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Abstract

Recently, it has been shown that for each recursively enumerable
language there exists an erasing homomorphism hO and homomorphisms
h], h2 such that L = hO(e(h], h2)) where e(h], h2) is the set of
minimimal words on which h] and h2 agree. Here we show that by
restrictions on the erasing h0 we obtain most time-complexity language

classes, and by restrictions on the pair (h], h2) we characterize all

space complexity language classes.
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Introduction

Problems concerning homomorphism equivalence have turned out to
be of crucial importance in some recent developments in formal language
theory. We mention the decidability of the (ultimate) DOL equivalence
problem [2, 5], the homomorphic equivalence on context free languages [7]
and its applications [4]. Typically we need to check whether two
homomorphisms h], h2 on a free monoid I* are equal for every element
of certain subset of I* , or alternatively, to find the Tanguage of all
w in ZI* for which hl(w) = h2(w) . Such languages are called equality
sets in [9]. They turn out to be a powerful tool in the characterization
of various classes of languages (see [3, 6]).

The main result of [3] is that for every recursively
enumerable language L there exist erasing h0 (a homomorphism either
preserving or erasing any symbol) and homomorphisms h], h2 such that
L = hO(e(h], h2)) where e(h], h2) is the set of minimal strings on
which h1 and h2 agree. It was indicated in [3] that by restricting
the erasing hO we obtain various time-complexity classes of Tanguages
and by restrictions on the pair (h], h2) we obtain various complexity
classes of languages. The time-complexity characterization was suggested
by a referee of [3]. In this paper this "machine independent” characteri-
zation of most of the time complexity classes (except for obvious
restrictions, only closure under squaring is required) and of essentially
all of the space complexity classes is obtained.

The well known notion of k-limited erasing (see [8]) is

generalized as follows. For a function f on the integers we say



that erasing h is f-bounded on a language L if for each w in L at
most f(|w|) consecutive symbols of w may be erased. For any class of
"nice" complexity functions C closed under squaring let LC be the
class of languages accepted by nondeterministic Turing machines that
operate with time bounds in C . We show that L is in LC iff there
exist homomorphisms hO’ h], h2 such that ho(e(h], h2)) =L and hO
is f-bounded erasing on e(h1, h2) for some f 1in ¢C

As special cases we have, for example, the following. A
language L s in NP (is primitive recursive, recursive) iff there
exist homomorphisms h, h], h2 such that ho(e(h], h2)) = L and h0
is polynomial- (primitive recursive-, recursive-) bounded erasing on

e(hy, h

2) ’
The notion of the balance of a pair of homomorphisms was

']’

introduced in [5] and in [3] it was shown that a language L is regular
if and only if it can be written in the form L = ho(e(h], h2)) , where

h, is an erasing and the pair of homomorphisms h1, h2 has k-bounded

0
balance for some constant k .

Just as we have generalized the notion of k-Timited (bounded)
erasing, we can similarly generalize k-bounded balance.
Given a function f on the integers, a language L < £* and an
erasing h on £* , we say that a pair of homomorphisms (h1, h2) has
f-bounded balance on L with respect to h if for each x in L and each
prefix w of x we have ||h1(w)| - |h2(w)|| < f(|h(x)]) . We show for all
classes of "nice" complexity functions C that a language L 1is of space

complexity C iff there exist an erasing hO and homomorphisms h], h2



such that L = ho(e(h1, h2)) and the pair (h], h2) has f-bounded balance
on e(h1, h2) with respect to hy for some f in C .  For example, the
context sensitive languages are exactly those which can be expressed in

the form hO(e(h], hz)) where the pair (h], hz) has 1inear-bounded

balance on e(h], h2) with respect to hO .

Similar results to those presented here have also been obtained

independently by Book and Brandenburg [1].



1. Preliminaries

We assume familiarity with basic formal language theory (see
[8]). We recall some basic definitions and some definitions from [3].

We say that C 1is a class of complexity functions if C 1is a

class of functions closed under addition of and multiplication by a
constant. A language L is of time (space) complexity C if L is
accepted by a nondeterministic multitape on-line Turing machine M which
operates within time-bound (space-bound) f , for some f in C

A homomorphism h : * > A* 1is called an erasing if for some
subset T of % we have h(a) =a if aeT and h(b) =¢ if
bez-T /(e is the empty string).

Let h], h2 be two homomorphisms, h1,h2 : X* > A* . Define

the equality set of h], h2 as

E(h], h2) = {we I* : h](w) = hz(w)} and the minimal (equality) set of
- + _

hy> h, as e(h], h2) = {we?l : h1(w) hz(w) and h](u) # h2(u) for

each proper nonempty prefix u of w} . Note that

e(h], h2) = Min(E(h], h2)) - {e} using the notation of [H + U] .



2. Space-Complexity Classes

When considering on-line space complexity we can, clearly,
without restriction of generality, consider the following normal form of
on-line Turing machine with one storage tape. Our machine is a seven-tuple
M= (K, T, V, B, 8, 9> F) where:

K is the set of states;

T is the terminal alphabet (on the input tape);

V is the tape alphabet (on the storage tape);

BelV is the storage tape's blank character;

§: KxTxV~> finite subsets of T x {N, R} xV x {L, N, R} x K

is the transition function;
a4 in K 1is the initial state;

F < K 1is the set of final (accepting) states.

We assume that T nV =4¢ . Furthermore we assume that there
are KT’ Kv, 6T and GV such that K = KT u KV v F and

K| = IKTI + IKV| + |F| (disjoint union); and

GT : KT x T » finite subsets of K

6V : KV
such that & satisfies the following conditions:

x V > finite subsets of (V - {B}) x {L, N, R} x K

(1) §(q, a, A)
(ii)  o(q, a, A)
(iii) o(q, a, A)

{a} x {R} x {A} x GT(q, a) for q e Ki >

{a} x {N}><6V(q, A) for qe K, »

o) for ge F .

This means that each move of machine M consists of either
(1) reading and advancing the tape head one symbol on the input tape,

while ignoring and preserving the storage tape; or



(ii) performing a nondeterministic computation on the storage tape,
while ignoring and preserving the input tape (a blank can not be

written in this case).

The machine must always halt upon entering an accepting state.

We will now introduce notation describing possible moves of our
machine by triples from V(Z)KV(Z) x (Tu {e}) x V(Z)KV(Z) where
V(2) =vZ vy {e} . In the following always A, C, D are in V - {B}.

Let 2 = {<qg,a, p>:aeT, pe GT(q, a)l ,
{<qA, €, pC> : (C, N, p) < 8,(q, A)} ,

N
QNB = {<q9 8’ pC> : (C9 N’ p) € 6v(q, B)} H
QR = {<gA, €, Cp> : (C, R, p) € Gv(q, A},
QRB= {<q, &, Cp> : (C, R, p) € GV(Qa B)}
@ = {<AqC, e, pAD> : (D, L, p) € §;(q, C)} ,

and Qg = {<Ag, e, pAC> : (C, L, p) € Gv(q, B)} .
Finally, let Q = QT U QN U QNB U QR U QRB u QLLJQLB . We also will need
the partition @ = QS U QF , wWhere

0 {<u, a, npz> : p e K - F}

S

t

{<u, a, npz> : p ¢ F}

it

and QF

The above notation will be used in the proof of Theorem 1. To formulate

it we need to generalize the notion of bounded balance (see [ 5 1) .

Definition Consider two fixed homomorphisms h] and h2 from I* to

A* and a word w in Z* . The balance of w 1is defined by



where |[x| denotes the length of x . Given a function f on the integers,
we say that a pair of homomorphisms (h], h2) has f-bounded balance on

a language L with respect to an erasing hO , if for each x in L

and each prefix w of x we have |B(w)| < f(|h(x)]) . Given a
complexity class C , we say that (h], hz) has C-bounded balance on L

with respect to h0 » 1f the same is true for some f ¢ C .

In [3, Theorem 4] it was shown that a constant bound on the
balance of the pair (h], h2) on e(h], h2) in ho(e(h], h2))
characterizes the regular sets ("with respect to erasing hO" can be
omitted for éonstant bound). We will extend this result for constant

space bounds to arbitrary space complexity.

Theorem 1 Let C be any class of complexity functions. Then for
each language L , L 1is of (nondeterministic, on-line) space complexity

C iff there exist an erasing hO and homomorphisms h1, h2 such that

L = ho(e(h], hz)) and the pair (h], h2) has C-bounded balance on
e(h], h2) with respect to h0 .

Proof

(Only if)

Let L be of space complexity C , that is let L be accepted
by Turing machine M = (K, T, V, B, &, dy> F) of the form described above,

operating with space bound S for some s, in C . We construct

1

homomorphisms hO’ h, and h, using technique adapted from those in [3].



Let
Tr=QuVu {#} )
T={y:y T} ,
V=(A:AcV} ,
L=TuFTu¥uiFH$,0,2,3},
and A=TuTvu{0,1,2,3, 1}

Define homomorphisms h] s h2 from I* to A* , and hO from I* to

T* , by the following table:

g - = <aq8,3,MpL> | <aqB,a,npt> |A[A|#1F| <aqB,d,nppr> | <aas,d,npge> | 4 Al o] 2| 3
h(g) |1 - |~ aqR aqB AlR| |7 g8 %q8 #| R[10}- [123
ho(€) [| Fagf | Fap? Pt nPgt AlAE|# ne nz o] ¢ 2| 3
hO(E) € € a a elelele € € el €] €] el ¢

for all <aq8,5,npsc> € QS (<aq8,3,npsc> accordingly) ,
<QQB,5,onC> € QF (<aq8,3,onc> accordinaly) ,

and A ¢V (A, A accordingly).

Then each element o of e(h1, h2) looks 1like either



Yo " W7
— _r — - -
(h]) - a, fu, 01948, v, #u, 0,058, v,
(O’) I_ <C]0 saosnoq] C0>#u'|<0‘]q-| B'I :a-l ,n] q2C1>V] #u2<a2q262 932 ,n2q3C2>V2#
(hp) Fagf mgisg  # mE Vit TRa3%, Vol
o " i) W3
wn—2
(h]) .'.#un—Z O°n—2qn-28n—2 Vn-Z#
(o) ...#un-2<an-2qn-28n-2’5n—2’nn-2qn—1Cn—2>vn-2#
(hp) = *"Hug 5 Mn-2%-1%n-2 V-2t
v j
"n-1 _
-1 "n
f_—"—_'_, K ™
(hy) u % 1% 1801 vo_q g 41010 ... 10 123
OB D0 R 8 L0 RN LM RS I 200 ...03
(hy) U, 4 Nn-1 %n-1 vn_ﬁ 10101...012¢ & ...e 3
[}
wn

(if n 1is even); or
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Yo Y1 w2
-~ r A 1! D
(hy) | q, fu; o096 v, Fu, 0,0,8, v,

(0) 1 <Qgsdgsmgy2g>Huy <Ay By o8y sy pTy >V Fuy<opQpBy o8y smpa 3T >V

I N ¥ — J X -~ J
W0 W-l w2 w3
wn-2
(hy) LI O 29— 2802 Vpoof
(@) e tuy <o 9% 9By 2580 _2>M_29n-1%0-2" V-2
(h2) "'#un—Z nn-2qn-1cn—2 Vn_z#
L J
Wn-1
W1 W
r \ r_"_‘t
(h1) Un-1 OLn-lqn-IBnJ Vn-1 #Wn -+ 10 10...10 123
(o) un—1<an—1q8n—1’5n-1’nn—1qn€n-1>vn-1 $Wn 20 0...0 3
- 3
(hy) w4 N0-1%n-1 v {410101...01 2 € ...€
{ 7
w_
n

(if n 1is odd); where q, € F; each UssVs € V*; and W, e V*
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Notice that each of Wos +oes W gives the storage tape, head position,

n-1
and state, while W gives only the final storage tape (after acceptance).

We have w. = w, for i=20,...,n-2 ; case i = n-1 14s similar but

Ty 1t
for the vanishing of the final state q, - Taking ho(o) produces
50 51 et 5n’] , Where each a; e Tu {e} . This string is the input
tape accepted by the Turing machine computation described by the element
of e(h], h2) .

Let the Turing machine operate with space bound S] e C . Let
52 = 251 + 2 ( then by hypothesis 52 e C also). It needs to be shown
that the pair (h], h2) has Sz-bounded balance on e(h], hz) with
respect to hO . We do this by "traversing" an arbitrary element o from

let to right, showing that each prefix m of o has the property
[1hy ()] -lhy(m)] ] <S,(1n (o)1)

Since ho(o) is the input string read by the Turing machine with compu-
tation represented by the sequence WoseoosWo s the space complexity of

the computation is the longest that the storage tape becomes; i.e.

"S]”(ho(o)) = max{lwol—1,|w]|-1, e |wn_2l-1, Iwn_]|-1, |wn|} ;

therefore

S](|h0(0)|) = max{|wy|-T, |w1]-1,...,|wn_2|-1, w11, w [}

(Since each string Wps--«sW 1 contains a symbol for the state, we
subtract 1 to get the length of the storage tape.)

As the machine is not allowed to write blanks on the tape, it

is clear that



-
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lwgl=1 < Jwy =1 < [w,|-T < ... < ool =1 < W _41-1 < Iwnl .

Hence S;(Ihg(e)]) = |w_|

Since 82 = 251 + 2 , we get
2|wn| + 2 < 52(|h0(0)|)

Thus in order to prove, for each prefix m of o ,
l’h](“)l - ]hz(“)ll
[Thy (m) ] = hy(m) ||
0 < |[hy(m)| - lh](ﬂ)l < 2|wn| + 2 . We use induction on the length of

N

Sz(lho(o)l) , 1t suffices to show, for each 7 ,

IN

2[wn| + 2 . In fact we show, for each m ,

m .

If m=¢ , then Ihz(ﬂ)l - |h1(w)| =0-0=0. (This is the
base of the induction.

Now we check the induction by considering all prefixes up to
the character 2. Suppose the inequalities hold for 7 of length k-1,
and consider prefixes m of length k .
1. If mw=7%}F,

then  [ny(®)| - |ny(M)] < Iny(®)] - [ny ()] + 2
= Iy (®) G| - [hy(®) H = Ihy(m) ] - [ny(m)]

2. If m=7F,
then lhz(ﬁ')! - |h'|(ﬁ)l < lhz(ﬁﬂ = Ih](ﬁ)l + 2
= () b ag#l - () F | = [hy(m)] = [hy(n)]

TA for A eV ,

3. If =
then  |hy(7)] = [h(7)] = |hy()A] = [hy(DA] = [hy(m)]| - [hy(m)] .



10.

11.

13

If m=%A for AeV,
then [0y (7)] - [y ()] = In,(FIA] - [0, G| = [ny(m)] - [hy(m)|

If ms= ﬁ<aq8,5,nPSC> for <uq6,5,np5€> € flg
then Ihz(ﬁ)l - lh](ﬁ)l s Ihz(ﬁ)l - lh1(ﬁ)| + (Incl - IGBI)
= |y (RFBEI - |hy(W)ags] = [hy(m)] - [h (n)]

If w= ﬁ<aq8,3,npsc> for <aqs,5,npsg> € Qg >
then [h,(7)] - [h (F)] < |h, ()] - |h (F)] + (Inz| - [oB])

= [hy(F)npgzl| - [hy(%)agB| = [hy(m)] - [h (m)]

If =14 |,

i

then lhz(ﬁ)l = lh](ﬁ)l ]hz(ﬁ)¥1 . Ih](ﬁ)#l = Ihz(ﬂ)l - |h1(ﬂ)| .

If m=7# ,

then |h2(ﬁ)l - |h](ﬁ)l lhz(ﬁ)#l - Ih](ﬁ)¥1 lhz(ﬂ>| - |h](ﬂ)| .

If m= ﬁ<aq6,5,ﬂPF€> for <ans§’on€> € QF s
then ny(#)] - Iy (0] = Iny(M)] = Iny(@)] + (Inc - las])
= lhz(ﬁ)ﬁf| - Ih](ﬁ)aqﬁl +1 = |h2(ﬂ)| - lh](w)I + ]

If m= ﬁ<aq8,§,on§> for <aq8,5,onc> € Qe
then |hy(7)] - |h ()] = [ny(@)] - |n ()] + (Inz| - |oB])
= [hy(F)nz| - Ihy(Mags] + 1 = [hy(m)] = [hy(m)] + 1

If m=%%,
then [hy(F)] = |hy(F)] + 1 = |hy(F)4 1| - |, (7)#|
= [ny(m)] = [hy(m)] .
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12. If m=%A for AeV ,
then Ihz(ﬁ)l - Ih](ﬁ')l < Ihz(ﬁ)l - lh](ﬁ)l + 1
= [hy(§)01] - |hy (#)A] = Jhy(m)] ~ [hy(m)]

13. If m=172 |,
then [h,(7)] - [h (})] = |hy(®)2| - [h (7] |
= Jhy(m)| - [hy(m)]

Furthermore, if w = %2 , then clearly

Wl
2 , i.e.

l
hy(r) = hy(m)1(01) "2 = hy (m)1(01)
w |
Ihy(m)| = [hy(m)| = [1(01) "2] =1+ 2fw | +1=2]w|+2. Therefore,
if m 1is any of the above cases, then !hz(n)l - Ih](ﬂ)l < 2|wn| + 2.

Additionally, if = =e , then 0 < |hy(n)|~|h(m)|. If =4 e but no

character <aqB,d,npgL> or <aq8,é,onc> (for <aQB,§,onC> € QF) is

included in m , then 2 < [hy(w)[-|h (n)|. Then if one character

<aQB,5,onC> or <aq6,5,onC> (for <aqB,d,nPpL> € QF) is included in

T, but not § , then still 1 < lhz(ﬂ), - |h](w)| . Finally, if the
character § 1is included in m , then again 2 < !hz(ﬂ)l - |h](ﬂ)|
Therefore in all of the above cases, 0 < lhz(w)] - Ih](ﬂ)l . Thus in all

of the above cases, 0 < lhz(ﬂ)I - Ihy(m)] < 2|wn] + 2.
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We now show these bounds apply to the remaining cases.
(1) 1If =%,
then |hy(m)| - |h (m)| = |hy(F)e| - | (¥)10]
= [hy(®)] = |hy (7] = 2 < [hy(F)] - [hy(7)]

(2) If mw=%3,
then [hy(m)| = |hy(m)] = [hy(¥)3] - |h(7)123]
= [hy(R)] - by (F)] = 2 < [hy(F)] - |hy(F)]

But of course if m = %3 , then w =0 , and ]hz(n)l - |h1(ﬂ)' =0
because hz(c) = h](c) . Therefore in these remaining two cases,

0 < Ihz(ﬂ')l - Ih'l('”)l
0 < |hy(m)| - |h](n)| < 2[w | +2 . Therefore the pair (hys h,) has

A

2[wn| + 2 . Hence for every prefix m of o ,

IA

S,-bounded balance on e(h1, h2) with respect to h0 ; and since

2
5, ¢ C s the pair (h], h2) has C-bounded balance on e(h1, h2) with

respect to hO .

(If)

Let L = ho(e(h], hz)) for aribtrary homomorphisms hg, h], h2
satisfying the hypothesis that the pair (h], h2) has Sz—bounded baTlance
on e(h], h2) with respect to h0 (with S2 e C) . It is necessary to
show that there exists a Turing machine, online with one storage tape with
space bound S] e C (for some S] e C) which accepts L . In fact, S]
takes the form 52+m , where m 1is the constant equal to the maximum
length of the right hand-sides of hO’ h] and h2 . Say h1,h2 DL > A%

he @ 5 > T* LcT* (L= hO(e(h]’ h2))') Let

0° > - =
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m = max{lhi(x)l 11 e {0,1,2}, x e £} . Let w e T* be given on the
input tape. We construct 3 tracks on the storage tape - one for inverse
images of w (under h61) and one each for images under h1 and h2 .
The machine is described informally below. It is easy to see that the

machine works as required.

0. If the input tape has been completely read; and tracks 1, 2,and
3 on the storage tape are all empty; then halt and accept.
Otherwise continue to step 1.

1. If the input tape is not empty, but tracks 1, 2, and 3 on the
storage tape are all empty, then halt and reject. (If a prefix
of hal(w) is 1in e(h], h2) , then the entire string ha](w)
cannot be.)

2. Non-deterministically choose an element x ¢ £ and branch to
state <3, x> .

<3, x>. Write ho(x) on the track 1 of the storage tape. (This may or
may not be the empty string.) Continue to step <4, x>.

<4, x>. Read characters from the input tape, comparing to ho(x) . (If
hO(x) = ¢ , then no characters are read and the comparison is
successful.) If the entire string matching hO(X) is

successfully read, then continue to state <5, x> . Otherwise

A

halt without accepting. (Reall ]ho(x)l m.)
<5, x>. Erase track 1. (If it is preferred not to overwrite ho(x) with
blanks, then pseudo-blanks are equally acceptable.) Continue to

state <6, x> .
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<6, x>. Append hl(x) to the right of the current contents of track 2.
Continue to state <7, x> .

<7, x>. Append h2(x) to the right of the current contents of track 3.
Continue to state 8. (x need no longer be retained.)

[At the beginning of state <6, x> , either track 2 or track 3
was empty; and the other track contained a string of length at
most Sz(lw]) if we L , because of the hypothesized bound on
the balance of (h], h2) . Now the longer of tracks 2 or 3 has
length at most Sz(]w])+m , since Jh](x)] <m and th(X)I <m.
We now shorten tracks 2 and 3 again, by an amount which is
sufficient if we L .]

8. If either track 2 or track 3 (or both) is empty, go to step O.
If the first character on track 2 does not equal the first
character on track 3, then halt without accepting. Otherwise
containue to step 9.

9. Delete the first characters of tracks 2 and 3, by shifting the
entire storage tape (after the first character) one character
left, and writing a blank (or, if preferred , pseudo-blank) at

the end. Then branch to state 8. [Thus the matching portions

of h1 and h2 are deleted, leaving the balance string if
wel.]
Note: If w4 L then clearly the machine does not accept w . However,

the machine might in this case "want" to write more than S](w) characters
on tracks 2 or 3. This is because the pair (h], h2) has Sz-bounded

balance only on e(h], h2) with respect to h0 ; and (h], hz) has
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unstated (possibly unbounded) balance on I* (in particular, on

I* - e(h], hz)) with respect to hy . Therefore when speaking of space
Timitations, we must mean that the machine may write tapes of any length,
but must "guarantee" that, once exceeding the space bound, it will never
accept. We cannot mean that the machine guarantees a priori never to
write more than S] characters,

In some specialized cases (e.qg. 51(n) =n, i.e. LBA's) there
is no difference between the above meanings because it is trivial to Timit
the space used. In general, the machine can limit its own space to 51(n)
if S1 is at Teast linear (since the input string must be read to know
what n is! -- and that string may then be stored in a fourth track on
the storage tape, for use in the computation) and S1(n) is itself
computable in space S](n) (on, say, a fifth track). This still
provides a large set of space bounds, but does not appear to be entirely
as useful as choosing the first definition of space-bounded. [In these
cases, the machine bounds itself by the obvious manner of initially writ-
ing boundary markers (e.g. ¢) in tracks 2 and 3 at S] locations from
the left, and rejecting if steps <6, x> or <7, x> would attempt to
overwrite the markers]

The first part of the proof (the only if part) has been written in

a manner that works for either of the above definitions for space bounds.

Note: The theorem applies equally well if we restrict hO to be purely
erasing. We do this in the (only if) part of the proof by requiring the
Turing machine, instead of being able to read input characters in several

states in KT » to "decide" in advance when and what it expects to read.
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Whenever it is intended to read a character a < T (any of several
characters may be "chosen" by the power of non-determinism), the machine
must encode its current state into the current cell on the storage tape
and then switch to state a' or a" . From a' , the only legal computa-
tion shall be to Teave the storage tape unchanged and switch to state a".
From a" , the only legal computation shall be to read a from the input
tape and switch to state a'". From a'" , computations shall consist

of decoding the previous state from the storage tape and (non-determini-
stically) choose a new state. Defining the set of triples, & , as
earlier, we notice that Q. = {<a", a, a'"> :a e T}, i.e. 191 = [T|.
Therefore we may instead define QT = T , leaving the remaining
constituents of Q as triples. Then h], h2, and hO are defined as
before;except foreacha « 2 where h1(a) =a" , h2(a) =a'" , and

hO(a) = a . (The reason for including state a' is to permit elements

of QT to appear in o without bars - otherwise we would also need to
map some symbols a from o as h1(5) =a" , hZ(E) =a'", and

ho(a) =a, and hy would no longer be purely erasing.) Similarly we
need to include additional penultimate states which do nothing but delay
for one step before transferring to an accepting state, so that W still
has the correct parity. Then hO is of the form ho(a) =a if ae T

and ho(b) = ¢ if be I - T, and the theorem is still true.

Corollary 1.1 A language L 1is context sensitive iff there exists

erasing hy and homomorphisms h], h, such that L = ho(e(h], h2)) and
the pair (h], h2) has linear-bounded balance on e(h], h2) with respect

to h0 .
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3. Time Complexity Classes
To characterize the time complexity language classes we need

first to generalize the notion of k-Timited erasing [H + U] as follows

Definition For a function f on the integers we say that erasing h is
f-bounded on a language L if for each w in L , w=xyz and h(y) =¢
implies |y| =< f(|w|) , that is at most f(|w|) consecutive symbols of

w may be erased. We say that h is C-bounded, for a class C of

complexity functions, if h is f-bounded for some f from C

Theorem 2 Let C be a class of complexity functions closed under
squaring. Then for each language L , L 1is of time complexity C iff
there exist an erasing hO and homomorphisms h1, h2 such that

L = hO(e(h1, h2)) and h0 is C-bounded erasing on e(h], hz) .

If the Tanguage L is accepted by an S]—time-bounded multi-tape
Turing machine, then it is accepted by a single tape (S])Z—time-bounded
single-tape Turing machine. Then the language is accepted by an on-Tine
machine with one storage tape in time bound (S](JL))2 + 22 (where g s
the length of the input string) by copying the input to the storage tape,
returning to the left-hand side, and performing the computation on the
one storage tape. By encoding this machine's transitions into homomorphisms
hO’ h], and h2 as in Theorem 1, we see that for any string o ¢ I* ,
o« e(h], h2) = |o| < (time used)(1 + maximum length of tape used)

+ 1 + (maximum length) + 1 + (maximum length) + 1
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Since writing a character in a tape cell requires at least one time unit,
the maximum length of tape used is at most equal to the time used. And

since the time used is bounded by (S](IL))2 + 2% , we have

IA

[(57(20)% + 20001 + (5;(2))? + 24]

+ 201+ (5;(2))% + 28] + 3
(s, (2))* ?
(57000 + as Nt + acs; (e + 365, ()
* 4 5(5,(2))"

o e e(hy, hy) = |o]

¥ 41(31(2))2 + 4+ 3(s, (2))2 + 62 + 5

A

+ 6(5,(2))

IA

23(s,(2))"*

IA

(This of course assumes £ s](z) » Which is natural since we may expect
the machine to read the entire string; and 1 < s](z) .)

O course, S;(2) € €= (5;(2))% ¢ ¢ = (5;(a))* e ¢ = 23(s;(a))* e C .
Let 52 = 23(81)4 . Thus even if h0 erases the entire string o (which
it cannot actually do, since it must leave exactly % symbols unerased),
then h0 is Sz-bounded erasing. Therefore L = hO(e(h], h2)) and h0

is C-bounded erasing on e(h1, h2) .

(Only if)
Suppose L = ho(e(h], hz)) » Wwhere hy s S,-bounded erasing

on e(h], h2) , With 52 e C .

Construct a Turing machine to accept L , in a manner similar
to that in Theorem 1. In fact, we need only produce the entire strings
h](o) and h2(0) on separate storage tapes, for o such that the input

string equals ho(o) ; and we need not worry about erasing the tapes.
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After producing h1(o) and hz(c) in full, they are compared from
left-to-right to check for equality. For some constant C] , at most C]
time units are required to read each character of the input string, or to
write éach character of h](c) or hz(a) . Therefore each accepting

computation is done in time at most
C1|h0(0)| + C]Ih](o)l + C1|h2(0)| + 2(|h](o)| + |hy(0)])

(the last term being for returning to the left and performing the
comparison). For some constant C2 » every RHS of h] and of h2 has
length at most C2 . Therefore, letting

% = |h0(0)| = the length of the input string, the time taken by the Turing

machine is bounded by

Cq2 + CiCylo] + € C) o] + 4C, o]

1

IA

C1C2|0| + C1C2|0| + C]C2|o| + 4C]C210|

= 7C]C2|0|
< 7C1C2 52(2) since at most SZ(Q) characters in o are
erased by h0 between each of the 2
characters which are not erased
2
< 7C]C2(32(2))
Thus, letting S] = 7C1C2(32)2 , the Turing machine accepts L with time
bound S] e C .
Corollary 2.1 Each language L is in NP iff there exist homomorphisms
hO, h], h2 such that ho(e(h], h2)) =L and hO is polynomial-bounded
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erasing on e(h], h2) .

Corollary 2.2 A language L ds primitive recursive (recursive) iff

there exist homomorphisms hO’ h1, h, such that hO(e(h], h,)) =L and

2 2
h0 is primitive recursive- (recursive-) bounded erasing on e(h], h2) .
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