m

and for the partly filled table with a = n/m

In(l — a)

Elaccesses| =1 —
[ ] In(n) +y

+ O(m™").
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We will consider a generalization of the harmonic probability distribution that
makes p; oc 1/(i + a). After normalization we obtain

1 1
Titawy@+n+)—yla+1)y

D;

where a is a real constant and w(x) is the logarithmic derivative of the gamma
function [1]. Simplifying this in a manner very similar to our work with the Zipf
distribution we obtain

Elaccesses| =

m+ 1 [ Hm+l_Hm~n+l ]
m+a+?2 wla+n+ 1) —y@+1)]"

Lotka’s distribution (bi-harmonic) is given by

1

Di= W,
and thus

m+1 & 1
H? = (m+2-0)i"

E|accesses]| =

T m+l & (m+2)P (m+2)P (m+2)!
_H;Z’Z(m+2—i+ i + i2 )

=m+l (1 Hm+1_Hm——n+l+Hn)
m+ 2 HP(m +2)

For any a we conclude that

Inn—In(l — 1
Elaccesses| =1 + 6(n n(lz gty 1 + O(m~*In m).
mn m

The geometric distribution is shaped by the parameter a, and is given by

_a —a)a'~!

Pi 1—a"

; O0<a<l a=n/m; p=—mln(a).
The parameter a may be a function of m. To obtain the proper asymptotic expansions
we must consider three different cases.

(a) min(a) = w(1). Thus for increasing m, § does not remain bounded. Note
that this case includes the situation when a does not depend on m. Note also that this
condition is equivalent to m(1 —a) = w(1), since 0 < a < 1 then 0 < —m In(a) = w(1)
or 0<In(a)=w(l/m) or 1/a=e*"™ =1+ w(l/m). From this we conclude that -
m(1 — a)/a = w(1), and either m(1 —a)=w(1) or m(1 —a)+# w(1) and 1/a = w(1).
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It is easy to see that the latter condition is impossible since m —» oo and consequently
m(l —a)= w(1). From our formula we obtain

Elaccesses|

_(-a)m+1) & a~!

B 1—-a" s m+2—i

_(I—a)m+1) 1—a" Z (i—1)a"!

B l1—a" ((1—a)(m+1) = (m+2—i)(m+1))

_ 1 a—na"+(n—1)a""! -1 ~2)a! .

=1+ l—e“"”( (1—a)m +(1_a)?: m+2—im ) ]

!

a 2(12 _3 i

=1+(1—a)m+(l—a)zm(m—l)_{-o(‘g ) \,\

(b) min(a)= O(1), or equivalently m(1 —a)= ©(1), as can be seen using the
Taylor expansion of In{a). In this case § remains bounded as m increases. We have

i_

Z +2-—i

_m+ D —a) ., "il (1/ay
1—a" j=m+2—n J

(m+ 1)1 —a)
1—a"

Elaccesses] =

Using the Euler-Maclaurin summation formula [2, 6] we derive

Elaccesses| = ﬂll__)%_:_‘_’l mot a_m“;%
4 (Ei(—x In(a)) — “2_; _ “_x[xllgifH ll)xim_ 0™
pe=* |

=T _o-ar (Ei) —Ei((1 —a) §)) + o(m™1). !

For a full table we use the techniques described in [2] to evaluate the summation and
we obtain

pe ? B
=55 Eif)~1~Inf+Inm)+O0(m™").

Elaccesses|

(c) mln(a)=o0(1), or equivalently m(1 —a)=o0(1). In this case we can obtain

a good approximation of the sum by using the first two terms of the sum’s Taylor
expansion around a = 1. By doing this or by computing the series expansion for
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Ei(x)=y+In(x) + x + x?/4 + --- and e =1+ x+x%/2 4 .- in the result for case
(b) we obtain

Elaccesses]| = —a~'In(1 —a) + (1 + <%——;—) In(1 —clz)) ,B'+ o(p*) + O(m™=").

For full tables we obtain
Elaccesses] = (Inm +y— 1)1 — B+ p?/12) + B — °/4 + O(F*) + O(m~").

The final probability distribution which we will examine comes deom the 80-20%
rule. This rule indicates that 80% of all accesses will be made on the most active 20%
of the keys, and so on “recursively.” When we say “recursively,” we mean that the
rule applies not only to the entire table of keys &, k, ..., k,, but to any subset of the

“table consisting of the p most active keys k,, k..., k,, where p<n. The simplest
probability distribution which models this rule is given by

i —(i—1)°
i=—no'—’

where _
_ 1og(0.8)

= 10g(0.2) = 0.13864....

In our analysis of this distribution, we will use the following terminology: {(z) is
Riemann’s zeta function. I'(z) is the gamma function, w(z) its logarithmic derivative
and ,F,(a, b; c; z) the Gauss hyppergeometric series [1]. We will also employ the
convention that 0° =0 to simplify notation. '

The moments of the 80-20% distribution, computed using the Euler-Maclaurin
formula and its extensions [2.6], are given by

R R N = N P
m=Y =gty T O
a ot 6n 2—6 24(—6—1)+(=0)
r_ 2 — _ -1
ﬂz—i};llpi a3t I 6 = ; +0(n™),
" on® 36n 63 —0)n
!’ __ 3.
m=2 =Tt 5y T age ) oW
" On* Gkt Gk — 6) kn*~?

1 _ Koy k—3Y -8
DN T Vs Ty W A G

i=1
and the variance of the distribution is

2 on*
T@+1)72(0+2)

o +0(n'~9).
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Recall from Section 2 that

m+1 &,
E[accesses] = m (1 -+ }_‘ ‘(Tn%—)g) .
k=1

Consequently with a=n/m, 0 <a <1, we may substitute the moments of the
distribution into the above formula to obtain

k

E = -Om~ ) =1 .
[accesses] = C(a) + O(m™") +0k%1 0+k

+0(m™").

This last series is inconvenient for the purpose of evaluation when a is close to 1.
Thus we use the transformation

oo} k [ee] @
NVt gt N (Txkto gy =g® %0 x*Vdx
k/—=_‘1 0+k k:‘| J\0 J0 kg‘l
(] 8
— -0 @ X -8 1 (l _y)
o JO 1_xdx—a J’l_a———y dy
o (1 & 00-1) , 66-106-2) , )
¢ jl_a y oy 2 7 3y ¥ 4
. 9g6—1) , 66—1)6—2) ‘
— 0 __ 2 __ 34 ...
= <‘“y +—55 Y 33 0 T )l_a
Since
g6—1) 6@ —1)6—2)
—0+ T TR 4.
L (=0)b  (OHA-0)bb+1)
= lim << mr 201
, O -02=0bb+ DG +2) | ) b“)
3131
. Fi(—0,b;1;1)—1 . r(yr(1+6-b»s _
:l 241 — . 1
JE?( b ) 11,‘3}<<r(1+0)r(1—b) 1>b )

=—y(1+0)+v(l)=—y( +6)—
we have the final expression

¢

L0~ 1)(9—2)(1—(1)3___.).

68 — 1)(1 — a)’
B 4

18
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Note also that

6

f" lx_xdx:—y/(l+9)—y—1n(1—a)+0(1—a)+0((1—a)2).

Thus we can express the expected value as

Elaccesses| =1+ 62~ %(—y(1+8)—y—In(l —a)+6(1 —a)— )
+ O(m—").

Direct computation allows us to give a list of some values for the function C(a):

C(0.5)=1.08617 37741 28045 31512 1541 ---,
C(0.8) =1.20463 31959 45617 83466 2159-.-,
C(0.9)=1.29674 51213 95053 49342 7795 ---,
C(0.95)=1.39031 66674 21293 92038 3669 .-,
C(0.99) =1.61076 56741 38615 66525 3015 ..,
C(0.99940 04851 43161 88579 4781 ...) = 2.0,
€(0.99999 95583 01845 90154 1475 --.) = 3.0.

To consider the case for full tables (n = m) we first obtain the inequality

; o—1 0 (s 118 i
0'[ x i’ —( 1)<£J-1mx

nl,_ m+2—x XS Wo(m+2—0) om+1—x

61

dx.

Since E|accesses] = (m + 1) Y1_, [i° — (i — 1)°/n®(m + 2 — i)] we have

xO—l

(m+1)6 (n
dx < Elaccesses] < r J; o —— dx.

(m+1)9J' xf-1
m+2—x

Transforming the left integral with y=x/(m+2) and the right integral with
y=2x/(m+ 1) and for n =m, we obtain

(m+ I)HJ.m/<m+2) (m+2)%1

9 Iy y?~1dy < Elaccesses)|
. —

mim+1) (m 19 81
f _(L)____dy_
m

Finally, we may use part of the previous derivation to get

[1+0(m™ "] 8(—w(8) — y + In(m) — In(2))
< Elaccesses] < [1 + O(m~")] 6(—w(6) — v + In(m)).
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Let us write
Elaccesses|=1+60lnm+ C, + O(m~" Inm).
The above bounds imply that
~1—0(w(0) +7+In(2)) < C, < —1 = 8(w(b) + )

There is an alternative way of computing the number of accesses for a full table. Let
g(i)= (i — (i — 1)%)/(m + 2 — i); then

+1 X
E|accesses| = m’:o > g
i=1
m+ 1 (m o g(m) g(m) g"(m) )
=—3 (L gli)di + =5+ =55 =S+ + G

Using straightforward computation and the techniques described in [2] we find

C,=0(m™"),

m) Om®!
—g(z):——4 1+ 0(m™),
g/(m) Hm"" »
T=T(1+0(m ),

and

I m gme—l
g7§0) =oz0_ (1 + 00"

Using the value computed before for [§ (x®/(1 — x)) dx we derive

j"’ g(i) di= (—w(l +0)—y—In(2)) 60m + 1)°~" (Bla(m + 1) + 1)

taroman o)

and finally

Elaccesses| = 0(—y(1 + @) —y—In(2))+ 1 + fIn(m + 1)
6 0 ]

TTT® oo T

Hence by computing the Euler—Maclaurin formula with three and four terms we can
bound C, by
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) —L+—1— i In2 1+86
1920 Tag T4 M2yl ))

1 1
£C <9<E+——1n2—y——u/(1+0)>.

To seven-digit accuracy these bounds are

—0.0873946 --- < C, £ —0.0873224 ...

The distribution given by

l-9—1

Pi= Zr 1%y
H"

is asymptotically equivalent to the 80—‘20% rule. For this distribution, using the same
derivations as before, we find that for full tables

Elaccesses]| =1+ 0[lnm —y(1 4+ 6)— 1]+ O(m~"In m).
From this result we derive the strong conjecture that
C, =—6[w(l + 6) + 1] =—0.08738 76749 82611 29115 5901 ---,
(w(1 + 8)=—0.36971 05008 49560 89275 0609 ---).

The fdrmulas we have derived are valid for any value of 8; thus they could be used to
calculate results for a 75-25% rule, for example. In particular when 6 =1 we have
the uniform distribution.

4. DiRect CHAINING

For the purpose of comparison, we show the effect of unequal probability keys for
direct chaining hashing (or separate overflow chaining). In this method we hash into
a sequential list that contains all the elements that share the same hashing address. If
we insert all the elements in decreasing probability order, we obtain

2 ”1)( Jl)m"’(l—l/m)"—'-f
SR

5. CONCLUSION

E|accesses| =

Our analysis has shown that if a hashing table is constructed in the optimal order,
the average number of accesses remains very low for most of the probability
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distributions we have studied, even when the table is full. For many distributions the
expected number of accesses is always less than two. As has been noted, in practical
applications the probability distribution involved is usually not known. However,
elements with higher accessing probability are more likely to appear first and be
inserted first. The real average values can be expected to lie somewhere between
between our optimistic results and the values which arise from the uniform
distribution.
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