THE SEMANTICS OF SHARING
IN PARALLEL PROCESSING*

by
T.S.E. Maibaum

Computer Science Dept.
University of Waterloo
Waterloo, Ontario, Canada

Research Reéport CS-79-05
January 1979

*This research was supported by a grant from the Natural Sciences and
Engineering Research Council of Canada.

ABSTRACT

Concurrent computation can be divided roughly into two categories
according to whether the method of synchronisation is via communication or
via sharing of resources (which we interpret to mean sharing of data values).
In this report we propose a formalisation of the semantics of concurrent
processing using the latter kind of synchronisation. Our formalisation is
given in an algebraic setting and we make extensive use of the concept of
abstract data type.

The programming language whose semantics is specified is a simple
(standard) language with recursion and forking. We axiomatise the behaviour
of the language by formalising algebraically the concept of environment (and
stack of enviromments) to handle recursion. The fork statement is then
reduced to non-determinism and recursion. Sharing of data values is
foermalised by allowing separate processes to have (parts of) their stacks

of environments in common.

0 Introduction

Our aim in this report is to provide an algebraic axiomatisation
of the behaviour of processes. Before we can proceed, however, we must
make more precise what we mean by the word 'process'. We have found a
three point classification of definitions of processes to be useful:
(i) Processes are intended either to terminate after a finite amount
of time in the sense that sequential programs do on a finite amount
of input or they are intended to run forever on an infinite stream
of inputs (as in an operating system). Examples of the former
interpretation can be found in R and T , examples of the
latter in K&M.
(ii) Processes are intended to synchronise their activities by the shar-
ing of values (through access to common areas of store) or by
explicit communication of these values by sending and receiving messages.
Examples of the use of shared values can be found in H , R, and D.
Examples of communicating processes can be found in T,D,K&M.
(iii) Processes are organised hierarchically (i.e. one process may control
the behaviour of another) or anarchically (processes cannot control
each other's behaviour (except by creation and the synchronisation
mechanisms). Examples of hierarchically organised processes can be
found in T,D, and H. Examples of anarchically organised processes can
be found in K&M and R.
We intend to study anarchic, terminating processes with synchronisation achieved
by sharing of values. Attempts have been made in this direction beginning with

the pioneering works of B,K, and Mji(1). The idea of an algebra of processes

was put forward in both B and Mi(l). However, when these works were written,
the concept of continuous algebra did not exist. Nor did the concept of a
powerdomain and since attempts at defining processes have involved the use of
non-determinism, this was also a great drawback. With the advent of continuous
algebras (ADJ(2), Mi(2)) and satisfactory definitions of powerdomains
(P,S,H,H&P,M(2)), we are now in a position to make more precise our formalisation.
We will use the powerful tools developed in the study of continuous
algebras and abstract data types (L,L&M(1)~<(2),ADJ(2)) to axiomatise in an
algebraic setting the behaviour of programs contgining process declarations,
assignments, conditionals, while loops, procedure calls and fork statements (our
parallelism construct). The reason that this is possible is because we regard
a program as an expression mapping assignments of values to variables (the input)
to assignments of values to variables (the output). In particular, each program
statement defines such a map. To facilitate our development, we assume that
expression evaluation has no side effect and that the assignment statement and
evaluation of boolean expressions in while loops and conditionals are indivisible.
The key idea in our development is the encoding of the concept of a
"local environment" in an algebraic setting. Our ideas stem from the use of
structures in L, L&M(1)-(2) to encode values of data structures in the study of
abstract data types. Structures (or, as we call them, environments) are assign-
ments of values (of expressions) to variables (or identifiers). The variables
(identifiers) are regarded as constants of the algebra whose meanings (i.e.
the values which they denote) change over time. As the values change, so does
the algebra (since the constant operations denoted by the identifiers have

different meanings). We handle process declarations in a similar way.

Process names denote operations of our algebra. The operation they denote is
specified by the "body" of the procedure declaration. That these declarations
may be {mutually) recursive presents no difficulty.

Related work can be found in H&P, Mi & Mi, and Mi(2). In H&P an attempt
is made to define a domain of interpretation for a simple language allowing
both parallelism and non-determinism. Solutions to domain equations are used as
the main tool. Sharing and communication are both ignored. Mi&Mi (and Mi(2))
use the algebraic approach to study communicating processes (by abstracting
their communications '"capabilities'"). R has also studied an operational
definition of a language closely related to ours and the existence of this
model was a challenge for the algebraic method we have adopted.

The next section contains some mathematical preliminaries and the
outline of our language. The following section contains the axiomatisation of
our language of processes. The third section contains an evaluation of the

following sample program guided by the axioms of the previous section.

P(t) = local z;

z:= t3
while z # A .do
x:= x+1;

fork (P(rt(z)));

z:= 1t(z)
end:
local x;
x:= 03
P(t).

(The program is meant to count the nodes of a binary tree. It does this by
having the main process count the nodes of the left subtree of a node and having

a separate process count the nodes of the right subtree.)

The two final sections outline the way in which we assign meanings to

programs, test for equivalence of programs and provide a summary, respectively.

1.0 Mathematical Preliminaries

We assume the reader is familiar with rudimentary notions of
universal algebra, complete partially ordered sets and continuous algebras.
We review here briefly some definitions and results to make our use of
notation clear. The notation we use is that of ADJ(2) and M(2).

Let S be a set of sorts. A (many-sorted) alphabet (sorted by S)

is an indexed family of sets ¥ = {¥ } A (y-)algebra A

W,8" <w,s>cS*xS’ z
(or A if I is obvious from context) is an indexed family of sets
= % <Sqee. >eS* i
A {AS}SESand for each fézsl...sn,s (any 8¢ 528 €S#*X8) an assignment
of an operation f,:A XeeexA >+ A to f£f. f(or f£,) is said to be of type
A 81 s, s A

<w,s8>, arity w, sort s, rank le (where le is the length of w). If fel

A,s
(for A the empty string), f is said to be a constant symbol and fA is said

to be a constant of A. We denote by AV the set Al XeeexA for w = sp...s .
1 n

A (I-)homomorphism between Ay and BZ is an indexed family of

, 3 . sV
mappings h {hS.AS > Bs}seSSUCh that for all fel _, <aj,...,a “eA’ we

b

have hs(fA(al,...,an)) = fB(hsl(al),..., hsn(an)). h is said to be

injective, surjective, and bijective if and only if each hS is.
We will often omit the subscripts from hS as they will be clear from
the context. h is a ZX-isomorphism if and only if h is a bijective
Z -homomorphism.

A is initial in a class C of y-algebras-if-and only if:

(1) A <C,

and (ii) for each Bge(, there isan unique Z-homomorphism

X
hp¥Ay> By

A (Z-)congruence q on an algebra AX is an indexed family of

equivalence relations q ='{qS}S€S such that for all fef _ and for all
b

w .
< s o0 > <) > . . < i =%
ars a > bl’ ’bn eA” such that alqs.bi forl=1i n, we have

£,(ayseesa)q £, (byeensb),

The gquotient of AE by q is:denoted Az/q. Given a partially ordered set
<D,< > (or D), we denote by i (or 1) the least element of D (if it exists)
and by ' |] d, the least upper bound of the set {di}ieI (if it exists). A

iel .
w-complete partial order (cpo) D is a partially ordered set which is

strict (i.e. has a least element) and w-complete (i.e. has least upper
bounds for all countable chains). A mapping £:D - D' between partially

ordered sets is (w-)continuous if and only if f(U d,) = U f(di)
i€l iel

(when the least upper bounds exist.)
A XZ.glgebra AZ is (w-)continuous iff each Ap is a cpo and each
fel is continuwous (as a mapping from A" to Ap)' A homomorphism
H
n:Asy > By, is (W-)continuous iff each h : A -+ B_ is continuous.
LoTh PP PP
The class of w-continuous I-algebras together with w-continuous
Y-homorphisms> denoted CAng, has.'an initial algebra CTZ' For our purposes,
we can regard CTZ as the algebra of finite and infinite expressions over

L (where LSeZX s for each s) and the order is the least order compatible
H]

with the rule L <t for all teCT
s Z,8

A congruence q on AZ e(Ang‘is said to be (w-)continuous iff
for all pairs of chains {ai},{bi‘.} in Ap such that a;q b, for all icw, we
have (U a.)q (U bi). That is, if two chains are pairwise related, then

i

iew icw
so are the limits.

Lemma: 1f AZ is continuous and AZ/q is continuous, then q is continuous.
Note that if AZ and q are continuous Az/q may still not be continuous.
See L&M for details.
We use the standard definition of equations, satisfaction and
least congruence q_ generated by a set of equations € (see L&M(1)).
However, when we use continuous algebras, q€ will represent the least

continuous congruence satisfying . Such a congruence always exists

as is shown in L&M(1).

Let ¢ be a set of equations. Let Qé;gi,e be the class of
continuous ZIZ-algebras- - satisfying ¢, together with continuous
Z~homomorphisms between them.

Theorem (see H, Le): géig{,e has an initial algebra, denoted by CTZ,e'
Let X be such that + ¢ Zss s for each s ¢ S . Then any algebra

s
in.gglgz’“ vhere N is {+xy = +yx,+xyz = +xtyz, +xx = x}s . g 1s said

to be a non-deterministic domain (ndd). See H, M(2), H&P, H&M for more
details. Objects of AE € Qé;gx’n can be thought of as elements of a
powerdomain with + being the finitary join operation for the elements

of the powerdomain. The subset (only suggestivell) order € on AS can be
defined in terms of + by x cy iff +xy =y . Non-deterministic domains

will play a large role in our development because we will reduce parallelism

to non~determinism.

1.1 The Language
We assume that we have available some basic data type (e.g. the

natural numbers) which is presented by DA the initial algebra in the class of

€ The operators of

(continous) algebras satisfying some set of equations a

this algebra are named by the alphabet A (sorted by SA) and we assume that

n < Ea'. That is, algebras satisfying ed are non-deterministic domains.
The syntax of our programming language is given as follows:

<program>::=<process declarations>:<prog>

<prog>::=<locals>;<statements>

<process declaratidns>::=<pdec1aration>5<process delcarations>|k

<pdeclaration>::=<process name>(<formal parameters>)=<prog>

(We assume we have process names available for every combination of formal

paramters we might require. It is also assumed that if P is of type

Sy+++8 5 8 then the formal parameters are Xysee X where X, is of sort

1

4 for 1 <1i < n.)

<locals>::=local<identifier>;<locals>|A
: . .o £ s
(We agssume we have available a countable set of identifiers XS, Xys oo for

each sort in our underlying domain DA . We denote by X the family

{ =4] }
Xgs Xys eeedg g In practice we omit the superscript indicating the

sort of an identifier as it is usually defined by the context.)

<statements>::=<statement>;<statements>IX

<statement>::=<identifier>:=<expression>
(An expression is an element of DA(X), the expressions over A
and the identifiers X.)

lnull
(This statement will do nothing to affect the outcome of a program.)

|if<boolean>then<statements>else<statements>

(<boolean>is a simple proposition in terms of <expression>s . Its

value is true or false or undefined as described in the sequel.)

IE@ilgﬁboolean>ggﬁstatements?ggg

|<process call>

(<process call>is used for recursion.)

| fork (<prog>)

(fork is used to start the execution of a process in parallel
with the execution of the forking program.)

<process call>::=<process name>(<actual parameters>)

(<actual parameters>are<expression>s whose sorts match those of the

corresponding formal parameters.)
We assume we have available a free monoid on <statement>'s whose
constant (empty sequence) is nil and whose binary operation is denoted by

":", We call the sort of which statements are elements statement. We also

3 .

We consider the two sorts, however, for their different effects on environ-
ments. The map converting a program s into a sequence of statements will

be denoted by ~ : prog - statement. Thus s € prog is mapped onto

s € statement.
An example of a program is:
P(t) = local z;

z:i=t;
while z # A do
x:i= xtl;
fork (P(rt(z)));
z: = pt(z)
end:
local x;
x:=0; 0

P(T);

(1)

10.

Our intended interpretation for DA is in this case a combination of the
natural numbers and (finite) binary trees (equiped with operations 1t and rt to
obtain left and right subtrees and the constant A to denote the empty tree).
This program will count the number of nodes of the "input" tree T by using
the process P . The segment Q 1is the main program and initialises the
value of x (the "counter") to zero. P is then called and increments x by
one if the actual parameter is not A . It then forks a copy of P to count
the nodes of the right subtree of the actual parameter and continues counting
the nodes of the left subtree. Note that the number of activated processes
depends only on T and cannot be predicted ahead of time independently of the
input.

Our intention is to formalise this intuitive behaviour algebraically.
This means that we will want programs to be finite expressions in some algebra
and meanings of programs to be (possibly) infinite expressions obtained by
taking the least fixed point of the functional defined by the program. Some
of the obstacles in this formalisation are as follows:

(i) What is the meaning of procedure deétarations?

(ii) How do we incorporate the many possible parallel invocations of a

given '"body of code" into our system? (This amounts to defining
explicitly some way of handling local variables. The problem is

somewhat similar to that of block structured languages.)

11.

1.2 Environments

The beginnings of our solution to the "problem" of local variables is
to use the concept of environment. However, we do not mean the usual "operational"
view of environments which includes such concepts as '"program counter'". On
the other hand, the inclusion of assignment as a basic operation forces us to
adopt a view which, even if handled abstractly, ''smells" of the operational
wiewpoint.

For us, an environment is, intuitively, a mapping ¢ from identifiers
(of sort s) to values in DA (of sort s). An assignment statement x:=t
is then used to update the envivonment 8 to a new one ¢' where the value of
x 1s the value of t din §. This would be sufficient if we did not have
process names (and thus the problem of scope of identifiers). Because of the
presence of process names, we must have stacks of enviornments. 1In fact we
will use sequences rather than stacks as we will need to concatenate "stacks'.

We give the specification of sequence of U (for 0 wunspecified) in the style
of abstract data type specifications. This is a parameterised data type and
we will later substitute environments for T . (See ADJ(1l), G).

In order to define sequences (and other types we will use) we need

the type bool defined as follows:

bool:: Sorts = bool
Operatioas =
frue, falee, 4: * bool

1: bool > bool

Vi bool X bool = bool

Cond: bool X bool X bool -+ bool

Variables = b, b', b, b22< bool

Axioms =

12.

1) =
1LVb = bvl = L
(eb) true Vb = true if b # 1

false vb = b

eI

bl Vb2 = b2Vbl

cond(true, by, b) l
cond(false, bl’ bz) 2
cond (L, bl’ b2) = L

We need for bool, the operation + with the ugua]l axioms together

with:
1 1
L l b2 + blsz
(+b b)vb = +(b 1 vb, b2 vb)
cond(+b1 b, b') = +Icond(bl, b, b'), cond(bz, b, b'))

We will also assume that in any algebra that we define, for every
sort s we have
cond:bool X 8 X § >
with axioms analogous to those above. Moreover, as in the case of sequences
(and according to the practice for defining abstract data types), we implicitly
use the sort bool in the definition of the algebras in which we are interested.
Now for the definition of sequence.

§Eﬂh9£.p :: Sorts = seq, D (or those of D)
Operations =
1,A 3. > seq

hd,tl: seq » seq

. : seq X seq > seq (Used as an infix operator.)
We also assume an operation to convert each value in D into a sequence
"containing" only that value. This operation is invoked implicitly and so we

use t € D both to denote the value in U and the sequence containing only ¢t .

13.

Variables = sty st,, st3: seq; t:D
Axioms = hd(1) =t (L) =1
hd(t) = t
hd(A) = 1
tl(t) = A
(eseq) tl(A) = A
lest, = st; *L =1
A'stl = st A= st,

hd(stl'st2)= cond(stl = A, hd(stz), hd(stl))
tﬂ(stl-stz) = tﬂ(stl)-st2

hd(t'stl) = cond(st, =1, L1, t)

1

Again we will need + together with the usual axioms and the following:

hd(+stl stz) = +(hd(stl), hd(stz))
t!i(+stl st2) = +(t£(stl), tZ(stz))
+ st1 st2)'st3 = +(stl'st3, stz'st3)
(stl'(+st2 st3)) = +(st1°st25 st1°st3)

We can now give the definition of environments (env).

env:: Sorts = env, SA , }gs for each s € SA

Operations =

All operations of DA .

¢ : = env

41 < > env

xi ¢ - eny > s for each i e w, s ¢ SA .
s, :
Xi\. -> 1ds
update: id X s x eny > eny for each s« Sy -
Va;iables =g, 61, 62: env; t : s € SA 3 X, y: id
Axioms =

All axioms used to define D (i.e. «

A d)'

14.

x(¢) = Ls for each s € S, i € W

(e) x (1) = 1 for each s € 8, i € w
env env s

x(update(y, t, §))
=cond (x ==y, t(§), x(8))
Note that = = is syntactic equality. That is = = returns true (false)
iff its arguments are exactly the same (unequal) strings. We have also
extended the "evaluation" map on environments from identifiers to expressions
in the obvious way.

update(x, t, L = 1
P (5 8, 1) env

This axiom makes sure that the undefined environment remains undefined under
updates. Although ¢ and lenv give the same values (L) for identifiers,
the former is updatable~it i;—;he initial envivonment~-while the latter is
not.

We will also need to add to env , the operation + on the sort env
with the usual axioms and the following:

x(+ §; 6,) = + x(8)) x(8,)

update(x, t, +61 62)

=-+(update(x, t,,§1),»update(x, t, 62))

15.

2, Processes

In this section we will axiomatise the way in which program
statements change environments. We begin in subsection 2.1 with program
statements which do not call for new environments to be created
(recursion and forking). In subsection 2.2 we will deal with the re~

maining problems.

2,1 Simple Program Statements

local, null, if then else, while and assignments are statements

which map a sequence of environments to some other sequence of environ-
ments. So the syntax of the operations is as follows (with seq = seq of enw):

local : id X seg * seg

null

sed ™~ seq

bool X statement X StatEI_I_l(_?._I_lE X Egg - Egg

if then else

o
o
o]
=

while do end X statement X seq > seq

id X s X seq * seq
==y = 7227 224

We will also need some boolean valued operations in order to define assign-
ment. These functions decide whether or not an identifier is local in an

environment or somewhere in a sequence of environments.

local : 3#d X env =+ bool

——S —— i

local : id X seq - bool

- — S ——

Now for the axiomatisation of our operations. Note, firstly, that we have
not included ";" (semi-colon) as an operations This is because it repre-
sents functional composition and is thus already within the algebraic

framework. Secondly, we do not state any axioms to indicate what exactly

local statements do to enviromments. The reason for this will become
apparent when we look at local (and slocal).
Variables = Sl’SZ : statements; S : prog; 050,504 Seq; t,t" : D;
and other variables as before.
Axioms = S(cl) = §(¢'01)
(Thus, to execute a program S, we execute the corresponding sequence of

statements on a new local environment.)

I
Q

null (o)

(null is the identity on environments.)

if b then else SZ(U) = cond (b (o) true, Sl(o),cond(b(c)

5;

= false, Sz(o),i))

(If b is true in o then do Sl on o and if b(o) is false then do S, on o,

2

otherwise return the undefined sequence of environments.)

while b do end (o)

51

= if b then (Sl; while b do Sl end) else null (o)

local x (G-QL) = local x (6)'0l

local (x)(¢) = false

AU

local (x)(ienv) =]

Joeal (x)(local y(8))

= cond(x==y,. true, local(x)(§8)).

Let s1 be either assignment, null, if then else, while, fork or recursion.

local(x)(sl(é)) local (x) (§)

local(x)(+616 = +Ilocal(x)(61),'local(x)(éz))

9)

16.

(The reason why we did not state any axiom as to the behaviour of local with

17.

respect to enviromments was because we wanted to check its effect on

environmments syntaetically. local ignores non-local statements and examines

whether the enviromment has had a local statement applied to it and, if so,

compares its argument with that of local.)

slocal(x)(L§eq) = |

slocal(x) (A) = false

[SV]

slocal(x)(G'Gl)
= cond(local(x)(&l), true, slocal(x)(cl))

:local(x)(+olcz) = +(¢local(x)(01{,llocal(x)(02)).

{(The beliaviour of slocal is similar to that of local.)

x = t(0) = cond(local(x)(hd(c)).
,update(x,t,hd(o)) -t (o)
,hd(o)+x = t(£2(0)))

% := t(p) = lseq

(An assignment to be performed on the empty sequence of environments is

undefined.)

Finally, we have
update(x,t,local y(8)) = local y(update(x,t,8)).

(The meaning of this axiom is clear.)

We now wish to take into account the ramifications of recursion

and forking. This is the purpose of the next section.

18.

2.2 Recursion and Forking

We will begin by treating recursion. We will then reduce forking
to recursion and non-determinism using a semantic parallelism construct

(named " ||).

Suppose that we have a process definition
P(xl,...,xn) =S

where P is of type <w,s> and S is of sort s. (In fact S is a derived
operator of type <w,s>. See ADJ(2), M(2), M&H,D.) We will add the following
axiom for each process declaration of the above form:
- P(xl,...,xn)‘[;1(01),...,tn(cl)](cl)

= S[tl(ol),...,tn(ol)](cl)
(Here tl,...,tn are variables ranging over appropriate sorts in DA and
S [...] means substitution of expressions for variables in S. This can be
axiomatised quite simply and we will not go through the details here. Note
also that we have extended the evaluation of expressions from evaluation in
an environment to evaluation in a stack or sequence of environments. This
extension is quite simple to axiomatise and will not be presented here.)
This expresses the usual interpretation of recursion in which a recursive
call causes the execution of the body of the process declaration with a new
empty environment for local values stacked onto the environments which exist
at the time of call. Note that we are using call by value as each ti is
evaluated at the time of call. What might seem strange is the inclusion of
such axioms in the specification of the algebra. More about this later,
but it seems impossible to handle named procedures without such axioms. The

symbolic meaning of the program should not and will not refer to these

pProcess names.

In order to axiomatise fork, we need a semantic parallelism

operator.

I+ seq x seq ~ seq
First of all we have
() fork(s); $,(o;) = 8(oy) || 8,(0)).
In particular, using (r) and (f) we have the derived axiom
fork(P)(&P...,xn)[tl(cl),...,tn(Ol)]; Sz(ol)
(rf)
= S[tl(ol),...,tn(cl)](cl) I Sz(cl).

Now we have to worry about the axiomatisation of I

o) | o, =0, | o

2 2 1

(prl)
o1 i (02H03) = (OlHGZ) I 0,

Also, we need

©lloy) + 0y =0) + 05l 0, 04

to handle common "'global' environments.
Now we axiomatise the behaviour of programs 'running in

parallel”.
o= . o= LI .
(x := t; Sl(cl) |y :=1¢t"; 52(02)) o4

(pra) = + (cond(slocal(x)(ol)
» (8, (update(x,t,07)) || v = t"; 5,(0,)) - oy
,(Sl(cl) |y == t'; 82(02)) . update(x,t,o3)(o3)

)

19.

20.

cond(slocal(y)(cz)
»(x 1= t; 8;(0)) | 8,(update(y,t',0,)(0,))) * oy
,(x 1= t; Sl(ol) I SZQIZ)) . update(y,t',oB)
)

).

update was previously defined on an enviromment and not a sequence of
environments. However, this simple update can easily be extended (using
cond and local) to an operation of updating on sequences which we also call
update. Its full axiomatisation (quite simple) is left to the reader.

Thus if two programs running in parallel are about to execute
assignment statements, then one of the assignments must be done first and
the other may be done on a possibly changed (stack of) enviromment(s).

local x; Sl(ol) | local y; 52(02)

(prl)
= Sl(local x(hd(cl)) . tl(Gl)) I Sz(lgﬁii y(hd(cz))
- t2(0,))
Thus the local statements can be applied truly in parallel.
(x := t; Sl(ol) | local Y3 32(02)) ' 0'3
(pral)
= + (cond(slocal(x)(cl)
,(Sl(update(X,t,Gl))) |l local y; S2(02)) !

,(Sl(Gl) | local y; 52(62)) . update(x,t,OB)
)
(x := t3 Sl(cl) { Sz(local y(hd(cz)) . tﬁ(Uz))) * 04

).

Thus parallel executions of local and assignment statements must be done one

at a time.

21.

There is clearly an analogous axiom for the symmetric case (with
respect to assignment and local).

After our program has finished running, we will be left with
expressions in terms of +, || and seq of environments. We want to throw away
the local environments we created and just keep the one with which we

started. We can do this with

(en) 81(01-03) I 82(02-03)
= cond(Sl = nil A 82 = nil A 04 + A, T4 81(01.03)
I's,(o,%04))
Thus if we begin our programs with the sequence consisting of one element -
namely the empty environmment ¢ in env - we will end up with a sequence of
environments consisting of one element - namely the one which records the
values of the identifiers local to the main program.
We have now finished our axiomatisation of processes. Before we
begin a discussion of this axiomatisation in section 4, we present a brief
execution of the program (I) of subsection 1.1 on a sample value of T (by

using the axioms as rewriting rules on ewpressions).

22,

3. A Sample Program

Assume D, is the domain of natural numbers and (finite) binary
trees with operations %t, rt and A having the meaning ascribed to them in 1.1.
We will use symbolic representations such as *, for binary trees. We will

identify segments of code as follows

P(t) =
local z; } qO
zZ = t; } q
R 1
while z # A do
x 1= xtl; } qéo
) qz a
fork (P(rt(z))); } 45y qé
z = Lt(z) } qéz
end: /
local x;
x := 03
p' P
P(***)

We will use T for ,* . We use the notation [[x=t,y=t']] to indicate values

of identifiers in local environments.

P(0)

= local x; p'{9)

it

x = 05 B(T)($;) (local x(¢) = ¢,)
= P(T)(cond(local(x)(hd(¢l)),update(x,0,hd(¢l»-t2(¢l)
shd(9) x 1= 0 (£2(9,))))
= P(T)(¢2) (local x [[x=0]] = ¢2)
- since hd(¢;) = ¢, and local(x)($;) = true.
= q[T1($-¢,)
= local z;ql;q2(¢°¢2)
=z = T5q,(¢,5) (local z (¢) * ¢, = ¢5)
= qz(cond(local(z)(hd(¢3)),update(z,T,hd(¢3))-t&(¢3)
,hd(95) 0z := T(£2(4,))))
= q,(8,) (local z [[2=T11+4, = ¢,)
- since local(z)(hd(¢,)) = true-
= if z + A then q}3q, else null (4,)

= cond(z+1) (¢,) = £rue, 4,34,(¢,),

cond((z¥A) (¢,) = false, null(¢,),L))
= 4534,(¢,)
- since (z+A)(¢4) = true.
= x 1= x+133(9,) (4)395,34, = @

= &(cond(local(x)(hd(¢4)),update(x,x+1,hd(¢4))-tz(¢4)
shd () x = x+1(t2($,))))
= i(hd(¢4)’Cond(lccal(x)(¢2),update(x,x+1,hd(¢2»«tz(¢2)
hd(p,)+ x t= xHL(E2(6,)))

- since t2(¢4)=r¢2 and local(x)(hd(¢4)) = false.

23.

24,

1(4) (Local z [[z=T1]*local x[[x=11] = ¢)
- since local(x)(hd(¢,)) = true and x was O.

= 459395939, (05)

(qLre(T)1(0)11q),3a,(A)) *¢5

+ (a5,39,(M) 1qy3q9(local z(hd($))-£2($)) "¢,
,cond(slocal(z) (hd(p))
»q, (update(z,2t(T),hd(A))-£2(A)) | |Llocal 234;39(4)) <6
>4, (A)]]1ocal z3q,3q(¢)) ‘update(z,2t(2);¢5))
)
(q, (M) 11q 3al*](local 2(¢))) ¢, (local zllz=*11local x[[x=111 = ¢¢)

- since both arguments of + will evaluate to this expression
(and so we use + 0197 =&H? and since ¢6 is obtained by

updating the z (= ,*,) in ¢5 to t(z) = *,

if z # A then qé;q2 else null(¢6)llql;q2[*](local z(¢)'¢6)

(qé;qz(A)]]ql;qz(lggg; z(¢)d,
- since (z+A)(¢6) = true.
At this point, we want to 'execute'" two assignments in parallel.
Rather than indicate in our calculation the possible non-deterministic choice
necessary at this point (using axiom (pra)), we will "make" a choice by using
one of the rewrite rules
x>y > x
=y + vy.
Thus the above sequence of equalities continues with
= cond(slocal(z) (local z(¢))
»(q,L*](update(z,*,local z(6)) 11a539,(A)) "¢,

» (q,0*1(1ocal Z(¢))]]qé;qz(A))'update(z,*,¢6))

25.

(q,L%1(9g) 1 1ay5a, (1)) ¢, (Local z [[z=*11 = ¢,)

- since slocal(z) (local z(¢)) = true.

(if z ¥ A then qé;qu*]else null (¢8)]]qé§q2(A))-¢6

- since (z=A)(¢8) = true.
(a339,L*1(9g) 11q)3a,(A)) o,
(x = x+l,ql*1(9g) 1]x = xt15q(0)) 94

(@ *1(og) 11x 3= g+1;a<A>>-¢é (x i= x+1(s,) = local z[[z=*]]

*local x[[x=2]] = ¢é)
(&[*](¢8)]15(A))-¢g (x t= x+1(¢}) = local z [[z=*]]

*local x[[x=31] = ¢g)
(((a)p3a,T*¥ 1) 11alAT(8)) *d)l (0550, (A) 11alAT(4))) * 4y
((€a)3a,[* T 118) <0g) 11 (ayp3a, (W) 116)) *¢p (Llocal z [[z=A1] = §)

Lo- 6 is obtained by executing only qo;ql on ¢
since in both cases z F A will fail (and thus
execution of those processes will terminate) .

(A118) =99l 1 (a)y3a, (M) 114)) o¢ (local z [[z=A1] = ¢)

~ since qéz on A°¢8 will set z=A and so the condition
z ¥ A in 1, will fail.

(A1) 9 HATIE 61, (2 1= 2£(2)(}) = local z [[2=11]

slocal x [[x=3]1] = ¢10)
- reasoning similar to the above.
(gl 1 CAT1) 6,
(970101 1 (A118)=015) ¢, (local z [[z=A1] = 1,
local x [[x=3]]1 = ¢£0)

(g 010118150 0%,

¢lO

Thus the number of nodes in T is

x(local x [[x=3]1]) = 3.

At least, this is the result of one possible execution of the

program.,

26.

27.

4., The Denotation of Programs

We would now like to discuss(somewhat informally) the '"meaning"

of programs using the fork construct. We have defined an algebra over the

alphabet ¢ sorted by S = {bool, S, , seq of env, env, id for each

®

s € SA , statement, prog} ¢ dincludes all the operations we mentioned in the

axiomatisation together with the family of sets of process names

P cu
1 |l€“‘}<w,s>esX X Sp

Suppose we denote the set of all the equations wé have.used, less any
equations involving process invocation (such as (r) and (rf)), by E.. Then
we are guaranteed of the existence of a continuous algebra CT@,E which is
initial * in the class of all algebras satisfying E . We denote this class

by CAlg¢ E* This algebra allows us to discuss equivalence between programs
b

W,S

only if we ignore the meaning of all process names. That is, a process Pi

is Qquivaléat énly fo it;elf ;l ve haQe ;o ﬁxio;s ﬁillink u; ﬁhe f;lafién;hip
between P;’. and any other P}’.

So if our programs do not include any process declarations, then we can use this
framework to discuss program equivalence. Twopprograms 91 and Py (with no |
process declarations) are equivalent if and only if [Pl] = [p2] where

[...] denotes congruence class of These and related problems are dis-

cussed in C&N,H.

In case we have process delcarations

Pl(Xl’ .. X) =t

nl 1

P

Pm(xl, cees Xn”) =t

- m
m

in our program, then we add an axiom of the form (r) (and one of the form
(rf) if desired, though this is redundant) to E for each process delcaration.
Call this set of new equations E_ . Since each Pi e ¢, we think of it as an

operation and the equations !? relate the behaviour of the operations named by

28.

Pi to that of the other elements of ¢ (including some other process names

if the Pi are recursive). We are now guaranteed of an initial algebra

CT® E.E in the class of all algebras satisfying E u Ep . We denote this
b b

P
class by CAlg . Programs p and p using processes in P are
¢,E,E 1 2

. £ ce T - . .
equivalent if and only if [p1] [pz] in CT@,E,E

o

Now suppose we have two sets of process declarations pl and pz
giving rise to sets of equations E_. and E . We can say that the declara-
1 2
tions define equivalent sets of processes if and only if any program p behaves
in the same way using pl as it does using pz . A more precise way of stating
this is that pl and pz are equivalent if and only if CT@ E.E is isomorphic
PLE B,
to CT® EE Note that we have taken a rather unusual approach to define the
¥

P

meaning of azprogram in that we do not allow the arbitrary interpretation of

any symbols in a program. The meaning of any symbol in our alphabet is specified
totally by the set of equations E u Ep . This approach is borrowed from the
study of abstract data types in which a data type is specified uniquely (up to
isomorphism) by a set of equations. We could relax this condition somewhat by

allowing D (the algebra of data objects) to come from the class of continuous

A

A-algebras satisfying some equations rather than being the initial algebra in
this class. The definitions of equality could then be extended in the obvious

way. In such cases, the class of objects 'would become a class of

CT
@,E,EJO

semi-Herbrand interpretations in the sense of H o

29.

5. Conclusions
We have presented an algebraic axiomatisation of a simple language
containing a parallelism construct. The axiomatisation was based upon an ap-
propriate "encoding' of the concept of local environment. The motivation for
this treatment was obtained from the use of structures in L and L&M(2). We
make no claims concerning the "completeness'" or the "uniqueness" of the axiomatisa-
tion as the axiomatisation was meant to be purely illustrative.
In Section 3, we have used the standard interpretation of equations
as rewriting rules (see V, H(2), and H&M(2)) to indicate how an operational
definition of the meaning of a program may be used to "evaluate' the program.
We do not claim any equivalence between such an operational semantics and the
semantics we discussed above, although the connection could probably be formalised.
The semantics discussed in Section 4 can be shown to be fully abstract
(in the sense of P(2)) using the congruence properties of the algebras

CT® EE ° Moreover, although we have not above taken the problem of inputs
L] b4
P

and outputs into account, we could do this by applying a program to an initial

(sequence) of enviornments 61 defined as follows: GI = ¢'*A where ¢' is
= 1 = 3

locale(.... (local?&rl (localy1 (... (local : (fEXl Bl vees X = Elseen,

= t;]])r..) where the x, are input variables, the y; are output variables

X

n
and we have used the notation of section 3 to indicate values of variables in

¢' . The effect of a program S on O; would then be to "run'"the statements
S on ¢°8 = ¢+¢' . Any updates to the output variables would then be done on
¢' and these values could be recovered when the program terminated.

The obvious extension to this work would be to try to axiomatise in a

similar way the behaviour of communicating processes. This has already been

tackled by Mi&Mi in a somewhat different setting. We would also like to defimne

30.

classes of domains over which processes could be interpreted in the same sense

that continuous algebras provide domains of interpretations for ordinary sequential
programs and powerdemains £for sequential programs with a choice construct

(H&P, H). This seems to be a difficult task and will not be accomplished

easily.

Acknowledgements

I would like to thank M.R. Levy and many others at Waterloo for their helpful

suggestions.

31.

Bibliography

ADJ(1) : J.A. Goguen, J.W. Thatcher, E.G. Wagner, J.B. Wright—-—An Initial
Algebra Approach to the Specification, Correctness, and Implementation
of Abstract Data Types, "CurrentTrends in Programming Methodology,
Volume IV", Ed. R.T. Yeh, Prentice Hall, 1978.

ADJ(2) : J.A. Goguen, J.W. Thatcher, E.G. Wagner, J.B. Wright—-Initial Algebra
Semantics and Continuous Algebras, JACM, Vol. 24, No. 1, 1977.

B : H. Bekic—-Towards a Mathematical Theory of Processes, Tech. Rep.
TR25.125, IBM Laboratory, Vienna, 1971.

C : P.M. Cohn—--"Universal Algebra'", Harper and Row, 1965.

C&N ¢ B. Courcelle, M. Nivat—-Algebraic Families of Interpretations,
Proceedings of the Symposium on the Foundations of Computer Science,
Houston, 1976.

D(1) : W. Damm--Higher Type Program Schemes and their Tree Languages, 3rd
GI Conference on Theoretical Computer Science, Lecture Notes in
Computer Science #48, Springer-Verlag, 1977.

D(2) : W. Damm~-Languages Defined by Higher Type Program Schemes, 4th Col-
loquium on Automata, Languages and Programming, Lecture Notes in Computer
Science #52, Springer-Verlag, 1977.

D ¢ F. Baskett, J.H. Howard, J.T. Montague--Task Communication in DEMOS,
Proceedings of the 6th ACM Symposium on Operating Systems Principles,
1977.

H ¢ M.C.B. Hennessy—--Initial Algebras and Herbrand Interpretatiomns,

Research Report, Universidade Federal de Pernambuco, 1978.

H&M : M.C.B. Hennessy, T.S.E. Maibaum--In preparation.

H&P : M.C.B. Hennessy, G. Plotkin—--In preparation.

H : E. Cohen, D. Jefferson--Protection in the HYDRA Operating System
and

W. Wulf, R. Levin, C. Pierson--Overview of the HYDRA Operating
System Development

both in
Proceedings of the 5th ACM Symposium on Operating Systems Principles,
1975.

K : G. Kahn--The Semantics of a Simple Language for Parallel Programming,

Proceedings of TFIP Congress 74, North-Holland, 1974.

32.

K&M : G. Kahn, D. MacQueen--Co-routines and Networks of Parallel Processes,
Research Report 202, IRIA, Paris, 1976.

Le : D. Lehmann--On the Algebra of Order,Proceedings of the 19th Symposium
on the Foundations of Computer Science, 1978.

L : M.R. Levy--Verification of Programs with Data Referencing, Proceedings
of the 3® Colloque International sur la Programmation, Dunod, 1978.

L&M(1) : M.R. Levy, T.S.E. Maibaum—--Continuous Data Types, In preparation.

L&M(2) : M.R. Levy, T.S.E. Maibaum--Data Types with Sharing and Circularity, In prepara-

tion.

M(1) : T.S.E. Maibaum--Generalized Formal Language Theory, JCSS, Vol. 8, No. 3,
1974,

M(2) : T.S.E. Maibaum--The Semantics of a Simple Non-deterministic Language,

Proceedings of the 3® Colloque International sur la Programmation,
Dunod, 1978.

Mi(l) : R. Milner—-Processes, a Mathematical Model of Computing Agents, Pro-
ceedings of Logic Colloquium, Bristol, North-Holland, 1973.

Mi(2) : R. Milner--Flowgraphs and Flow Algebras, Tech. Rep. CSR-5-77,
University of Edinburgh, 1977.

Mi&Mi : G. Milne, R. Milner—-Concurrent Processes and Their Syntax, Tech. Rep.
CSR-2-77, University of Edinburgh, 1977.

P(1) ¢ G. Plotkin--A Powerdomain Construction, SIAM Journal on Computing,
Vol. 5, No. 3, 1976.

P(2) : G. Plotkin--Call by name, call by value and the A-calculus, Res.
Memo. SAI-RM-6, University of Edinburgh, 1973.

R : N. Redding--In preparation.
S : D. Scott--The Lattice of Flow Diagrams, Symposium on Semantics of

Algorithmic Languages, ed. E. Engeler, Springer Lecture Note Series
No. 188, Springer-Verlag, Heidelberg, 1971.

Sm : M. Smyth--Powerdomains,Mathematical Foundations of Computer Science 76,
Lecture Notes in Computer Science #45, Springer-Verlag, 1976.

T ¢ D.R. Cheriton, M.A. Malcolm, L.S. Melen, and G.R. Sager—-Thoth,
a Portable Real-Time Operating System, to appear in CACM.

Vv : J. Vuillemin--Syntaxe, Semantique, et Axiomatique d'un Langage de Pro-

grammation Simple, These de doctoral d'etat, Paris, 1974.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

