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ABSTRACT

An algorithm is presented for generating the power series solution

of an arbitrary-order linear ordinary differential equation with polynomial

coefficients, assuming initial-value conditions. The form of the power
series solution is non-truncated in the sense that the algorithm computes a
recurrence equation for generating successive power series coefficients,
with the first few coefficients specified explicitly. The algorithm is
implemented in ALTRAN and the results of applying it to some sample probiem$s

are presented.
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1. INTRODUCTION

It is a classical tool of applied mathematics to express the
solution of a Tinear ordinary differential equation (ODE) in the form of a
Taylor series expansion. The basic approach is to assume a solution in
Taylor series form, formally substitute this form into the differential
equation, and after some algebraic manipulations obtain equations to solve
for the Taylor series coefficients. Obviously this process is well suited
to automatic computation in a system for symbolic algebraic manipulation.
In this paper we present algorithmic procedures for symbolically computing
the Taylor series solution of an arbitrary-order linear ODE with polynomial
coefficients and polynomial right hand side. The most interesting aspect
of these procedures is that, for any ODE of this type expressed as an
initial-value problem, the solution is obtained as an exact infinite series
(i.e. not as a truncated power series).

The general Taylor series representation used in this paper takes

the form of a linear Tlist:

(1) (ao,a],...,ak_], recwuience)
where a; (0 < i < k-1) are explicit Taylor series coefficients and
recwrrence is a recurrence relation for computing successive coefficients.
More specifically, the last entry in the 1ist (1) is an expression in the

symbol k and in the symbols Q1208 (for some integer n = 1) such that

(2) 3y = recwvrence



is a linear recurrence (difference) equation for computing successive co-

efficients in the series

[os]

L oa xk

k=0
being represented. The number of coefficients which appear explicitly in
the 1ist (1) will always be at least n. For the class of linear ODE's
with polynomial coefficients and polynomial right hand sides, the Taylor
series solution (if it exists) can always be obtained in the form (1) by

the procedures given in this paper.



2. OTHER SERIES REPRESENTATIONS

In the recent past several authors have discussed the problem of
obtaining power series solutions of ODE's and it is appropriate to place
the present paper in context with the previous papers. Fateman [2 ]
discusses series expansions in general and series solutions of ODE's in
particular. He illustrates how the current MACSYMA facilities can be used
to generate a truncated power series (TPS) solution of a linear ODE.
Lafferty [ 4 ] discusses the problem of obtaining closed-form power series
solutions of Tinear ODE's. The approaches of Fateman and Lafferty can be
contrasted with each .other, and with the approach taken in this paper, by

considering a simple example. The classical ODE initial-value problem

(3) y' =y; y(0) =1

has the known solution

The TPS approach (as discussed by Fateman) would yield the solution

1 2 1 3
(5) ]+x+§x e XL

where the number of terms to be explicitly computed is under user control.
The closed-form power series solution produced by Lafferty's program would be
k

(6) %1 X .

k

™ 8

0



The series solution produced by the algorithms in this paper is expressed

in the form

which represents the series

k
Z a, X
k=0 K
where
ag = 1,
a -1 a for k = 1
k k 7k-1° =

Let us consider the various solutions expressed above with respect
to (1) the desirability of the form of the solution and (i) the generality
of the method leading to the solution. Clearly the solution (4) would be
the most desirable in most contexts and is indeed obtainable by MACSYMA's
ODE solver. However the class of ODE's for which exact analytic solutions
can be obtained is quite 1imited. TPS solutions of the form (5) are very
general but Tack preciseness (i.e. the solution explicitly obtained is
only an "approximation"). Closed-form power series solutions of the form
(6) are clearly the most desirable among series solutions but the method of
solution will only succeed in very special cases. For linear ODE's with
polynomial coefficients, series solutions of the form (7) combine the
generality of the TPS approach with the preciseness of the closed-form
power series approach. Clearly the TPS (5) of any desired order can be

readily computed once the series is known in the form (7). Furthermore,



Lafferty's method for computing the closed-form power series solution (6)
is based on solving the recurrence equation (in this case, ay = %-ak_])
appearing in (7). The limited success of the latter method is due to the
fact that solving recurrence (difference) equations is a problem that ranks
in difficulty along with the problem of solving ODE's exactly (cf. [11],
[31).

The approach taken in this paper is similar in spirit to the
SCRATCHPAD system for power series manipulation developed by Norman [ 5 ].
However Norman's system does not recognize the simplicity of the recurrences
required to specify the series solution for the class of ODE's considered
here - namely, the class of arbitrary-order linear ODE's with polynomial
coefficients and polynomial right hand sides. Specifically, the series
representation (1) generated by the algorithms in this paper uses a single
recurrence (along with some "initial coefficients") to specify the
solution of a given ODE. 1In contrast, Norman's system typically introduces
several "intermediate quantities" and thus represents the desired series
solution by a (long) chain of recurrences. It should be pointed out,
however, that Norman's system can handle nonlinear ODE's. The algorithms
presented here offer an alternative approach to the handling of an important

class of problems.



3. GENERATION OF THE RECURRENCE EQUATION

Consider the general order-v linear ordinary differential
equation (ODE) with polynomial coefficients:

(8) p, v+ ..

. F p]y + po y=r

where p; (0 < i < v), re D[x], where D[x] denotes the set of polynomials
in the indeterminate x over a coefficient domain D. (Typically, D is the
field Q of rationals or a polynomial domain Q[u] where y is a vector of
indeterminates appearing in the problem.) Associated with the ODE (8)

there will be v conditions, which we assume to be of initial-value type:
(9) Y(1)(0) =q, (0<i<v-1)

where y(o) denotes y, y(1) denotes y', etc.
We seek a solution of (8) - (9) in the form of a Taylor series
expansion about the initial point x = 0:

(10) y=y(x) = 5 a K.
k=0

(The case where the initial conditons are specified at a point u # 0, and
hence the Taylor expansion is about the point u, can be handled by a change
of variable and will not be pursued here.) Substituting (10) into (8) trans-
forms the left hand side of (8) into the expression:

® k)(V)

(11) = a, 1p, (x

ot (xk) *+ P (xk)}.
k=0



Noting that

(1) s
(12) (%) = k(k-1) ... (k-i+1) x77
and considering the effect of multiplying (12) by a polynomial Pso the
expression (11) takes the general form

k-s Xk-s+1

k-s+n
(13) = a, {vo X t vy X

+ ... tv

N }

for some integer n, where the integer s < v will be called the shift, and
where the coefficients v (0 < i < n) are polynomial expressions in the
index k. Note that the apparent negative powers of x in expression (13) do
not actually occur since the corresponding polynomial expression Vs will be

k=T 40 (12) s zero for all k in the range

zero (i.e. the coefficient of x
0 <k <i).
In order to equate coefficients on the left and right of (8), we
choose to express the left-side expression (13) in the form
> k-s

(14) kis {uo ak + Uy ak_.I + ...+ Uy ak_n} X

where, by convention, a; = 0 for i < 0. This form is obtained by changing
the index of summation in the expression (13), separately in each term of
the expression, so as to obtain the coefficient of xk_s. Specifically, the
coefficients u; in (14) are obtained from the coefficients v in (13) by
performing the simple substitutions:

u; = Vg (k<k=-1)



where the notation Vs (k«<f(k)) denotes, in an obvious way, an operation of
substitution in the polynomial expression Vi Note that the lower 1imit of
the summation in (14) has been taken to be s, since the expression in braces
{+1} will be zero for all indices k < s (corresponding to negative powers of
X).

The ODE (8) can now be expressed in a form where the left side of
the equation is expression (14). Equating coefficients on the Teft and right
sides we see that, for k large enough, the Taylor series coefficients must

satisfy the (n+1)-term recurrence equation
(15) Uy a, *+ U a1 tootuoa o= 0,

where the recurrence coefficients u; are polynomial expressions in k. In
the following section we describe how the complete series solution is
obtained, taking into account the initial conditions (9) and the polynomial

r appearing on the right hand side of the ODE (8).



4., REPRESENTATION OF THE SERIES SOLUTION

The problem of determining the Taylor series coefficients for the
solution of the initial-value problem (8) - (9) has been reduced to a

problem of equating like terms in the equation
(16) = {u0 Q F Uy gt tuoa bXx = I or X T,

after noting that the initial conditions (9) explicitly specify the first
v Taylor coefficients. The left side of equation (16) is expression (14)
and the right side comes from expressing the polynomial r appearing in the

ODE (8) in the form

where d denotes the degree of r. Specifically, the desired Taylor series
coefficients can be obtained by solving, in the order specified, the

following equations:
(17) Ay~ ak/k!, 0 <k < v-1

a + ... tu_a =r

(18) Uo tu k-1 n k-n

1

(19) uga vupa g+ ... +vu a . =0,k>dts

(recalling the convention that a; =0 for i < 0). Note that the range of

the index k specified for (18) and (19) refers not only to the subscripts
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appearing explicitly in the above notation but also to the values to be
assigned to k in the polynomial expressions Uy -
It was noted below expression (13) that the shift s satisfies the
inequality s < v. [If s = v then equations (18) - (19) have been obtained
by equating coefficients of xi on the left and right of equation (16) for
all powers i = 0. On the other hand, if s < v then the coefficients of xi
in equation (16), for 0 < i < v-s, have not been equated in forming (18) -
(19). Therefore a consistency check must be made in the latter case to
ensure that there exists a solution of the form (10) for the problem
(8) - (9). This consistency check is made after evaluating (17) to obtain

a (0 < k < v-1) and before solving (18) for a_, and it involves checking

the identities

(20) uga *up g g+ ... # Up @ g = Feoge S S k<v-l.

If this identity fails to hold for some value of k in the specified range
then the initial-value problem (8) - (9) does not have a solution in the
form of a Taylor series expansion about the origin.

The solution of equation (19), for k arbitrary, yields the k-th
Taylor series coefficient as a linear recurrence involving the preceding n

coefficients. Specifically, the general solution is

(21) a = -g-a - 0 -7 A,

where uj (0 < i < n) are polynomials in k. The complete set of Taylor
series coefficients can therefore be represented in the form of the linear

Tist (1) where recwvience is precisely the right hand side of equation (21).



The number of Taylor coefficients which must appear explicitly in the

representation (1) is

(22) max {n, d+s+1};

they are computed from equations (17) - (18) and, in case n > d+s+1, the

first few cases of equation (19).

1.
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5. SPECIFICATION OF THE PROCEDURES

In this section a pseudo-Algol algorithmic notation is used to
specify procedures for generating the Taylor series solution of a given
Tinear ODE using the representation (1). In these procedures, the following
five "system" functions for polynomial manipulation are assumed:
degree (p,x) - returns the degree of the polynomial p in the
indeterminate x, with the convention that
degree (0,x) = - =3

coefficient (p,x,n) - returns the coefficient in the polynomial p
of the n-th power of the indeterminate x;

substitute (r, x list, e_list) - returns the result of substituting
into the rational expression r the i-th entry in e_list
for everyocturrence of the i-th entry in x _list, where
i ranges from 1 to the length of x Tist.
[Note: x list must be a list of indeterminates and
e list must be a list (of the same length) of
expressions];

Tow_index (expr,x_array) - returns the index i such that x array(i)

appears explicitly in the expression expr while
x_array(j) does not appear, for all j < i.

[Note: x_array must be a one-dimensional array of
indeterminates];

high_index (expr, x_array) - returns the index i such that x-array(i)

appears explicitly in the expression expr while
x_array(j) does not appear, for all j > 1.
[Note: x array must be a one-dimensional array of

indeterminates].
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Procedure taylor is the high-level procedure which would be
called by the user; it requires the three other procedures specified here:
generate recurrence, derivative x**k times p, and solve recurrence. The
differential equation is passed to procedure taylor as a polynomial (ode)
in the independent variable (x), the dependent variable (y), and the deri-
vatives of the dependent variable (specified as dy(1), dy(2),... where dy is
an array of indeterminates). The differential equation is then understood
to be

ode = 0.

The initial conditions are specified by an array (initial) dimensioned from

0 to v-1, where v is the order of the differential equation, such that
y(l)(O) = jnitial(i), 0 < i < v-1.

Note that an erron neturn is possible from step 3 of procedure
solve recurrence indicating that the given initial-value problem has no
Taylor series solution.

Throughout the three Tower-level procedures the following names are
used for indeterminates. The name k always represents an indeterminate;
whenever a numerical value is to be assigned to k we assign the desired
value to the variable k value and then use an explicit substitution of
k_value for k via the substitute function mentioned above. The name
x_power _k stands for an array of indeterminates such that x power k(j) is
used to represent the expression xk+j as it appears in summation (13),

where k is an indeterminate and j is an integer (positive, negative, or

zero). The name ak stands for an array of indeterminates such that ak(j)
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is used to represent the expression 3yj 23S it appears in summation (14)

and in the resulting recurrence equation, where k is an indeterminate and

j is a nonpositive integer.

procedure taylor (ode, x, y, dy, initial)
Input parameters: ode, x, y, dy, initial as described above;
Output: The value returned is the Taylor series solution of the

ode represented in the form (1)

[1. Determine the order of the ode]
v « high_index (ode, dy)

[2. Pick off the polynomial coefficients and right hand side]
Py < coefficient (ode, y, 1)

for i =1 step 1 until v do

p; < coefficient (ode, dy(i), 1)
doend

V
r< (p*y + _Z] p;*dy(i)) - ode
18

[3. Generate and solve the recurrence equation]

generate recurrence (v, p, X, recurrence equation, n, shift)

series < solve_recurrence (recurrence equation, n, shift, r, x,
initial, v)

return (series)

end of procedure taylior
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procedure generate recurrence (v, p, X, recurrence equation, n, shift)
Input parameters: v, p, X;

Output parameters: recurrence equation, n, shift

[1. Compute factor, which is the expression in braces { 1} in
the summation (11)]

jmax <« - v

factor < O

for i = 0 step 1 until v do

jmax « max (jmax, degree (pi,x) - 1)
factor « factor + derivative x**k_times _p(i, p,, x)

doend

[2. Compute n and shift, which are parameters associated with the
recurrence equation as described below summation (13)]

jmin < Tow_index (factor, x_power k) [Note: jmin = - v]

n <« jmax - jmin

shift <« - jmin

[3. Compute recurrence_equation, which is the expression in braces
{ 1} in the summation (14)]
recurrence equation <« 0

for j = jmin step 1 until jmax do

coef < coefficient (factor, x power_k(j),.1)

coef « substitute (coef, k, k + jmin - j)

recurrence_equation < recurrence_equation + coef * ak (jmin - j)
doend

end of procedure generate recurrence
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procedure derivative x**k_times_p (i, p, x)

Enput parameters: i, p, X;

Output: The value returned is the i-th derivative of xk
(where k is an indeterminate) multiplied by p which 1is

a polynomial in the indeterminate x (recall the use of

L x_power_k as described above) _

[1. First form X1 x p]
newp <« 0

for j =0 step 1 until degree (p,x) do

newp « newp + coefficient (p, x, j) * x_power k (-i+j)
doend

[2. Mow attach the factors k(k-1) ... (k-i+1) -- see equation [12}]

for j = 0 step 1 until i-1 do

newp < (k-j) * newp -

doend

return (newp)

end of procedure derivative x**k times_p
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procedure solve_recurrence (recurrence equation, n, shift, r, x,
initial, v)
Input parameters: recurrence_equation, n, shift, r, x, initial, v;

Qutput: The value returned is the series solution represented in

the form (1)

[1. The first v coefficients are given by equation (17)]

for k value = 0 step 1 until v-1 do

series (k_value) < initial (k_value)/(k_value)!

doend

[2. Solve recurrence _equation = 0 (i.e. equation (15)) for
necumnence,which is the right hand side of equation (21)]

u0 < coefficient (recurrence equation, ak(0), 1)

recurrence < ak(0) - recurrence equation / u0

list_of_indeterminates <« (ak(-1), ak(-2),...,ak(-n))

[3. Make consistency check as specified by equation (20);
ervon netwin indicates that no Taylor series solution exists]

for k value = shift step 1 until v-1 do

Tist_of values <« (series(k_value - 1),
series(k_value - 2),...,series(k _value - n))
temp < substitute (recurrence, k, k_value)
temp « substitute (temp, list_of indeterminates,
list _of values)
taylor_coefficient < temp + coefficient (r, x, k value - shift)/
substitute (u0, k, k_value)

if taylor_coefficient # series(k value) then erron netuin

doend ~ [Note: series(i) = 0 if i < g
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[4. Solve equation (18), and perhaps the first few cases of
equation (19), until the number of coefficients specified by

(22) have been computed]

for k_value = v step 1 until max (n-1, degree(r,x) + shift) do

list_of values <« (series(k value - 1),
series(k_value - 2),...,series(k value - n))
[Note: series(i) =0 if i < 0]
temp « substitute (recwwrence, k, k_value)
temp < substitute (temp, list of indeterminates,

Tist of values)

series(k_value) « temp + coefficient (r, x, k value - shift)/

substitute (u0, k, k_value)

[5. The last entry in the series representation (1) is rnecuwrrence]

series(max(n, degree(r,x) + shift + 1)) « recunrrence

return (series)

end of procedure solve recurrence
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6. SAMPLE PROBLEMS

In this section, the output from the ALTRAN program which implements
the algorithm described in the preceding sections is presented for the follow-

ing sample problems.

Problem 1: (First-order problem)
(1) y' =1
y(0) =0

Solution: y(x) = arctan(x)

Problem 2: (Order O differential equation)

(14x) y = 1

Solution: y(x) = 1/(1+x2)

Problem 3: (Problem with polynomial solution)
(x-x%) y'* + (1/2-x) y' + 4y = 0
y(0) = 1; y'(0) = -8

T2(]—2x)

Solution: y(x)
8x2 - 8x + 1

Remark: Special case of the hypergeometric equation.

Problem 4: (Fourth-order problem)

yM oy =0

y(0) = 3/2; y'(0) = -1/2; y'*(0) = -3/2; y'''(0) = 1/2.
Solution: y(x) = 3/2 cos(x) - 1/2 sin(x).
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Problem 5: (Indeterminate initial conditions)
(14xF)y't -yt 4 xy = 252

y(0) = ups y'(0) = u,

Solution: unknown

Remark: The Taylor series coefficients are bilinear polynomials

in My and Mo

Problem 6: (Indeterminate in differential equation)
y'ho= gy
y(0) = u,
. HX
Sotution: o€
Problem 7: (Indeterminate in differential equation)
y't + WXy = 0
y(0) = 1; y'(0) =1
Solution: unknown

Remark: Every third Taylor series coefficient is zero.

Problem 8: (Problem with several indeterminates)

(1+ —13- xF) yt et (2 )y =10

M2 2

Solution: unknown
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Qutput for Problem 5
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Dutput for Problem 7
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Qutput for Problem 8§
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7.  SOURCE LISTING OF ALTRAN PROCEDURES
The ALTRAN implementation of the algorithm described

in thls report is g1ven in this sectnon Procedure MAIN 1s a driver

4kthe method Procedu‘iﬁfTAYLGR GENREC DXKP and SOLREC

CDXkP - p; 4Qf
 SOLREC - p. 41
SEREVL - p. 45

33.
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PROCEDURE MAIN

# MAIN PROCEDURE FOR COMPUTING THE TAYLOR SERIES SOLUTION
OF A LINEAR ORDINARY DIFFERENTIAL EQUATION WITH INITIAL-
VALUE CONDITIONS.

THE INPUT IS, IN THE FOLLOWING SEQUENCE:

ODEORD - THE ORDER OF THE DIFFERENTIAL EQUATION;

DIFFEQ - THE DIFFERENTIAL EQUATION AS A MULTINOMIAL IN
THE INDETERMINATES: X, ¥, DY(l1), ... , DY(ODEORD) ,
WHERE X IS THE INDEPENDENT VARIABLE, Y IS THE
DEPENDENT VARIABLE, AND DY(I) REPRESENTS THE I-TH
DERIVATIVE OF THE DEPENDENT VARIABLE Y ;

INIT{0); ...; INIT(ODEORD-1) - THE INITIAL CONDITIONS
FOR THE DIFFERENTIAL EQUATION -~ I.E. THE VALUES AT
X =0 OF Y AND ITS FIRST (ODEORD-1) DERIVATIVES.

THE OUTPUT IS5 AN ECHO OF THE INPUT FOLLOWED BY THE TAYLOR
SERIES SOLUTION OF THE ODE.

S die e S ot S e sb o s e ol S o o ol

INTEGER ODEORD = SIREAD{()
INTEGER I
REAL TOLD, TNEW

LONG ALGEBRAIC ( K:31, POWK(~5:10):1, AK(-15:0):1,
X:31l, Y:1, DY(1:IMAX(ODEORD,1)):1, MU(1:5):31 ) DIFFEQ

# THE SUBSCRIPT RANGE USED BY POWK IS LOWER : UPPER v

# WHERE

#

# LOWER »>= -~-0ODEORD , AND UPPER <= MAX. DEG. IN X
# OF DIFFEQ .

#
# THE SUBSCRIPT RANGE USED BY AK IS THEN
# - (UPPER ~ LOWER) : 0 .

LONG ALGEBRAIC ARRAY (0:IMAX(ODEORD~1,0)) INIT
LONG ALGEBRAIC ARRAY A

EXTERNAL ALGEBRRAIC K=K
EXTERNAL ALGEBRAIC ARRAY XPOWK=POWK, XAK=AK

LONG ALGEBRAIC ARRAY ALTRAN TAYLOR, SEREVL
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# READ IN THE DIFFERENTIAL EQUATION AND INITIAL CONDITIONS.

READ DIFFEQ
WRITE DIFFEQ

INIT(0) = DIFFEQ 4 JUST DEFINES THE LAYOUT FOR INIT.
DO I = 0, ODECRD~1

READ INIT(I)

WRITE INIT(I)
DOEND

# OBTAIN THE TAYLOR SERIES SOLUTION OF THE ODE.

A = TAYLOR(DIFFEQ, X, ¥, DY, INIT)

WRITE *"THE INFINITE TAYLOR SERIES SOLUTION IS"

WRITE A

TNEW = TIME(TOLD)

WRITE "TIME (SEC.) TO COMPUTE TAYLOR SOLUTION WAS", TNEW
# EXPAND THE SERIES UP TO DEGREE 10.

A = GSEREVL(A, 10)

WRITE "THE SERIES EXPANDED UP TO DEGREE 10 IS*

WRITE A

TNEW = TIME(TOLD)
WRITE "TIME (SEC.) TO EXPAND THE SERIES WAS", TNEW

BB § END OF PBOCEDURE MAIN.
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