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ABSTRACT

An algorithm based upon Edmonds’s procedure for testing
isomorphism of trees is extended to answer various questions
concerning automorphisms of a labeled forest. This and linear
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1. Preliminaries

Starting from an algorithm for tree isomorphism we show how to build
efficient algorithms which can answer a number of questions concerning the
automorphisms of labeled forests. These algorithms operate in time which is
linear with the size of their input. They can be applied to other types of graphs
whenever those graphs can be conveniently represented by labeled forests. This is
the case for interval graphs and for planar graphs, as will be demonstrated in later
sections. Applying linear pattern matching techniques and a knowledge of their
additional structure we can produce an even faster algorithm for outerplanar
graphs, a special case of planar graphs which has been examined in the literature.

We assume the usual definitions used in graph theory [3,11]. Let G =(V,E)
and G' =(V',E') be two graphs. A bijection ¢:V—¥' which maps pairs of
adjacent vertices onto pairs of adjacent vertices and pairs of nonadjacent vertices
onto pairs of nonadjacent vertices is an isomorphism of G with G'. An
automorphism of a graph G is an isomorphism of G with itself. The
automorphism group of G is the group whose elements are the automorphisms of
G. A set of generators for the automorphism group of G is any set of
automorphisms whose closure under functional composition and inverse is the
entire automorphism group. Two vertices x and y are similar in G whenever there
exists an automorphism of G which carries x onto y. Similarity is an equivalence
relation on ¥ whose equivalence classes form the qutomorphism partition of G. A
coding is a function on graphs such that the values assigned to G and G’ are
identical if and only if G and G' are isomorphic.

In the following sections we will first review the tree isomorphism test and
then extend it to answer other questions about automorphisms of a labeled forest.
Using these results as a foundation we will go on to construct efficient
automorphism algorithms for interval graphs and outerplanar graphs. Finally, we
will sketch how algorithms for planar graphs might be build using these same
ideas.

Weinberg previously presented algorithms for computing the automorphism
partitions of triconnected planar graphs and of trees. His algorithms require
O(n?) steps [36,37]. Corneil, and later James and Riha, have produced
substantially simpler algorithms for the tree problem. Their algorithms also have
an O(n?) time complexity [8,21]. Most recently Fontet has given an O (n)
algorithm for arbitrary planar graphs which is very similar to the approach taken
here [9]. To our knowledge there are no linear time algorithms in the literature
for finding a set of generators for the automorphism group of a planar graph or
for computing the order of its automorphism group. All of the results on
automorphisms of interval graphs and outerplanar graphs are new. Additional
references to previous work are contained within subsequent sections.

2. Trees

A tree is a connected graph having no cycles. Edmonds presented an
efficient procedure for testing isomorphism of trees which is based on a canonical
numbering of the vertices [6]. This method has been rediscovered a number of
times by different researchers [22,30,34]. A description of the algorithm and a
proof that it runs in linear time is given by Aho, Hopcroft, and Ullman [1,
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Section 3.2]. Their version of the algorithm allows the trees to be labeled but
assumes that the trees are rooted. This is no real drawback because unrooted
trees can be rooted in a unique fashion by finding the center or bicenter of the tree
and using it as a root. This can easily be accomplished in linear time. For our
purposes we will assume that all trees have been rooted.

These techniques can be applied to forests of trees having labels which
consist of integers or strings of integers in a range which is O (n) where n is the
number of vertices in the forest. All of our algorithms will be linear in the size of
the forest plus the sum of the lengths of the labels. The forest algorithms will then
become the building blocks for the algorithms in later sections.

Rank|1234567

Label I A a ab ace bac ca cd

FIGURE 2.1: An example of a labeled forest. Vertex names (symbols
within vertices) are used to identify vertices and should not be
confused with vertex labels or with any of the numbers which will
later be assigned to vertices. Rank information for the bucket sorted
labels is displayed below the forest. These ranks will be used to
generate working labels for the i-numbering which follows.

We briefly sketch our version of Edmonds’s procedure for testing
isomorphism of two labeled forests. All of the labels are first bucket sorted and
assigned an integer rank within the sorted list. Then each vertex in the forest
receives an integer i-number according to the following scheme. Beginning at the
vertices of maximum depth in the forest a working label is assigned which consists
of the rank of the original label followed by the i-numbers, in increasing order, of
all the children. The working labels of all of the vertices at the current depth are
then sorted and the i-number of each vertex becomes the rank of its working label
within the sorted list of working labels. This process proceeds upwards until the
roots of all of the trees have received an i-number. Using a bucket sort it is
possible to perform all of these operations so that the total work is linear in the
size of the forest plus the sum of the lengths of the original labels {1].

A complete isomorphism test consists of performing the i-numbering on two
labeled forests in parallel, checking at each level that the sets of working labels are
the same in both forests. If a mismatch occurs at any level the forests cannot be
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FIGURE 2.2: The i-numbering for the forest in Figure 2.1. Shown to
the right of each vertex are its i-number (above) and its working label
(below). A working label consists of the rank of the original vertex
label followed by the i-numbers (in increasing order) of the children.
Note that because the i-numbers of the roots are identical the two
trees must be isomorphic.

isomorphic and the algorithm terminates announcing non-isomorphism. Otherwise
the algorithm succeeds in finding an isomorphism when the sets of i-numbers
assigned to the roots are identical in the two forests.

We can use a similar procedure to get other information concerning the
automorphisms of a forest. Only a little more work is necessary to find the
automorphism partition. Suppose that the forest has been i-numbered. The
vertices are partitioned into equivalence classes by their i-numbers together with
their depths. This is usually not the automorphism partition but the
automorphism partition is always a refinement of this partition and can be
determined from a second pass over the forest, this time top down.

LEMMA: 2.1: Let G be an i-numbered labeled forest. Two vertices x and y are
similar if and only if they have the same depth and i-number and their parents (if
present) are similar.

PROOF: Only If: Let x and y be two similar vertices in G. If x =y than the
conditions hold trivially. So assume that x #y. Any automorphism must
preserve depths and ancestors within a forest. Thus x and y are at the same depth
and either have similar parents or no parents at all. It remains only to show that
their i-numbers are the same.

From the correctness of the isomorphism algorithm which generates the i-
numbers it follows that two vertices at the same depth have the same i-number if
and only if the subtrees rooted at those vertices are isomorphic. Since x is similar
to y their subtrees are isomorphic and hence their i-numbers are indeed identical.

If: Again we assume that x # y but that both are at the same depth, have
similar parents, and the same i-numbers. If x and y are at depth O they are roots
in the forest and by the observation cited before their trees are isomorphic and
hence they must be similar vertices. Otherwise x and y are at a positive depth and
both have parents which are similar within the forest. We show that there is an
automorphism carrying x onto y and thus complete the proof.
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Any automorphism mapping the parent of x to the parent of y must map x
to some sibling of y. Such an automorphism exists (the parents are similar) so we
can choose some sibling of y. Call this sibling z. Clearly x and z are similar.
Using the only-if part of this lemma x, y, and z all have the same i-number and
thus the subtrees rooted at y and z must be isomorphic. We produce the desired
mapping by composing the automorphism which carries x to z with the
automorphism which interchanges the two siblings y and z. This mapping is an
automorphism of G and it carries x onto y. O

We now explain how to compute the automorphism partition of a labeled
- forest. After rooting each tree at its center or bicenter we assign i-numbers as
before. A second set of integer j-numbers is then assigned in a top down fashion.
At each level beginning with the roots, vertices are assigned working labels which
consist of the i-number of the vertex followed by the j-number of the parent.
These working labels are then sorted on each level and the j-number for the vertex
is the rank of the working label within the sorted list of working labels. From the
lemma it follows that the j-numbers plus depth information partition the vertices
into similarity classes.

The blocks of the automorphism partition for the forest

facdw.y.z} {bx} {eu} {fhkmnpriglost lig) {jv)

FIGURE 2.3: The forest from Figure 2.1. Shown to the right of each
vertex are its j-number (above) and its working label (below). A
working label consists of the i-number of the vertex followed by the
j-number of its parent. The working label for a root is its i-number.
The seven blocks of the automorphism partition are shown below the
forest. These are found by making all vertices which have the same
depth and j-number equivalent.

This j-numbering algorithm is easily implemented to run in linear time. It is
a straightforward extension of Edmonds’s algorithm. We have now shown that the
automorphism partition of a labeled forest can be found in linear time. So far our
work duplicates results of Fontet who also realized that Edmonds’s approach
could be used to compute the automorphism partition of a tree [9]. We go
further, however, and produce a set of generators for the automorphism group and
also determine the order of the automorphism group.
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Let us first consider the problem of computing the automorphism group of a
forest. We cannot hope to achieve an algorithm whose running time is linear in
the size of the forest. The size of the output alone prohibits this. The star K | ,,
for example, has n! automorphisms. Even computing a set of generators for such
a group is costly. Weinberg has shown how to compute a set of generators in
O (n?) time and space. The time bound cannot be improved because all sets of
generators could contain Q(n) automorphisms and each generator has Q(n)
ordered pairs.

Since there is no way to circumvent this problem we can instead agree to a
compact representation for the automorphisms. If we represent an automorphism
¢ by its set of non-fixed points then ¢ becomes the set

{(x.0(x)) | x # ¢(x)],

and we can achieve an O (n) algorithm which produces a set of generators for the
automorphism group of a labeled forest.

LEMMA: 2.2: The compact representation of a set of generators for a labeled
forest can be computed in linear time.

PROOF: First compute the automorphism partition of the forest. From each
similarity class of roots choose a single representative r. For each of the other
roots r' which are similar to r output the compact representation of the
automorphism which maps the tree rooted at r onto the tree rooted at »’, all other
vertices within the forest remaining fixed. This can be accomplished by walking
the two trees in parallel. Discard all of the trees rooted at the various r' keeping
only the tree rooted at r.

After all of the similarity classes of roots have been processed delete the
roots from the remaining forest and repeat this process level-by-level until the
forest is empty. The time and space used is O(n) because each vertex appears at
most once in the range of an automorphism. A detailed proof that these
mappings are actually automorphisms and that they generate the entire group is
given in the first author’s masters thesis [7]. O

The final automorphism problem is handled in a like manner. Suppose that
we want to determine the order of the automorphism group. Mathon [24] has
shown that in general this problem is polynomially equivalent to testing graph
isomorphism, but his reduction involves a factor of n? increase in running time.
We will show that for forests (and hence trees) the order of the automorphism
group can be computed in linear time.

Given a j-numbered forest the order of the automorphism group is found by
a third walk of the forest, this time bottom up as in the original i-numbering.
This pass generates k-numbers which indicate the order of the automorphism
group for the subtree rooted at each vertex.

LEMMA: 2.3: Let G be a rooted j-numbered forest in which x ¢ is a vertex and x 4,
X2, ... , Xp are its children. If the p children are partitioned into g classes
according to their j-numbers and ¢, is the size of class ¢ then the number of
automorphisms for the subiree rooted at x ¢ is given by

el e

s=1 t=1
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where k; is the number of automorphisms for the subtree rooted at x,, for
0gs €p.

PROOF: Any automorphism of the subtree rooted at x g must carry each child of
x 0 to a similar child of xy. For each of the g classes there are exactly ¢,! ways of
permuting the ¢, children in that class. In addition the subtree rooted at each x;
has k; automorphisms. All of the choices are independent so the total number of
possibilities is the product of these numbers. O

An algorithm to compute the order of the automorphism group of a forest is
now easy. Working from the bottom up each vertex receives its k-number by
counting the number of children within each similarity class (using the j-numbers)
and then multiplying together the appropriate factorials and the k-numbers of the
children. If an imaginary root is added acting as a parent for all of the real roots
in the forest then its k-number is precisely the order of the automorphism group
for the forest.

The entire calculation is linear with the exception of the factorial
computation. If factorial is not a primitive operation in the model of computation
a table of factorials for the integers from 0 to n can be precomputed and stored in
a table of size O(n). The cost of building the table is O(n) if a uniform cost
measure is used. Under the more realistic logarithmic cost criterion, in which the
number of bits involved in each operation is counted, the cost becomes
O(n’logn) since n! requires ©(n logn ) bits [1].

This last observation effectively kills any hope of a linear algorithm since a
tree whose automorphism group has anywhere near n! elements will require
output whose representation is too large to print in linear time. Qur point here is
that the number of ‘““‘data” operations need only be linear in the size of trees being
considered; we ignore the fact that pointers and indices require ©(logn) bits for a
graph on » vertices and that arithmetic operations on large numbers will require
more than unit cost. Even for problems of practical size n! is large and multiple
precision arithmetic will have to be used, although if only an order of magnitude
result is required we could use a floating-point calculation (or its equivalent, a
fixed-point approximation of the logarithm). Asymptotically this may be an
unrealistic assumption but we ignore this point and maintain the fiction that
arbitrary integers can be held in a single register, adopt the uniform cost criterion,
but keep in mind the warning made by a referee that “[this] assumption — jf
abused — leads to all sorts of unexpected consequences.”

Being able to compute the order of the automorphism group enables us to
answer additional questions about isomorphisms. In particular the number of
isomorphisms between two forests is easy to compute. Mathon has noted that any
two graphs either are non-isomorphic or else their number of isomorphisms
between them is the same as the number of automorphisms of one of the graphs
[24]. Our algorithm is easily adapted to this purpose. We omit the details here.

We recall in passing that Edmonds’s algorithm is already known to provide
an efficient method for coding trees. The modification for forests is trivial.
Starting with a sorted list of the i-numbers for the roots we recursively substitute
the working label, in parentheses, for each vertex’s i-number (also substituting
original labels for ranks) until we have a single string consisting of the original
labels suitably parenthesized to indicate the structure of the forest. This is a
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FIGURE 2.4: The k-numbers for the forest in Figure 2.1. An
imaginary root vertex has been added to the forest. Its k-number is
the order of the automorphism group, in this example 4608.

canonical representation. The code for each tree in our example forest is the
string

(bac (ace ())0)(cd (a (ab Yab ))(a (ab)(ab))(ca)))

and the code for the entire forest is the tree code repeated twice.

In summary we can state the following result about the automorphisms of a
labeled forest. As a special case these same results apply to trees.

THEOREM: 2.4: It is possible to test isomorphism, to find the automorphism
partition or a set of generators for the automorphism group, and to count the
number of automorphisms or isomorphisms for labeled forests in time and space
which is linear in the size of the forests plus the sum of the lengths of the labels.

We will use these results in the following sections where we represent more
general graphs by labeled forests. The labels will always be integers or strings of
integers chosen from a range which is linear in the size of the original graphs so
the results of this section will apply. We will thus be able to obtain linear
automorphism algorithms for a class of graphs larger than just forests.

3. Interval Graphs

An interval graph is a graph G = (V,E) in which there is a one-to-one
correspondence between the vertices V' and some family of intervals on the real
line. The correspondence must have the property that two vertices are adjacent in
G if and only if their two corresponding intervals have a non-empty intersection.
We will briefly review some facts about interval graphs here. Further background
and additional references are given by Booth and Lueker [5,23]. They have shown
how to reduce the problem of testing interval graph isomorphism to the problem
of testing isomorphism between special labeled trees. Here we explain how to
extend those methods to obtain linear algorithms for computing the automorphism
partition, a set of generators for the automorphism group, and the order of the
automorphism group.

The basis of their isomorphism algorithm is a procedure for representing an
interval graph by a PQ-tree. The leaves of the PQ-tree are the dominant
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{maximal) cliques of the interval graph. Internal nodes are either P-nodes which,
like nodes in normal trees, have an unordered set of children, or else they are Q-
nodes which have three or more children whose left-to-right order is rigid up to a
complete reversal. Figure 3.1 provides an example of an interval graph and a
PQ-tree which represents it.

@O O O OO~
S ——

l l I _] /d,/'./",// /d/,m,n/
(abca) {bedqe)  (eafe) (edgnf (oanif

FIGURE 3.1: A set of intervals (above) and the PQ-tree (below) which
represents the associated interval graph. Each of the seven leaves in
the tree is a dominant clique from the interval graph. P-nodes are
drawn as circles and Q-nodes are drawn as rectangles.

Throughout the remainder of this section we will assume that G is an
interval graph. To avoid confusion we will depart somewhat from our previous
notation and refer to the vertices of a PQ-tree as nodes so as to distinguish them
from the vertices of G. We will further assume that all PQ-trees are drawn in the
normal fashion with their roots at the top and their leaves at the bottom and that
the leaves have a specific left-to-right order in this presentation. Every
automorphism of a PQ-tree will thus correspond to an implicit re-drawing of the
tree in which similar nodes occupy similar positions.

It has been shown [23] that the PQ-tree for an interval graph is unique up to
isomorphism. An even stronger result can be proven which will enable us to solve
the automorphism problems.

LEMMA: 3.1: Every automorphism of the PQ-tree for an interval graph G induces
a distinct automorphism on G.

PROOF: Consider a particular embedding of the PQ-tree as discussed above. The
leaves taken in left-to-right order form the frontier of the PQ-tree. Any
automorphism of the PQ-tree will produce a different frontier and hence a
different ordering of the dominant cliques.

Suppose that we have a particular frontier and that each clique is labeled
with the sequence of degrees for its vertices, the degrees being specified in
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increasing order. We claim that the interval graph can be reconstructed from this
information. The key observation is the fact, proven elsewhere [23], that the set of
cliques to which each individual vertex belongs is always a consecutive set of
leaves along the frontier. This is a basic property of the PQ-tree for an interval
graph and forms the foundation for all of the PQ-tree algorithms.

procedure RECONSTRUCT( {C/}, k ):

begin
n <0;
E <,
A«
for i < 1 until k do
begin
for j€EA do
C; < Ci—{degree(j)};
while C; # & do
begin
n<n+l;
degree (n )< min(C));
C; < Ci—{degree(n)};
edges (n)<0;
for j€A do
begin
E «<FE U{{j,n }};
edges (j)<edges (j)+1;
edges (n)<«edges(n)+1
end;
A <A Uin};
for jEA do
if edges (j)=degree (j) then 4 < A4 —{;j}
end
end
end

FIGURE 3.2: A Pidgin Algol procedure {1] which reconstructs an
interval graph from its PQ-tree. The first input is the sequence of
degree sets for the cliques along the frontier of the PQ-tree. The
second input is the number of cliques. The procedure produces the set
of edges E for the graph and the number of vertices n. The vertices
which are missing edges at any step are ‘“‘active” and are placed in the
set A. They continue to have edges added as new vertices are created
until finally their number of edges is equal to their degree, at which
point they become “‘inactive” and are removed from A.

Figure 3.2 contains a Pidgin Algol procedure which reconstructs an interval
graph from the frontier of its PQ-tree. The reconstruction proceeds as follows.
Starting with the leftmost clique a set of consecutively numbered vertices
(beginning with one) is created for each degree of a vertex in the clique, the
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degrees being processing in increasing order. Edges are added between all created
vertices to form a clique.

At a general step, having reached a new clique, the set of degrees is first
modified by removing an instance of each degree for which there is a previously
created vertex with the same original degree but which still has fewer edges than
indicated by its degree. The requirement that vertices appear in consecutive
cliques guarantees that there is no loss of generality in this step because all
vertices which still have missing edges must be in this new clique. The process
then proceeds as before, continuing the creation of consecutively numbered
vertices in increasing order of degree and adding edges among all new vertices and
also between all new vertices and all old vertices which are still missing edges.

An easy induction on the number of cliques verifies that the graph which is
constructed is isomorphic to the original interval graph from which the PQ-tree
was built. Every automorphism of the tree thus induces a permutation of the
vertices which is an automorphism of the interval graph. Each of these interval
graph automorphisms is distinct.

To be convinced of this, observe that every automorphism of the PQ-tree has
a distinct frontier. If we consider two distinct automorphisms of the PQ-tree, at
least one clique must be in a different position within the frontier. No two
dominant cliques have identical sets of vertices. Thus the clique which differs in
the two PQ-tree automorphism must have a vertex which is treated differently by
the reconstruction procedure. It then follows that the two interval graph
automorphisms differ on that vertex, implying that they are in fact distinct
automorphisms. [J

FIGURE 3.3: The interval graph produced by the reconstruction
procedure of Figure 3.2 using the frontier of the PQ-tree from Figure
3.1. The procedure has been run for two iterations (i <1, 2) of the
outermost for-loop. At this point in the execution n =35, 4 ={3,4},
and the degrees for vertices 1 through 5 are respectively 3, 4, 8, 13,
and 3. If the algorithm is run to completion it will construct a graph
having fourteen vertices. It is easy to check that this is an interval
graph for which the intervals in Figure 3.1 form an intersection model
which represents the graph [5].
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Having discovered that every automorphism of the PQ-tree leads naturally to
a different automorphism of G we might ask whether the converse is true. Does
every automorphism of G induce a different automorphism of the PQ-tree? The
answer is no. The reason can be traced to the way in which the interval graph was
reconstructed from the tree. At various stages vertices were created to correspond
to degrees of vertices within cliques. It can easily turn out that the same degree is
used for more than one vertex being created for a particular clique. In the
algorithm of Figure 3.2 this follows from the fact that the selection of the
minimum of C; is nondeterministic since C; is in general a multiset of degrees.
The reconstruction algorithm does not distinguish these vertices. They are similar
but distinct, so some automorphism should interchange them. It is these
additional automorphisms which we must characterize.

We need a bit more information concerning the PQ-tree for this task. Every
vertex in G has a characteristic node in the PQ-tree. This is the unique node
(there always is one) which roots the subtree whose leaves are exactly the cliques
to which the vertex belongs [5,23]. Strictly speaking the term characteristic node
is a bit imprecise because some vertices have characteristic nodes which are
actually only part of a Q-node. The rigid left-to-right order of a @-node’s children
means that only some of them (always a consecutive subset) have leaves which
contain the vertex in question. Nevertheless we will use the term characteristic
node to mean the leaf, P-node, or portion of a @-node which contains those
cliques. Figure 3.4 illustrates the characteristic nodes for the interval graph shown
earlier,

a—

ymn

553.403) (33413

s l i~

(4.613) [3485) (54813 [44613/ (3481}
FIGURE 3.4: The characteristic nodes for the interval graph in Figure
3.1. Note that intervals g and & have characteristic nodes which are
portions of the Q-node. The characteristic node for g is the two
leftmost children of the Q-node whereas the characteristic node for A
is the two rightmost children.

LEMMA: 3.2: Every automorphism of G is completely determined by an
automorphism of the PQ-tree for G together with a permutation of the vertices
which preserves characteristic nodes.

PROOF: Consider an automorphism of the interval graph G. It can be decomposed
into two automorphisms, one on the PQ-tree and one which preserves
characteristic nodes, in the following manner.

The automorphism induces an automorphism on the PQ-tree. This in turn
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induces an automophism of G, which is not necessarily the same as the originial
automorphism because because the reconstruction has lost some information
distinguishing vertices belonging to the same set of cliques. Vertices which are not
distinguished by the reconstruction procedure are precisely those vertices which
have identical characteristic nodes. They are always similar. Moreover, they may
be arbitrarily permuted within the cliques with no change to the reconstruction.
Thus the particular automorphism can be obtained from the automorphism
induced by the reconstruction by a reorderingof each set of vertices having the
same characteristic node.

It follows immediately from these remarks that the additional shuffling of
these vertices accounts for all possible automorphisms of G. O

, l
[} [ jZ {72 ()5 [/

FIGURE 3.5: The i-numbering for the PQ-tree of Figure 3.1. Internal
nodes have working labels which begin with a P or a Q to
differentiate the two types of nodes. The remainder of a P-node’s
working label consists of the i-numbers, in increasing order, of the
children. The i-numbers in the working label of a Q-node are in left-
to-right order of the children and thus not always in increasing order.

We are now ready to state the algorithm for computing the automorphism
partition of an interval graph. We first label each leaf with the degrees of its
vertices in increasing order. The /-numbering then proceeds as before followed by
j-numbering. Two vertices are similar if and only if their characteristic nodes are
similar in the PQ-tree. The j-numbers and depth information give this
information.

LEMMA: 3.3: The automorphism partition of an interval graph can be found in
linear time.

PROOF: Booth and Lueker prove that the PQ-tree of an interval graph can be
constructed in linear time and that the characteristic nodes can be found for each
vertex within the same time bound [5,23]. The rest of the calculation is linear
since it is a variation on the computation of the automorphism partition of a
labeled tree.

Working labels for P-nodes consist of the letter P followed by the i-numbers
of the children in increasing order. Working labels for Q-nodes consist of the
letter Q followed by the i-numbers of the children in left-to-right or right-to-left
order, whichever gives the lexicographically smaller label. The j-numbering is
identical to the earlier calculation for trees.

A~ e

i T R T e B i e
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Vertices of the interval graph are partitioned by assigning each one a label
which consists of the similarity class for the characteristic node. If the
characteristic node is a P-node this is trivial. If it is a Q-node the label must
distinguish the portion of the Q-node (a consecutive set of children) comprising the
characteristic node. This is accomplished by numbering the children from left-to-
right (or right-to-left, depending upon how the working label was generated during
the i-numbering) and appending the index of the left-most and right-most children
to the label for the vertex. A final bucket sort accomplishes the partitioning into
similarity classes. [

I I
LY I BT
The blocks of the automorphism partition of the interval graph

la.e} b} {c} {d} (i} (g.h} Uikm.n} {1}

FIGURE 3.6: The j-numbering for the PQ-tree of Figure 3.1. The
eight blocks of the automorphism partition for the original interval
graph are shown below the PQ-tree.

Finding a set of generators for the automorphism group is an easy
generalization of the automorphism algorithm for a forest. There are two minor
variations to the basic forest algorithm which must be made. The first is that a set
of generators must be added which permute each family of vertices having the
same characteristic node. A bucket sort produces the families and the compact
representation for a set of generators is then easily produced. This can be done
before the i-numbering so we will not worry about this contribution to the
complexity since it is obviously linear.

The second variation is that as the generators are produced there can arise a
situation which does not occur in the normal algorithm. Some Q-nodes can have
their children reversed left-to-right and still have the resulting subtree isomorphic
to the original subtree. When this happens it is necessary to output the compact
representation of an automorphism which performs this reversal. This is easy to
do by walking the tree but we need to verify that the algorithm is still linear. The
earlier argument that each vertex is in the range of an automorphism at most once
no longer holds. But careful analysis shows that each time a Q-node is reversible
we are guaranteed that one half of its children will disappear at the next level
because they must be similar to the other half of the children. If there are an odd
number of children the middle child does not have to participate in the reversal
because it maps to itself. This is enough to ensure linearity because each vertex is
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now in the range at most twice.

[ /? { /¢

| | |
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FIGURE 3.7: The k-numbering of the PQ-tree of Figure 3.1. The
order of the automorphism group of the interval graph is the k-
number of the root. In this example there are 32 distinct
automorphisms.

Counting the number of automorphisms for an interval graph is equally
straightforward. A k-numbering of the PQ-tree determines the order of its
automorphism group and the remaining automorphisms can be counted by
multiplying by the total number of permutations which preserve characteristic
nodes. This is simply the product of the factorials of all families of vertices
having a common characteristic node and is again a linear time computation,
modulo the entire discussion of Section 2 regarding the computation of factorial.
In practice it is simpler to include this in the k-numbering. The k-number of each
node is multiplied by the factorial of the number of vertices for which it is a
characteristic node. Q-nodes will have a slightly more complicated k-number
because they can correspond to more than a single characteristic node in which
case the product of the factorials is used. This modified k-numbering is illustrated
in Figure 3.7.

These PQ-tree algorithms can be extended to handle labeled interval graphs
in an obvious manner. Instead of each clique receiving a label which consists only
of degrees we first bucket sort all of the vertices’ labels and assign ranks which are
then added to the degree information labeling the cliques. The remainder of the
algorithm is the same except that two vertices are similar if and only if they have
the same label and similar characteristic nodes. We have proven the following.

THEOREM: 3.4: It is possible to test isomorphism, to find the automorphism
partition or a set of generators for the automorphism group, and to count the
number of automorphisms or isomorphisms for labeled interval graphs in time and
space which is linear in the size of the interval graphs plus the sum of the lengths
of the labels.

4. Outerplanar Graphs

An outerplanar graph is a graph having a planar embedding in which all of
the vertices lie on the exterior face [11]. These graphs are obviously planar so we
know (jumping ahead to Section 5) that they have linear time automorphism
algorithms. But algorithms to handle the general case are fairly complicated and
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any implementation is likely to be quite intricate. However, outerplanar graphs
are a greatly restricted subset of the planar graphs and we can take advantage of
their additional structure to produce algorithms which are simpler than the
corresponding algorithms for labeled planar graphs.

Our outerplanar algorithms have the same linear asymptotic running time as
do the planar algorithms but the constants of proportionality are much lower
compared with the more general algorithms. In this respect we offer quite
practical solutions to the isomorphism and automorphism problems for
outerplanar graphs. These new algorithms, like much of the previous work on
outerplanar graphs, are based on a result of Tang [32].

LEMMA: 4.1: If G is a graph in which there are at most two vertex-disjoint paths
of length greater than one between each pair of vertices then

(1) G 1s planar,
(2) e €2n -2, and
(3) if G is biconnected and n >5 then G has a unique Hamilton cycle.

It is easy to see that outerplanar graphs satisfy the hypotheses of the lemma.
Any two vertex-disjoint paths must lie on different portions of the exterior face
and thus there are at most two such paths joining any pair of vertices. We can
state the following result.

COROLLARY: 4.2: Every biconnected outerplanar graph having at least three
vertices possesses a unique Hamilton cycle.

PROOF: For five or more vertices Tang’s lemma guarantees that there is a unique
Hamilton cycle. The remaining cases are verified exhaustively. The only
biconnected outerplanar graphs having at least three but no more than four
vertices are the graphs K3, K; 2, and K4—x. Each of these has a unique Hamilton
cycle as shown in Figure 4.1. O

FIGURE 4.1: The three biconnected outerplanar graphs on three or
four vertices with their unique Hamilton cycles. Edges within the
cycles are indicated by the directed arrows.

For an arbitrary outerplanar graph standard depth-first search algorithms
will produce the biconnected components in linear time [1,33]. Using the unique
Hamilton cycles we will show that each of these biconnected components can be
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placed into a canonical form from which information about the automorphisms
can be easily extracted. These in turn can be used to build a canonical tree
representation for each of the connected components so that the resulting forest is
a canonical representation for the entire graph. From this forest, automorphism
information can be easily obtained using algorithms similar to those developed in
Sections 2 and 3. We thus examine the problem of placing the biconnected
components into canonical form, putting off until later the task of piecing this
information back together again for the whole graph.

Given a biconnected outerplanar graph the unique Hamilton cycle can be
found in linear time by successively removing vertices of degree two. Beyer,
Jones, and Mitchell use this approach to test isomorphism of maximal outerplanar
graphs [2]. They rely upon the fact that the sequence of vertex degrees
encountered along the Hamilton cycle, the Hamilton degree sequence, completely
characterizes the graph. Unfortunately this characterization does not extend to
the more general case of biconnected outerplanar graphs. Figure 4.2 illustrates
this situation, showing two non-isomorphic biconnected outerplanar graphs which
have the same Hamilton degree sequence.

FIGURE 4.2: Two non-isomorphic biconnected outerplanar graphs
having the same Hamilton degree sequence 2322323223,

Syslo [31] gave a similar example in his description of a linear time coding
algorithm (and hence a linear time isomorphism test) for biconnected outerplanar
graphs. He again used the unique Hamilton cycle, but he proposed a more
elaborate scheme which uses additional information concerning the structure of the
graph. After identifying the unique Hamilton cycle and numbering the vertices
accordingly his algorithm performs a series of reduction and labeling steps to
finally obtain a string representation which is then minimized and used as a
canonical representation for the graph.

We think that our approach is somewhat simpler and leads more directly to
efficient automorphism algorithms. We observe that although the Hamilton
degree sequence is not sufficient to completely determine a biconnected
outerplanar graph we certainly can reconstruct the graph if we have a list of the
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adjacencies for each vertex along the cycle. The problem of course is to represent
the adjacencies in a manner which is independent of the exact starting position
chosen for the cycle since otherwise there might be as many as r different
representations.

To this end we represent the adjacencies at each vertex by a list which
consists of the distances along the Hamilton cycle between the vertex and each of
its neighbors. We further stipulate that these distances be in increasing order.
Notice that the lists depend upon the orientation chosen for the Hamilton cycle
but not upon its starting point. Figure 4.3 shows the adjacency lists for the two
graphs of Figure 4.2. Each vertex is assigned two lists, the first for a clockwise
traversal of the Hamilton cycle and the second for a counter-clockwise traversal.

FIGURE 4.3: Clockwise (on the left) and counter-clockwise (on the
right) Hamilton adjacency lists for the two graphs of Figure 4.2. The
fact that the two sequences are different implies that the top graph is
not isomorphic with the bottom graph.

In general we will let S be the sequence obtained by following the Hamilton
cycle in one direction, concatenating adjacency lists, and we will let R be the
sequence obtained by concatenating in the opposite direction, using the reversed
adjacency lists. These are the Hamilton adjacency sequences for the graph.
Isomorphism of biconnected outerplanar graphs can be characterized directly in
terms of these sequences.
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LEMMA: 4.3: Let G| and G, be biconnected outerplanar graphs and suppose that
Sy and S, are the Hamilton adjacency sequences for their unique Hamilton cycles
and that Ry and R, are the Hamilton adjacency sequences for the reversed
Hamilton cycles. Then G is isomorphic to G, if and only if S is either a cyclic
shift of §5 or a cyclic shift of R .

PROOF:

Clearly two isomorphic graphs must have Hamilton adjacency sequences
which are either cyclic shifts or reversals of each other. But as we have already
remarked, given the Hamilton adjacency sequence of a graph, the graph can be
reconstructed up to isomorphism. O

The unique Hamilton cycle in a biconnected outerplanar graph can be found
in linear time by successively removing vertices of degree two, being careful to
keep track of vertices which must be adjacent in the cycle [2,27,31]. The
sequences S|, S5, R |, and R, can be constructed at the same time by numbering
the vertices along the cycle and bucket sorting the distances for each adjacency,
building the lists for each of the vertices by adding the smallest distances first.

Restating the last lemma as a pattern matching problem we see that two
graphs are isomorphic if and only if S| is a substring of S2528R2R,. This
condition can be tested using any one of many algorithms for linear time pattern
matching [1, Chapter 9]. Noting that all of the objects are linear in the size of the
graphs (the strings § and R each have length 2¢) and that the graphs themselves
are linear in n (by Lemma 4.1) we have proven the following result.

COROLLARY: 4.4: Two biconnected outerplanar graphs can be tested for
isomorphism in O (n) steps.

Syslo’s coding algorithm achieves the same asymptotic running time but we
claim that our algorithm is easier to implement and that it will have a smaller
multiplicative constant. But what is more important our algorithm is easily
extended to solve the automorphism problems discussed in earlier sections. All
that is required is a little more information from the pattern matching algorithms.
Let p; be the position within § in which the adjacency list for vertex i begins and
let g; be the position in R in which the reversed adjacency list for vertex i begins.

LEMMA: 4.5: Let G be a biconnected outerplanar graph, let S be its Hamilton
adjacency sequence, and let R be its reversed Hamilton adjacency sequence. Two
vertices [ and j are similar if and only if the substring of length 2¢ which begins in
position p; of SS is identical with the substring of length 2e which begins either in
position p; of 8§ or in position g; of RR.

One way to compute the similarity classes is to find the position tree for the
string SS$RR using Weiner’s algorithm [1,37]. Two vertices are in the same
similarity class whenever they have a common ancestor at depth 2e in the position
tree. The standard algorithm for finding position trees requires time proportional
both to the length of the input string and to the alphabet size. Since our strings
have symbols ranging from 1 to » this would imply an Q(n 2y running time.

But this is more machinery than we need bring to bear on this problem.
Any automorphism must map a Hamilton cycle onto a Hamilton cycle. Thus for
biconnected outerplanar graphs the only possible automorphisms are cyclic shifts
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and reversals of the Hamilton cycle. It is sufficient to compute just the similarity
class of vertex 1; the class for vertex j is found by adding j —1 (modulo n) to all of
the vertices in the first class if the automorphism corresponds to shifting the
Hamilton cycle; if the automorphism corresponds to reversing the Hamilton cycle
the vertices in each class must be “reversed” in the obvious manner.

It follows that the automorphism group is always a subgroup of a dihedral
group, the 2n permutations which cyclically shift and/or reverse a cycle of length
n. is The number of automorphisms for a biconnected outerplanar graph is the
number of distinct cyclic shifts and reversals which map the Hamilton cycle onto
itself. We can find the order of the group by counting the number of times that S
occurs as a substring in SS'SRR’ where S’ and R’ are the respective strings S and
R with their final symbols removed to avoid counting the identity and reversal
automorphisms twice.

Guy [10] gave similar counting results for automorphisms of maximal
outerplanar graphs, showing that there were at most six automorphisms. This is a
very special case because the more general biconnected outerplanar graphs can
realize the full dihedral group, as evidenced by the n-cycle which is biconnected,
outerplanar, and has 2n automorphisms.

For the automorphism groups of biconnected outerplanar graphs a set of
generators consists of a single cyclic shift of the minimum distance and (if
appropriate) a reversal of the cycle. Again, these two automorphisms are easily
found using linear time pattern matching.

LEMMA: 4.6: There exist linear time algorithms to compute the automorphism
partition, to determine the order of the automorphism group, and to find a set of
generators for the automorphism group of a biconnected outerplanar graph.

We turn our attention next to the problem originally solved by Syslo, that of
producing a coding for biconnected outerplanar graphs in linear time. The
Hamilton adjacency sequence is almost a canonical form for a biconnected
outerplanar graph. If we encode the graph by finding the starting vertex and
direction for the Hamilton cycle which produces the lexicographically smallest
adjacency sequence we will produce a coding. It is easy to modify the Knuth-
Morris-Pratt pattern matching algorithm to have it find the lexicographically
smallest cyclic shift of a string in linear time and space; there are other
algorithms, the best known to us is due to Shiloach [4,28,29]. This yields a linear
time coding algorithm for biconnected outerplanar graphs.

We conclude this section with a sketch of the automorphism algorithms for
general outerplanar graphs. The biconnected components can be used to build a
tree (a variant of the block cut-vertex tree) for each connected component. These
trees form a forest representing the entire graph.

Biconnected components are labeled with their Hamilton adjacency sequence
which has been shifted so it begins with the unique cut vertex which is the parent
in the tree. The Hamilton adjacency sequence is reversed if necessary to give the
smallest possible lexicographic value. The exception to this rule is a biconnected
component which has no parent in its tree (there is at most one in each tree).
These are represented by the shift or reversal of the sequence which gives a
lexicographically least value after the i-numbers for the children have been inserted
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FIGURE 4.4: A general outerplanar graph having two connected
components and fourteen biconnected components.

FIGURE 4.5: The block cut-vertex forest for the outerplanar graph of
Figure 4.4. Each node within the forest is either a block of the graph
or a cut vertex of the graph. Blocks (biconnected components) are
indicated by dotted lines.

into the Hamilton adjacency sequence.

An isomorphism test is a straighforward modification of the earlier labeled
tree isomorphism algorithm. At each level in the forest, beginning at the bottom,
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FIGURE 4.6: The i-numbering for the block cut-vertex forest of Figure
4.5. The code for this forest is a canonical representation of the
original graph. The working label of a block is its Hamilton
adjacency sequence. For non-root blocks, the sequence begins with
the unique cut vertex which is the parent of the block; a root block is
labeled with its lexicographically least sequence. In non-leaf blocks
the adjacency list of a cut vertex is preceded by the i-number of the
cut vertex, contained within parentheses. Working labels for cut
vertices consist of the i-numbers of the children in increasing order.

the labels are bucket sorted and assigned ranks. A check is made that the multiset
of labels is identical for the two forests. The i-numbers are then passed up the
tree, inserted appropriately into the parents’ labels (being careful to distinguish
ranks from distances) and the next level is bucket sorted. This continues until the
roots are the only unprocessed nodes. At the top level the labels with rank
information inserted are each placed into a canonical form (minimum
lexicographic order) and then bucket sorted. Two outerplanar graphs are
isomorphic if and only if their forests generate the same multiset of labels for the
roots.

Algorithms for computing the automorphism partition, counting the number
of automorphisms, and producing a set of generators for the automorphism group
are easy to build using the forests and the automorphism algorithms from Section
2. Labeled outerplanar graphs are handled by incorporating the ranks of the
bucket sorted labels into the Hamilton adjacency sequences in an obvious manner.
The modifications are quite similar to those used for interval graphs. We can
state the following result.

THEOREM: 4.7: It is possible to test isomorphism, to find the automorphism
partition or a set of generators for the automorphism group, and to count the
number of automorphisms or isomorphisms for labeled outerplanar graphs in time
and space which is linear in the size of the outerplanar graphs plus the sum of the
lengths of the labels.

5. Planar Graphs

In this section we will briefly sketch the techniques which might be used to
build linear time automorphism algorithms for general planar graphs. The
algorithms we propose are admittedly quite complicated. We have not
implemented them; to do so will require that many details be worked out which
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we have not fully thought out. Nevertheless, we maintain that the basic ideas
sketched here form a convincing argument that the automorphism problems for
the general case of planar graphs can also be solved in linear time.

Our methods build upon those developed by Hopcroft, Tarjan, and Wong
[16,20] which were used to produce linear time algorithms for testing isomorphism
of planar graphs. Fontet [9] has also used their results as the basis of a linear
algorithm for finding the automorphism partition of a planar graph. His method
is quite similar to ours, but he bases his construction on the Hopcroft-Tarjan
algorithm whereas we favor the Hopcroft-Wong solution. We indicate algorithms
for solving all of the automorphism problems.

To review, here is a short survey of the development of planar graph
isomorphism algorithms. In 1970 Hopcroft [13] demonstrated that the states of a
finite automaton could be minimized in O (n logn) time. The application of this
technique to planar graph isomorphism was pursued in a series of papers by
Hopcroft and Tarjan [14-17]. They reduced the isomorphism problem for planar
graphs to the problem for triconnected planar graphs by using a tree
representation in which each leaf corresponds to a maximal triconnected subgraph.
The connected, biconnected, and triconnected components are all found in linear
time [18,33]. The problem was further reduced to isomorphism of triconnected
- planar embeddings using Whitney’s theorem that a triconnected planar graph has
a unique embedding [19,38].

Hopcroft and Tarjan were only able to show that planar graphs can be
tested for isomorphism in O(n logn) time [17] but Hopcroft and Wong were able
to obtain linear algorithms using the planar embeddings [20,39]. The Hopcroft-
Tarjan algorithm produces the automorphism partition of the triconnected
embedding as part of the isomorphism test. Fontet [9] later improved the time
bound for Hopcroft and Tarjan’s method to O (n) by establishing some interesting
properties of planar embeddings. He was the first to show that the automorphism
partition of a planar graph can be found in linear time.

We take a different approach than Fontet and base our automorphism
algorithms on the Hopcroft-Wong algorithm. Necessarily we will only be able to
sketch our procedure. A more complete description and a proof of correctness
would require a more thorough analysis of the Hopcroft-Wong algorithm than has
yet appeared in the literature. Our algorithms will use the linear time forest
automorphism algorithms along with linear pattern matching.

The overall algorithm follows Hopcroft and Wong. The connected,
biconnected, and triconnected components are found and used to construct a
forest, similar to the forest used for outerplanar graphs, which is then j-numbered,
j-numbered, and k-numbered. The difficult part is the way in which the
triconnected planar embeddings are handled.

Hopcroft and Wong’s algorithm successively reduces the planar embeddings
to smaller and smaller embeddings by applying two operations which remove loops
or multiple edges and vertices of low degree. The information from these
reductions is kept so that the graph can be reconstructed. A second critical step is
the application of a circle isomorphism procedure which determines whether two
labeled cycles are isomorphic. The overall algorithm eventually tests the entire
graph by winding back through the reductions, propagating information obtained
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at lower levels in the algorithm.

Wong was able to show that every triconnected planar embedding must
either have an applicable reduction or else it must be one of three simple graphs: a
labeled vertex, a labeled cycle, or a Platonic solid [39]. This guarantees that the
test is linear since all of these cases, with the exception of the labeled cycles,
involve only graphs of bounded size.

We propose using linear pattern matching to place all of the circles into a
canonical form by finding their lexicographically smallest shift and using that shift
to represent the cycle. Isomorphism and automorphism questions for circles are
then easily answered as discussed in Section 4. The result is a canonical i-
numbering of the tree which represents the planar graph. After j-numbering and
k-numbering we can easily find all of the other automorphism information for the
graph. We state without proof our main result concerning planar graphs.

PROPOSITION: 5.1: It is possible to test isomorphism, to find the automorphism
partition or a set of generators for the automorphism group, and to count the
number of automorphisms or isomorphisms for labeled planar graphs in time and
space which is linear in the size of the planar graphs plus the sum of the lengths of
the labels.

This section has been only a sketch of the methods we propose. The details
are similar to those given in previous sections but are significantly more
complicated due to the extra complexity of finding triconnected components and
other complexities inherent in the Hopcroft-Wong algorithm. We claim that our
version of circle isomorphism may be an improvement over the original version
and that our algorithms in principle can be used to solve all of the automorphism
problems, in contrast with Fontet’s solution which finds only the automorphism
partition. A verification of these claims awaits further work to clarify the many
details omitted here.

6. Concluding Remarks

We have shown that four classes of graphs having linear time isomorphism
tests have linear time algorithms to compute the automorphism partition, to count
the number of automorphisms, to produce a set of generators for the
automorphism group, and also to determine codings for the graphs. The
algorithms for outerplanar graphs, particularly for the biconnected case, are very
easy to implement and should be much faster than the algorithms for the general
planar case.

We conclude with a few remarks suggesting possible areas for future
investigation. Polya [26] showed that the automorphism group of a tree can
always be expressed as the direct or wreath products of symmetric groups.
Weinberg, Harary, and Tutte [12,36] showed that triconnected planar graph have
automorphism groups which are linear in size. Biconnected outerplanar graphs
have automorphism groups which are always subgroups of a dihedral group and
maximal outerplanar graphs have at most six automorphisms [10].

These examples suggest that there is a relationship between the ‘‘complexity”
of the automorphism group and the “complexity” of testing for isomorphism. In
particular we conjecture that for classes of graphs in which the isomorphism
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problem is equivalent to the general graph isomorphism problem it will turn out
that in some vague sense almost every group will be the automorphism group of
some graph within the class. A precise statement of this proposition awaits
further research.
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