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1. Introduction

Data types play a central role in programming and it is therefore
important to find ways of giving semantic characterisations of data types.
Some authors have suggested that data types are (many-sorted) algebras
(ADJE1], Guttag) and ADJ[1] have shown that data types may be characterised
as a quotient algebra which is initial in the class of algebras satisfying
a set of equations. This algebra is found by factoring a "term algebra" TZ
by an appropriate congruence q and is denoted Tz/q.

A particular class of data types which is of additonal interest is
the class of data types whose operators are continuous and whose set of
objects is a complete partial order or complete lattice (Scott, ADJ[2]).
These data types arise when considering any types with infinite objects.
Circular lists, for example, can be treated as infinite objects of a con-
tinuous type (Reynolds). It has been shown (ADJ[2]) that the class of all
such data types (hereafter called continuous data types) has an initial
algebra, denoted CTZ’ which is (intuitively) the algebra of finite and
infinite terms. It is natural to ask whether the elegant characterisation
of data types in terms of quotients given by ADJ[1] extends simply to con-
tinuous data types. In this paper we show that the quotient CTZ/q (where q
is obtained from a set of equations in the usual way (ADJ[1])) is sometimes,
but not always, initial in the class of continuous algebras satisfying the
equations. Firstly, we show that in general the quotient CTZ/q does not
admit a partial order which is consistent with the partial order on CTZ'
Thus, even though CTZ/q is a I-algebra, it is not a member of the class of
continuous Z-algebras and hence cannot be initial in this class. We then
define a function nf called a normaliser which is a continuous function that

selects a normal form from each class in a congruence q. In order for such



a function to exist, the congruence will have to have a property of continuity,
namely that the congruence respects limits. (That is, if two directed sets
are pairwise congruent, their least upper bounds must be congruent.) It is
shown that, given any set of equations, there exists a unique least contin-
uous congruence containing these equations. CTZ/q is then "made" into a
partial order by defining a partial order relation on CTZ/q in terms of the
relationship between normal forms. It is then possible to establish the main
result of the paper, namely that if q is a continuous congruence generated by
a set of equations and a normaliser exists, then CTE/q is initial in the
class of continuous I-algebras satisfying the equations. Hence continuous
data types can be characterised as initial quotients of CTZ (just as data
types were characterised as quotients of TZ) by giving a set of equations for
the type (called the specification equations) and by finding a normaliser
function for the type.

Finally, it is sometimes easier to find an algebra of normal or
canonical terms for a data type than to find directly the normaliser
function. We show that if such a normal algebra exists, then a normaliser

function exists, and thus CTz/q is initial in the appropriate class.



2. Relation to Other Work

Several authors have studied quotient algebras in some form
(ADJ[1,3], Courcelle [1], Lehmann and Hennessy). ADJ[1] is concerned with
the class of all Z-algebras (rather than of continuous L-algebras), and it
is the main results of ADJ[1] that have been generalised here, using the
notion of normal forms. In Courcelle [1], Courcelle and Nivat investigate
quotients of I-algebras taken from congruences that have been defined in
terms of pre-orders (rather than simply the least congruence generated by a
set of equations), but they do not examine the initiality of CTZ/q.
Hennessy has shown, independently of the present work, that the completion
of TZ/q is initial in the class of I-algebras satisfying q where q is the
congruence obtained using Courcelle and Nivat's construction on pre-orders
and the class of algebras of interest is expressed in terms of a set of
inequations rather than with equations. As a consequence of the main
theorem of this paper (theorem 12) the initial algebra of Hennessy will be

isomorphic to CTZ/q when normal forms exist. (Note that a set of equations
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{tl =t
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1» ty = t2,...,tn = tn}

may be regarded as the set of inequations

1 ) 1 L} < 1 ) .
{tl <t t] Sty £, S ), £y < t2,...,tn Stl, t s tn} )

Lehmann has also investigated independently the initial algebra in
a continuous equational class using a categorical framework, and has shown
that the completion of Tz/q is initial in this class. This result is
essentially the same as that of Hennessy. ADJ[3] have investigated quotients

in so-called rational algebraic theories.



The results in this paper were strongly motivated by the
consideration of types where either it would be desirable for normal forms
to exist or it was clear that they did exist. (See for example Levy [1,2].)
Normal forms are also important for expressing simply the "value" of a com-
putation or when considering the problem of decidability of two expressions.
Huet has investigated the existence of normal forms in a non-continuous
framework, and Berry and Courcelle (in Berry) have investigated classes of
interpretations where normal forms (called canonical terms by them) exist.
In additon Courcelle (in Courcelle [2]) has studied conditions under which
(what are essentially our) normal forms exist for an equationally specified
continuous class of algebras. It would be worthwhile to investigate
whether the conditions of Courcelle are also sufficient to guarantee the
existence of a normal form function in our sense and hence guarantee the
initiality of CTZ/q in the appropriate class.

The present paper thus provides a simple extension of ADJ[1] avoid-
ing the more complex constructions of Lehammn, Hennessy and ADJ[3] in the
useful case where normal forms exist. In practice the biggest advantage of
this approach is that the congruence q considered is just the "usual least
congruence containing a set of equations, or possibly the least continuous
congruence containing a set of equations. Further, the algebra CTZ/q is

just the quotient of CT by q in the usual algebraic sense rather than

b
being a more complex completion. This minimality of q is an extremely

useful fact that can be used for proving various properties of continuous
data types, a property in general absent from congruences derived from
completions of pre-orders. (See ADJ[1] and Levy [1,2] for some uses of mini-

mality of congruences in proofs.) Thus the main thrust of this paper differs

from the other papers cited in that the concern is not so much "Does an



initial algebra exist in a continuous equational class?" but "Is CTZ/q

initial in this class?"



3. Mathematical Preliminaries

A data type is viewed here as a many-sorted algebra. (For a dis-
cussion of algebras, see Cohn or Gratzer,) This view was put forward
previously by ADJ [1], Guttag and also Levy [1]. The notation and results
in the section are adopted from ADJ [1,2]. We also assume familiarity with
the definitions and results of ADJ [1,2].

Definition 1 Let S be a set whose elements are called sorts. An S-sorted

operator domain £ is a family of sets ZW s of symbols, for s € S and w ¢ S*
H

where S* is the free monoid on S. ZW s is the set of operator symbols of
b

type <w,s>, arity w and sort s.

A I-algebra consists of a family <AS>s ¢S of sets called the

carrier of A, and for each <w,s> ¢ $S*xS and each ¢ ¢ ZW g @ function
]

(where w = S8, +eo sn) called the operation of A named by o. (If

s

W =258, ... 5, then let A" denote A x A x ees X A L))
172 n s, 2 s,

We use <xS>S c g to denote a family of objects X indexed by s,
such that there is exactly one object X for each s ¢ S. The subscript
s € S will be omitted when the index set S can be determined from the
context. For o € Zx,s where X is the empty string, T, € AS (also written
e AS). These operators are called constants of A of sort s. If s ¢ S,
we usually denote the set AS by s. If S has only one element then we get
the standard definitioﬁ of a (one-sorted) I-algebra. In this case let I be
a family of sets % = ZO u Zl §] 22 U ... such that for each o ¢ Zn there is

a function



From this point on, all definitions and results in the paper will be for the
one-sorted case, although they could be generalised to many-sorted algebras.

Definition 2 If A and A' are both Z-algebras, then a L-homomorphism is a

function
h: A -+ A
. n
such that if o ¢ Zn and <al,...,an> € A then h(oA(al,...,an)) =
OAv(h(al),.--,h(an))-

Definition 3 A I-algebra A in a class C of Z-algebras is said to be initial

in C iff for every B in C there exists a unique homomorphism h: A - B,

Theorem 1 The class of all I-algebras has an initial algebra called T It

5
also has an algebra TZ(X)’ called the free algebra on X in the class, such
that for any function f: X > A, where A is a L-algebra, there is a unique
homomorphism f: TZ(X) + A extending f. 1l
Intuitively TZ is the algebra of finite terms, and TZ(X) is the algebra of

finite terms with variables.

Definition 4 A I-equation is a pair e = <L,R> where L,R ¢ TZ(X)’

A Z-algebra A satisfies e if
8(L) = 8(R)

for all assigmments 6: X - A. If ¢ is a set of L-equations, then A satisfies
e iff A satisfies each e ¢ €. O
Thus a set of equations € can be viewed as a set of axioms whose free vari-
ables are implicitly universally quantified. The class of t-algebras which

satisfy € is denoted Algz e*



Theorem 2 Algz’E has an initial algebra called TZ,E' O
The structure of Tz o can be characterised as an algebraic quotient of TZ
b

where intuitively two elements of TZ are equivalent if and only if one can
be derived from the other by using the equations. That is TZ,e groups
together all equivalent terms.

An important concept in the theory of abstract data types is the
idea of quotients mentioned above. A quotient partitions the carrier of an
algebra, and when this quotient is over TZ’ it can be interpreted as a way
of equating syntactic terms over the alphabet of the type. The importance
of such "equations" is that they provide a means for expressing the diffi-
cult concept of abstraction. Furthermore quotients are defined in terms of
equivalence relations which are congruences; intuitively, terms that have
been equated must behave in the same way with respect to the operators of
the type (referential transparency).

Definition 5 A I-congruence = on a I-algebra A is an equivalence relation

on A such that if o € Zn cand-. for 1 £ 41 € n if ai,ai € A and a; = ai then

oA(al,...,an) cA(ai,...,a;).

If A is a I-algebra and = is a I-congruence on A, let A/= be the set of
=-equivalence classgs of A.For a ¢ A let [a] denote the =-class containing
a. It is possible to make A/= into a I-algebra by defining the operations

o] as follows.

A/=
]

(i) If o ¢ ZO’ then o [

A/z O

(ii) If o € Zn and [ai] € A/ for 1 < i <n,

then OA/E ([al],...,[an]) = [GA(al,...,an)]



Then it can be shown that A/= is a I-algebra called the quotient of A by

=, (The property of = being a congruence ensures that ¢ is well defined.)

A/=
O

Let K(A) be the class of congruences on the I-algebra A. It is
well known that K(A) is a complete lattice.

A set of Z-equations € = {<t,t5|t,t'¢ TZ(X)} generates a binary
relation R < A x A, This relation is the set of all pairs {<6(t),
6(t')>|6 is an assignmentl.
Theorem 3 If A is a I-algebra and R is a relation of A, then there exists a
least I-congruence relation on A containing R; it is called the congruence
relation generated by R on A. (The ordering on L-congruences is the subset
ordering.) D
Theorem 4 If € is a set of I-equations generating a congruence q on TZ’
then Tz/q is initial in é;gi,g. a

The importance of the above theorems is that any set of Z-equations
(axioms) "automatically' defines an algebra which can be regarded as the
sybmolic model of the object being defined. This model can be used to
answer such questions as 'Do the axioms characterise some particular model

of the type?" and '"Is a given implementation of the type correct?'.

Definition 6 A partially ordered set (poset) (P, <) is a set P together with

a binary relation < which is reflexive, transtitive and antisymmetric. O
All posets are here assumed to have a minimum element denoted L ("bottom" or
undefined) such that L < p for any p € P.

Definition 7 A subset S of P is said to be directed iff every finite subset

of S has an upper bound in S. A function f: P> P' is said to be monotonic
iff for all Py < P, in P, f(pl) < f(pz) in P'. Such a function is said to

be continuous if it preserves all least upper bounds of directed sets that



10.

exist in P. That is, f is continuous iff

£l 1 Py = Uy ; £(py)

where <pi>ieI is a directed set in P and UieI 1] denotes the least upper
bound of <pi>ieI if it exists. A poset P is complete iff all directed sets

have least upper bounds in P. |

Definition 8 A I-algebra is continuous iff its carrier is strict (has a
minimum element 1), is complete, and if its operations are continuous. A
data type is said to be continuous if it is continuous as an algebra. A
function f: A + B is strict if f(lA) = LB. il
The following important result is proved in ADJ [2].
Theorem 5 The class of continuous I-algebras with strict continuous
Z-homomorphisms, called géégi,has an initial algebra called CTX' a
As before with TZ’ we let CTZ(Xn) denote the free I-algebra in

gé;gi generated by X, An element x, € Xn is called a variable.

i

Definition 9 The class of all continuous I-algebras that satisfy ¢

together with continuous Z-homomorphisms between them is denoted CAlgz 0

s €

We now investigate whether CAng c has an initial algebra which can be

expressed as a quotient of CTZ'
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4. Normal Forms and Initiality

Consider the following two equations:

X+ x =Xx ¢h)

x + (y+tz) = (xty) + z. (2)

Suppose also that I is a signature containing L and at least one other

constant. Let t € CTZ where

12820t

t, <t. <t (3)

are three distinct terms. Clearly such an algebra can be found. Let q be
the least IZ-congruence on CTZ generated by (1) and (2). Now suppose there
exists a partial order relation [ on CTZ/q which is consistent with < the

partial order relation on CTZ' (That is t1 < t2 = [tl] E_[tz]). Then clearly

[egre,] = [(epre Y] by (1)
_E_ [(t1+t2)+t3] by (3).

Also [(tl+t2)+t3] C [(t1+t3)+t3] by (3)

[t+(ege,)] by (2)
= [ti+t3] by (1).

Hence [ti+t3] = [(ti+t2)+t3] since [ is a partial order on CTZ/q.

But clearly, by examination of (1) and (2) this cannot be true, and thus

there exists no partial order relation on CTz/q consistent with <.

Thus when taking the quotient of CTZ by some congruence of q, it
will not always be the case that an appropriate partial order relation on

CTZ/q exists, and hence clearly CTZ/q will not be initial in CAng,E.

For practical reasons, it is often useful to try to characterise

a class of values which are equivalent in some equivalence relation by a
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single representative of the class. We call such a representative a normal
form of the class. This practical consideration in fact leads to a
sufficient condition for guaranteeing the initiality of CTZ/q.

Definition 10 Suppose there exists a function

nf: CTZ -> CTZ

such that for t, tl, t2 € CTZ’ and any congruence g,
1. [tl] = [tz] = nf(tl) = nf(tz);
2. [nf(t)] = [t];

3. nf is continuous (in the usual
ordering on CTZ)'

[t] =6(t) where 6 is the natural homomorphism induced by the congruence

q. nf is called a normaliser function (or normaliser) for CTZ/q. ]

Lemma 5 (1) nf(nf(t)) = nf(t). That is, nf is idempotent.

(ii) nf(tl) = nf(tz) = [tl] = [t2].

That is, two normal forms are equal only if the corresponding terms are
equivalent.
Proof: (1) From property 2 we get [nf(t)] = [t]
so nf(nf(t)) = nf(t) from property 1.
(ii) Suppose nf(tl) = nf(tz). Then
[e,] = [nf(e)] = [af(e)] = [t,]. 0
Until now, given a set of equations e, we have considered the least

congruence g generated by these equations. However consider two directed

sets <ti>, <t£> in CTZ such that
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t=U, t, and t' = |, t!
1 1 1 1

and such that for each i € I’(ti’ti) € q. In general it would not be true
that (t,t') € q, but this condition is necessary for nf to exist. This is

because if nf exists, then

nf(Uiti) Ui nf(ti) continuity of nf

\ . ]
Ui nf(ti) since (ti,ti) € q

and by property 1 of nf

nf(Uiti) again by continuity.

Hence (t,t') € q by lemma 5. This motivates a concept called
continuous congruence which is defined below. We show that a unique con-
tinuous congruence exists for an arbitrary set of equations, and that con-
tinuous congruences have desirable properties.

Definition 11 A ZI-congruence q on a continuous Z-algebra A is said to

be continuous if whenever there exist two directed sets <ti>iEI and
\

. 0 1 1
i ier I A such that for all 161,(ti,ti) € q, then (Uiti,uiti) € q. D

<t
We now generalise theorem 3 to continuous I-algebras.
Theorem 6 If A is a continuous I-algebra and R is a relation on A, then

there exists a least continuous I-congruence on A containing R, called the

continuous congruence relation on A generated by R.

Proof: Let K(R) be the class of all continuous I-congruence relations on A
that contain R. K(R) # ¢ since

U=<u =A xA | seS
s 8 s

is in K(R), and is continuous since (al,az) € U for any a e A. Let

1°%2
= = NMK(R). It is shown in ADJ [1] that ER is a I-congruence relation. We

show that =_ is continuous. Suppose that <ai>.

and <a'>, are directed
R iel i

iel
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sets in A with

a = I_l a., a-': Ll.a!'
i1

Also, suppose that

<ai,a£> € = for each ieI.

Hence
1
<ai,ai> e K for each I¢I and

each KeK(R) by definition of ER

But each KeK(R) is continuous, so

<a,a> € K for each KeK(R),

thus <a,a'> ¢ &, as required. 0

R

Let K'(A) be the class of continuous I-congruences on A.

Lemma 7 Let A be a continuous Z-algebra. Then K'(A) is a complete lattice.
Proof: Clearly, U as defined in the proof above is the greatest continuous
I-congruence on A. The least is clearly the collection of identity relations
on A. The intersection of two continuous I-congruences is clearly continuous.
If 9y and q, € K'(A) and we let R = 4y VU 4, then we can use the proof above
to show that q, and q, have a least upper bound in K'(A). a

Definition 12 The kernel of a Z-homomorphism h: A - B is the relation

Ker(h) = {<a,a'> | a,a' € A and h(a) = h(a")}. 0
It is well known that the kernel of a homomorphism is a congruence.
Lemma 8 If A and B are continuous I-algebras and h: A ~ B is a continuous

L~homomorphism, then Ker(h) is a continuous I-congruence.
Proof: We know Ker(h) #s a Z-congruence and we must prove continuity.

Let <a.>, and <al>, be directed sets in A such that (a,,a') ¢ Ker(h) for
i iel i iel i’i
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all ieI. Now

h{l,a.,) = U.h(a.) since h is continuous
i1 i %1
= 4 T = L .
Uih(ai) since h(ai) h(ai) for all ieI
= hﬂlai) since h is continuous.
Thus (Uiai,uibi) € Ker(h). 0

We now define a partial order on CTZ/q, where q is a continuous

congruence, in the case that a normaliser nf exists for q.

Definition 13 Suppose [tl], [t2] € CTZ/q. Thendefine a partial order

relation [ on CTZ/q by
[tl] E_[tz] iff nf(tl) < nf(tz)

where < is the partial order relation on CT, . a
(Note that nf need not be unique, and so the order relation L also depends

on nf. See the corollary of theorem 12 for clarification.)

Lemma 9 [ is a partial order on CTZ/q.

Proof: Obvious, since < is a partial order on CT,. a
Lemma 10 Let <ti>ieI be a set directed in CTZ’ and q a continuous
congruence, and suppose a normaliser nf exists. Then <[ti]> is directed in
CTz/q and it has a least upper bound denoted Ui[ti] such that Ui[ti] =

[ e, 1.

Proof: Let t==Uiti, which exists since CTZ is complete. By monotonicity
of nf and definition of <, <[ti]> is directed. Now for all ieI, ti < t since
t is the least upper bound of <ti>ieI'

Hence Yi nf(ti) < nf(t)

80 Vi [ti] < [t] by definition of <.
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So [t] is an upper bound of <[ti]i€ . Now suppose that for some t, for all

I
ieT, [ti] < [tN. Then for all ieI, nf(ti) < nf(t). But since nf is

continuous and .4 <t >, is directed, <nf(t,)>, is directed and
1 iel i° 1el

Ui nf(ti) < nf(t'") by continuity of nf

S0

nf(Uiti) < nf(t") by definition of <.

and

)
[Lye, ) < [e'].
Hence [U.t.] is the least upper bound of <[t,]> .. That is
ii i“iel
Ui[ti] = [Uiti]. a

Lemma 11 If B is a continuous Z-algebra satisfying ¢, q is the continuous

congruence generated by €, t,t, € CT,. and (tl’tz) € q and

hB: CTZ - B

is the unique homomorphism guaranteed to exist by the initiality of CTZ’

then hy(t,) = LINCNE

Proof: Let Ker(hB), the kernel of hy, be defined as before. We know

Ker(hB) is a continuous congruence and, moreover, e(B) c Ker(hB) where e(B)

is the relation on B generated by the set of equations €. This is because

for each assignment 8: X + B and each <L,R> ¢ ¢, 6(L) = 6(R). Now 08 = hB

by uniqueness of hB and hence hB(L) = hB(R). But q is the least continuous

congruence satisfying e (containing €(B)) and so q E_Ker(hB). Thus

(tl’tZ) € Ker(hB) and hence hB(tl) = hB<t2) as required. 0
Much of the power of considering abstract data types as many-

sorted algebras centres around the property of isomorphism. Different



17.

implementations of the same data type can be considered members of a class of
isomorphic algebras. 1In order to characterige this class precisely, the
concept of initial algebra is used. The initial algebra in a class of
algebras contains in some sense the least amount of information needed to
specify a member of the class. Thus we would like to say that a particular
abstract data type is the initial algebra in a class of algebras satisfying
the specifications. Initiality ensures that the operators do no more than
required by the specification. ADJ [1] shows that Tz/q is initial in the
class of algebras satisfying the equations which generate the congruence

q. It is natural to ask whether or not CTZ/q is initial, and we show that
if the normaliser nf exists, then indeed CTZ/q is initial (where q now is
the least continuous Z-congruence generated by the equations).

Theorem 12 If a normaliser nf exists for g, then CTZ/q is initial in

géégi,e'

Proof: We must find a unique

hy: CTZ/q > B

for any B € CAlgz,E. By Theorem 5, hl: CTZ > B exists, and is unique. Now
define

hp([t]) = b, (af (1))
(1 hB is a I-homomorphism. We must show that
by ([0Ce see eyt )] = 0(hy([E; 1), ([e 1))

for any o ¢ Zn.
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hy(fo()s.0ust D) = hl(nf(d(tl,--~,tn)))

by definition of hB

= hl(o(tl,...,tn))

by lemma 11 and property 2 of nf

= g(hl(tl) s o .,hl(tn))

since hl is a homomorphism

= c(hl(nf(tl)),...,hl(nf(tn)))

again by lemma 11 and property 2 of nf

= q(hB([tl]),...,hB([tn]))

by definition of hB.

(ii) hB is unique. Suppose there is a 8g° CTE/q + B such that 8y is
a homomorphism. Now consider the following diagram:
CTE

h CTZ/q

g

where 6 is the natural homomorphism induced by a. If 8p exists,

then we must have 6 o hB =0 o 85 = h1 since 6 o hB and 9 o g3

are both homomorphisms into B. But 6 is onto, hence hB = 8-
(iii) CTZ/q is complete. Let <[ti]>i€I be directed in CTZ/q. Then

by definition of <, <nf(ti)>i€I is directed in CTZ' Applying

lemma 10 and since [t] = [nf(t)] for any t ¢ CTZ’ we get



(iv)

(v)

19.

Ui[ti] Ui[nf(ti)] = [Uinf(ti)]

[t]

where t Uinf(ti) exists since CT; is complete.

CTZ/q is continuous. By (iii) CTZ/q is complete. [1] is the
minimum element of CTZ/q since nf is continuous and hence
nf(1) = L. Now we must show that for each ¢ ¢ Zn, and each

1< j

A

ny o(leyToen L TE7], e e 1) =

i
Uio([tl],...,[tj],...,[tn]).

i
0([tl]"°"ui[tj]’""[tn])

- 0([tl],...,[Uitj],...,[tn])

by lemma 10

i
[Ui(o(tl,...,tj,...,tn))]

by definition and continuity of o.

i
Ui[a(tl,...,tj,...,tn)]

by lemma 10

i
= I‘Ii(c([tl]"”’[tj]"”’[tn]))

by definition of o.

hB is continuous. We must show that if [t] is the least upper

bound of a directed set <[ti]>i€ in CTZ/q then

I

by ([e]) = Lh([e,]).

By lemma 10 and part (iii) above we know that if <£ti]>i€I is

directed, and if t = Uinf(ti), then
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Ui[ti] = ui[nf(ti)] = [t] = [uiti] = [LJinf(ti)].

Now hB([t]) = hl(nf(t))

by definition of hB

= by (af (U, nf (£ )))

by definition of t

= by (U;nf ()

since nf is continuous and idempotent

= U;h, (af (£,))

since hl is continuous

= Uhy ([e, 1)

by definftion of hB as required.

Corollary

The particular normaliser chosen will not affect the ordering on CTZ/q,
because any two initial algebras must be isomorphic and have the same
structure. a

In practice, an algebra of normal forms is useful for establishing
properties about an abstract data type and we make the following definition.
This will be a generalisation of the concept of canonical term algebra in
ADJ [1].

Definition 14 A continuous I-algebra LZ is called a normal term algebra for

q if

(i) The carrier of LE is a subset of the carrier of CTZ’

and (ii) LZ o CTZ/q. 0
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If a normaliger exists, then it is possible to construct a normal
term algebra.
Theorem 13 Let

nf : CTZ > CTZ

be a normaliser, and define a E-algebra LZ as follows

(1) The carrier is L,
L ={nf(t)]t ¢ CTZ};
(ii) For each ¢ ¢ &

GL(nf(tl),...,nf(tn)) = nf(c(tl,...,tn)).
Then LZ is a novmal term algebra.

Proof: Let g: LZ > CTZ/q be defined as the restriction of the natural

homomorphism 0 to LZ'

(i) g is a homomorphism, since 6 is.
(ii) g is surjective since if [t] e CTZ/q, then [t] = [nf(t)] since nf
is a normaliger and so g(nf(t)) = [t] by definition of g.
(iii) g is injective, since if g(nf(tl)) = g(nf(tz)) then [hf(tl)] =
[nf(tz)] by definition of g, and so nf(tl) = nf(tz) since nf is

a normaliser. O
We now demonstrate the converse of this theorem.

Theorem 14 If a normal term algebra LZ exists, then there is a normaliger
function for q.
Proof: By initiality of CT;, h: CT; ~ LZ exists. Let nf(t) = h(t). We

must show that



(1)

(i)

(iii)
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[g,1 = [e,] = nf (t;) = nf (t,).

This follows by lemma 11 since LZ satisfies €.
[nf(t)] = [t].

That is, we must show that [h(t)] = [t].
Since LZ E.CTz’ h e h = h. Also, since

LZ = CTZ/q, Ker(h) = q. Now since

h o h(t) = h(t), (h(t),t) e Ker(h)

S0 (h(t),t) € ¢

and hence [h(t)] = [t] as required.

Continuity of nf is immediate since h is continuous.
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5. Conclusions

Continuous data types arise naturally in many settings when
studying the semantics of programs and data. Data types are elegantly
characteriged by universal algebras, where one of the most powerful tools used
in the study of universal algebra is the construction of quotient algebras.
It would have been useful to be able to use this technique in the more
restricted domain of continuous algebras. This, however, turned out to be
impossible as the quotient of a continuous algebra by an arbitrary con-
gruence may not yield a continuous algebra (as the quotient set may not
admit a partial order or, even if it does, the partial order may not be complete.)

Our purpose in this report was to characterise continuous data types
by finding conditions under which the quotient of the initial continuous
algebra by some congruence would yield a continuous quotient algebra. We
were particularly interested in the case where the congruence was generated
by a set of equations (axioms). Two simply stated conditions suffice for
this purpose. Firstly, the congruence has to have a special property called
continuity. A continuous congruence is one which relates (puts in the same
congruence class) upper bounds of directed sets if the elements of the
directed sets are pairwise related by the congruence. This seems to be a
highly desirable and natural property of congruences. For example, we showed
that the kernel of a continuous homomorphism between continuous algebras is
a continuous congruence.

Secondly, the congruence has to be such that from each congruence
class a unique representative can be chosen by using a (continuous) map
called a normaliser. The normal form (image under the normaliser) of an
expression is a generalisation of the canonical form of an expression intro-

duced in the study of abstract data types (see ADJ [1]). (In contrast to
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canonical forms, however, normalisers do not always exist.) Since our
motivation for studying qubtients was to generalise the work on abstract
data types to the setting of continuous algebras, this was a natural place
to start. Moreover, continuous data types which did not have normal forms
would be impossible to represent (even aside from problems of representing
infinite objects by finite ones).

As indicated above, the motivation for this work was the need to
generalige the work on abstract data types to the continuous setting in
order to handle 'naturally infinite' objects (such as lists represented by
equations of the form x = cons(a,x). The "list" represented by this
equation is clearly cons(a,cons(a,cons(a,......)...))).) Such objects do not
exist in the usual algebras of finite objects studied in the theory of
abstract data types. Moreover, it turns out that concepts such as sharing
and circularity in the definition of structures are best handled by resort-
ing to continuous data types. These ideas are developed further in Levy [1]
and Levy [2].

Other applications of these ideas would be in the study of control
structures as operations in an abstract data type and in providing a basis
for unifying proof rules for data and control structures (to make their

application easier).
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