A Maximum Column Partition for Sparse
Positive Definite Linear Sysi&ems Ordered by
the Minimum Degree Ordering Algorithm

by
David R. McIntyre

Department of Computer Science
University of Waterloo

CS-79-03

January 1979



A Maximum Column Partition for Sparse
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Abstract In this paper we prove that for a matrix reordered by a minimum
degree algorithm (MDA), the column partition of L + LT induced by the
MDA in [3] is the best possible column partition (fewest number of diagonal
and off diagonal dense blocks) where L 1is the Cholesky factor of the
reordered matrix. As a by product we give a theorem which characterizes
the Tocal behavior of the MDA for general symmetric positive definite
Tinear systems. The theorem is shown to be equivalent to Coroltary 3.6

of [3].



1. Introduction

For a given symmetric matrix A, a column partition (CP) is a subdivision

of A into square diagonal blocks with corresponding (block) columns

below each square diagonal. Each (nonnull) off diagonal block in a (block)

column will be defined by the largest number of consecutive nonzero rows.

For example see Figure 1.1.
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Figure 1.1 A Column partition of a matrix with
off diagonal blocks.

We shall specify a CP of a matrix A in terms of a partition

P = {Pl,...,P } of the row numbers of A, where there are p diagonal

blocks and ifbthe i-th diagonal block consists of rows r,r+1,...,s then
P, = {ror+1,...,s}.

As shown in [3] the MDA induces a CP on the reordered symmetric positive
definite matrix A (and on L + LT where L 1is the Cholesky factor of the
reordered matrix) having the property that the diagonal and off diagonal
blocks of L + LT are dense. For storage schemes in the linear solver
which store the nonnull off diagonal blocks of L, the fact that the off

diagonal blocks are dense is an asset in reducing storage. However each

nonnull off diagonal block incurs a certain amount of sterage overhead. Thus



it is desirable for the number of off diagonal blocks to be as few as possible.
In [3] a method was introduced which reordered equations within diagonal

blocks (still a minimum degree ordering) in order to reduce the number of

off diagonal blocks for a given partition induced by the MDA. By such a
reordering it was often possible to coalesce several small off diagonal

blocks in each (block) column into a few larger off diagonal blocks.

In this paper we consider the possibility of further reducing the number
of dense diagonal and off diagonal blocks by a suitable choice of column
partition for the reordered matrix (by MDA). We show that the column
partition induced by the MDA in [3] is best possible. As a byproduct we
give graph theoretic results which characterize the local behavior of the
MDA for general symmetric positive definite Tinear systems. This characterization
is shown to be equivalent to that of Corollary 3.6 in [3].

A summary of the remainder of the paper follows. In §2 we present
some basic properties of a subclass of column partitions. We also review
some graph theory notation and the elimination graph model for symmetric
Gaussian elimination. In §3 we prove that for a matrix reordered by a MDA,
the column partition of L + LT induced by the MDA in [3] is best possible
(has fewest number of diagonal and off diagonal dense blocks) where L is
the Cholesky factor of the reordered matrix. Section 4 contains our
concluding remarks. The appendix contains proofs 6f the equivalence of

Theorem 3.2 and Corollary 3.6 of [3].



2. Preliminary Results and Notatjon

In this section we derive some properties for a class of CP's. We then
review some graph theoretic notation and the graph model of the Gaussian
elimination process for symmetric positive definite linear systems.

A dense column partition (DCP) of a symmetric positive definite matrix

js a CP in which each diagonal and off diagonal block is dense (full).

A maximal dense column partition (MDCP) of a symmétric positive

definite matrix is a DCP which is not a refinement of another DCP.

Clearly the set of all DCP's of a symmetric positive definite matrix
is partially ordered set (poset) under the relation (<) of refinement
(P] < P2 a P] is a refinement of Pz). In the following theorem we show
that in fact the poset is a lattice (and thus any MDCP is the maximum DCP
of the set of all DCP's for a given symmetric positive definite matrix).

THEOREM 2.1. The set of all DCP's of a symmetric positive definite
matrix is a lattice under the relation of refinement (P] < P2 = P] is a
refinement of P2).

Proof. Consider any MDCP PMD of the positive definite matrix. We
show that it is a maximum élement of the poset. We show that every DCP is
a refinement of PMD’ Suppose not and let P' be a DCP which contains a
block P% not contained in any block of PMD‘ Then there must exist two
adjacent blocks Pr and Pr+1 in PMD sharing diagonal elements with P%.
Thus the 2 x 2 diagonal block consisting of one diagonal element from Pr
and Pr+I must be dense and contain dense off diagonal blocks. But this
implies that Pr §] Pr+1 is a dense diagonal block containing dense off
diagonal blocks. This contradicts PMD being maximal.

Thus, since the DCP consisting of 1x1 diagonal blocks-is clearly the"



minimum partition, and since the poset is finite, the poset is a lattice. [

Following [3] we shall, in the remainder of this section, review some
graph theory notation and the graph model of the Gaussian elimination process
for symmetric positive definite lTinear systems.

An undirected graph G 1is an ordered pair of sets G = (X,E) where

X is a finite set of nodes and E is a set of unordered pairs of distinct
nodes of X called edges.
In the following definitions the graph G = (X,E) will be assumed.
For Y < X the adjacent set of Y, denoted by Ade(Y) is

Ade(Y) = {x[x e X\Y and y e Y and {x,y} € E}. When Y consists of
the single node y, we write Ade(y) rather than Ade({y}).

The degree of a node x, denoted degG(x), is the number
degG(x) = !Ade(x)l, where |Y| denotes the cardinality of the finite
set Y. We will denote by &(G) the minimum degree of all nodes in the
graph G.

The incidence set of Y, Y < X, denoted by IncG(Y), is defined by

IncG(Y) = {{x,y}|lyeY and x e Ade(Y)}.
The deficiency, DefG(Y), of a set Y c X 1is the set of all pairs of

distinct nodes in Ade(Y) which are not themselves adjacent. Thus
DefG(Y) = {{x,y}|x,y € Ade(Y), X # Yy, {xX,y} ¢ E}.

A clique of a graph G = (X,E) is a set C < X such that
X3y € c = {Xs_y} € Es [-l]'

A path from x to y of length k 1is an ordered set of distinct
nodes (VI’VZ""’Vk+1) where x = vy, ¥ = V.4, and Vi e Ade(v1+]),
1 <1<k,



For a graph G = (X,E) with [X]| = N, an ordering (Tabelling) of G

is a bijection a:{1,2,...,N} - X. We denote the Tabelled graph
* = (xX*,E%) and the labelled node X; = a(i).

We now establish a relationship between matrices and graphs where the
graph is used to represent the zero-nonzero structure of the matrix. Let
A bean N by N symmetric matrix The 1abe11ed, undirected graph
associated with A 1is denoted by G = (X A E ) where X‘ocA is labelled

o
as the rows of A and {Xi’xj} € E'A if and only if Aij 20, 1=7]

o
). The unlabelled graph corresponding to A 1is simply G‘A

(ap(1) = x;
with its labels removed. For any N by N permutation matrix P = I,
the unlabelled graphs of A and PAPT are identical but the associated
lTabellings differ.

As in [4] and [5] we examine the graph theoretic elimination model of
the Gaussian elimination process for symmetric pesitive definite matrices.
The triangular factorization of an N by N symmetric positive definite
matrix A into LLT can be described by the following outer-product

formuTation [6]:
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AN—I = LNINLN .
It is easy to verify that A = LLT where
N
L=(z Li) - (N-1)1.
i=1

The Y-elimination graph, denoted by GY’ of a set Yc X 1s

GY = {X\Y,E\ U IncG(y) U DefG(Y)}. When Y = {y} we write Gy and refer
yeY
to the graph as the y-elimination graph.

The sequence of elimination graphs G]’GZ""’GN-] for a matrix A

*A
is then defined by GO = G

, and for 1§ =1,2,...,N-1, G = (Gi'])xi.

The elimination graph Gi’ 0<i <N is simply the graph associated with

a
the matrix Hi:Gi =G Hi, as in Rose [5].

Following [2] the reachable set of a node x ¢ X\Y through a set

Yo X is

Reach(x,Y) = {y ¢ X\Y|3 path (x,y) or (x,v],...,vk,y) > v e Y,
k}.

A

T <1

The following lemma will be useful Tater and establishes the relationship

between Y-elimination graph GY and the sequence of elimination graphs

G_i,lsiSN—].
LEMMA 2.2. For any graph G = (X,E),
Gy = G; where Y ='{x],...,x1} c X.
PROOF. Clearly the elimination of a node X5 from elimination graph
Gj_] results in Adej_](Xj) forming a clique in Gj' Thus



Adjg (x,) = ReachG(xi,'{x],...,xi_l})

= Ade({x1,...,x1}).
The result then follows immediately. 0

ACP P-= {P]’PZ""’Pp} of a matrix A 1induces a partition

A oA qA)

o
p' = {Pi,Pé,...,Pé} of the labelled undirected graph G = = (X ",E

corresponding to A in the sense that

, \ %p

TeP; =X e P; where x, = aA(1) e X

is the Tabelled node corresponding to row i of A. Thus a CP of a matrix
can be thought of as a partition of the nodes of the corresponding labelled
undirected graph provided that for a e P%, b e P%, i< j=> uA](a)

< oc/;] (b).
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3. A Maximum DCP for L + L' of a Matrix Ordered by a MDA

pAPT

We now define the partition Pwp = {PI’PZ""’Pp} of X induced

by the following ordering algorithm where PAPT is the reordered matrix

and p 1is the number of times the for-loop is executed.

(3.1) Ny=0

0
for i :=1 step 1 while Ni—l < N do

1. Find y e Xy _ > degg (y) = G(GN. )
i-1 N.
i-1
| Adj (x) U {x} = Adj (y) U {y}}
a0 N

{xe X

2. Set Pi

1.
| U P,

3. Set N
j=1

N, - p.

4, Form GN = (G
i i-1 i

Whenever ordering algorithm (3.1) chooses a minimum degree node y in

an elimination graph G = (X ,E ) 1 < i< p, there is a set
Nio TN N

P. < X containing node y and having the property that

TN

XsZ € Pi => Ade (x) U {x} = Ade (z) U {z}
N2 N

(possibly P = {y}). The following theorem shows that once ordering algorithm
(3.1) has choosen such a minimum degree node y to be ordered next, a MDA

would order the remaining nodes of Pi next. Hence the ordering algorithm

(3.1) is a MDA.

THEOREM 3.2. Let Ci be a maximal ¢ldgque in G, = (Xi’Ei)’ O<i-<N

having the property that x,y e C; => Adj; (x) U {x} = Adje (y) U 1y If the
i i

MDA chooses a node of Ci at the i+1 step, then every ordering {Xj}?=1+1

of Xi generated by the MDA satisfies {x1+1,x1+2,...,x1+lcil} = Ci’
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Proof. Let x1+]

1) = 8(6;). Let Gy = (G )XM. Thus

degGi(X1+1) 1< §(Gi,q). If C\Ix. 4} = ¢, then there is nothing to

be any node of Ci' If the MDA chooses Xi410

then degGl (x

prove. Suppose Ci\{x%+]} z ¢. Let Xi 4o be any node of Cipp = C; \{x1+1}

Using the properties of Ci in Gi’ {xi+],x1+2} € Ei and thus

1+1(xi+2) = degGi(xi+2) - 1. Thus, since X541 %542 € Cio
(x1+2) = degG (x1+]) -1 and as a result we have degG. ](x1+2) < G(Gi*]y
i+
Note also that 6(61) -1= 6(G1+])
We now show that for X e X;\Cy» degg (x) > 6(Gi+1). Consider
i+1]
X € Ade.(Ci)' Now Ci U {x} 1is a clique in Gi and since Ci is maximal,

;
vy € Ci»- Ade.(x) U {x} = Ade_(y) U {y} = Ade (Ci) uc.. Thus either
i i i
'{Ade (x) U {x}}\{Ade (C;) Ucst = ¢ or {Adjg (C.) U C.N\{Adj, (x) U {x}} = ¢.
i i
If the latter hdlds then since degG (x1+]) S(Gi) and X1 € Css
IA‘J‘ (C ) U C1| < lA‘J‘ (x) U {x}] and $0 {Adjc_(x) U {x}}\{AdJ‘i(C.) u Ci} = ¢,

Thus {{Adjs (x) U {x}}\{xi#,}}\{{AdJG (C ) u €} {x;,11} = ¢ and since
{AdJG (x) U {x}}\{x a1} © Ad]r (x) U {x} we have
{AdJG I(X) U {X}}\{{AdJGi(Ci) U Ci}\{xi+1}} # ¢. Now the elimination of

node X3 41

being a clique in Gi+1'

. . . 1
{AdJﬁi(Ci) U ey xy gt < Ad36i+](x) U {x}. Combining resuits

from G. results in Adei(X1+]) = {Adei(Ci) U €N x4}

Hence since x « Ade (Ci) we have

gives (Mg (€1) U CN{xgy) : Mg (0 U Ths
i+
degei 1(x > [AdJG (C;) U C\Mx 3 -1 =6(6;) -1 = 5 (6;,1)- Consider
X € Xl\{AdJG (C1) U Cl} Then Yy ¢ Ci it follows that {x,y} £ Ei‘ Hence
i

m‘m(x) = dcogi(x) 2 8(6;) > 6(6;) -1 = 8(6,,).
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Now clearly c1+1 is a clique in 6, and has the property that

X,Y € Ci+1 => Adei+1
is a maximal clique having this property in Gi+1' Suppose Ci+1

(x) U {x} = Ade (y) U {y}. It remains to show that
i+1

Cinl

is not maximal and that there exists a clique D < X1+] properly containing

Ciyp and satisfying x,y e D => Ade1+1(X) U {x} = Adei+](Y) U {y}. Consider
fad = i ‘ = j U .
y e D\C1+], x € Cig D => Ad361+](y) U {y} AdJG1+I(X) {x}
= Adi C. since if Adj (Ci.q)
AdJGi+](Ci+]) U Cipq- But then y e Cyy ye Mig  (Cin

then y ¢ “551(‘31) and since degsi(xiﬂ) = 6 (64), then

Mj. (y)\{C, UMI, (C,)} = ¢ and thus AdJ. (y)\{C,,, U Adj. (C..i)} = ¢,
§ 1 61 6141 i " Mg, Tia
contradiction. But y e C1+1 is a contradiction and hence C1+1 is maximal.
The above process can now be repeated by setting i <« i+l until

CAMX, 0} = 6. O

COROLLARY 3.3. Under the conditions of Theorem 3.2, Cj is a maximal
clique in Gj = (Xj’Ej) having the property that
X,y € Cj => Ade.(x) U {x} = Ade_(y) U {y}
J \]

for §=1,...,0+[C,]-1.

Hence the ordering algorithm (3.1) is a MDA. The importance of MDA (3.1)
is that for each minimum degree search of an elimination graph Gj a set

Pi of nodes can be ordered. Also the data structures can be adjusted

directly to reflect the resulting elimination graph (Gj)P .
i

Theorem 3.2 also characterizes the local behavior of the MDA for an
undirected-graph. For completeness we:.show.insthe appendix :the eauivalence
of Theovem 3.2 with that of Corollary 3.6 of [3].

We now complete this section with a proof that the partition PMD
produced by MDA (3.1) is the maximum DCP of the lattice of DCP's of L + LT,

where PAP' = LL| is the matrix ordered by the MDA (3.1).
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THEOREM 3.4. For any symmetric positive definite matrix A ordered

by a MDA, the partition Py is a DCP of L + LT where L is the Cholesky

factor of the reordered matrix.

Proof. Follows directly from the definition of Pi in MDA (3.1). g

THEOREM 3.5. For any symmetric positive definite matrix A ordered

by a MDA, the partition PMD is a MDCP of L + LT where L° is the Cholesky

factor of the reordered matrix.

Proof. Suppose PMD is not maximal. Then there exists a DCP

p' = {P ,...,Pp.} such that PMD = {P],Pz,...,Pp} is a refinement of 7P',

T

since by Theorem 2.1 the set of all DCP's of L + L form a finite lattice

under refinement. But then there exists P% e P' such that

ps = Ps U Ps+1 u...U PS+t for some i, s and t = }:1 But thi:_;mplies
that P} is a clique in elimination graph G,, j=| U P/| =] U P,|.

1 J k=1 K k=1 K
But Ps is a maximal clique in Gj having the property that

X,y € Po=> Adj. (x) U {x} = Adj, (y) U {y},
J N]

=>VyeP Ui UP i, xeP => Adej(X) U {x} = Adej(y) U {y},

=> diagonal or off diagonal block corresponding to P% is not

dense. This contradicts P' being a DCP. 0

THEOREM 3.6. For any symmetric positive definite matrix A ordered

T

by a MDA, the partition PMD is the maximum DCP of L + L where L 1s

the Cholesky factor of the reordered matrix.

Proof. Follows from Theorem 3.5 and the fact that (Theorem 2.1) the

T

set of DCP's of L +L form a finite lattice under refinsment. 0
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4., Conclusjons

We have shown that the class of all DCP's for a symmetric pesitive
definite matrix forms a finite lattice under the relation of refinement.
We then showed that the DCP produced by the MDA (3.1) is the maximum element
of the lattice of DCP's of L + LT where L s the Cholesky factor of the
matrix reordered by the MDA. Finally, as a byproduct we have derived a
theorem which characterizes the local behavior of the MDA for general
symmetric positive definite Tinear systems. This theorem is shown &o be

equivalent to Corollary 3.6 of [3].
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Appendix
In this section we derive several theorems which are equivalent to
Theorem 3.2. In particular we show the ‘eauivalence of Theorem 3.2 and
Corollary 3.6 of [3].
We require the following lemma:
LEMMA 1. Let P be a maximal c¢lique in G = (X,E) having the

property that x,y ¢ P => Ade(x) U {x} Ade(y) U {y}. Let

r

r
Q={xe X|x ¢ k21 c, and AdJG(X) c kg1 Ck} where Cl’CZ""’Cr are
distinct maximal cliques in G. Then if PN Q= ¢ then P = Q.
, r
Proof. Let X e¢P and y e« PN Q. Then ye Q=>¥%e N Ck
r r k=1
and Adj(y) < kgl C, => Adje(y) U {y} = kiﬁfk' Now ]
X,y € P => Ade(x) U {x} = Ade(y) Udfy}= U Ck =>x e U Ck and
r r k=1 k=1
Adj.(x) = U C,\{x}. Thus xe N C, since C , k=1,...,r are
G 1k -1k k
k=1 k=1
maximal. Hence x ¢ Q => P < Q.
r
Let x e Q and ye PN Q. Then x,y e Q=>x,ye N Ck and
r r k=1 r
Ade(x) c kg1 Cy and Ade(y) c kgl C,- Hence Ade(x) U {x} = k51 Cy
= Ade(y) U {y}. But since y e P, therefore x ¢ P => Q c P,

Thus the following is an equivalent statement of Theorem 3.2 and is

identical to Corollary 3.6 of [3].

r r
THEOREM 2. Let C, = {x]x e N Cy and Ade(x) c U Ck} where

k=1 k=1
C]’CZ""’er are distinct maximal cliques in G. If the MDA chooses a node
of Ci at the 1*]  step, then every ordering {Xj}§=i+1 of Xi generated

by the MBA satisfies

{x1+1,x1+2,...,x1+lcil} = Ci‘
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Note that maximal cliques, Ci’ 1 < i < r, are necessary as shown by

the following example.

Yy
a*(:::Ii::>.b Cq = {y,a}, CZ = {y,b}, C3 = {y,z}, P = {y,z}, Q = {y}
z . PN Q=¢ but P = Q!

In a similar manner the following equivalent statement of Theorem 3.2

can be proved.

r
THEOREM 3. Let C. = {XIAdJG(X) U {x} = kgl Ck} where C]’CZ""’Cr
are cliques in G. If the MDA chooses a node of C. at the i+1 - step,

theneevery ordering {Xj}?=i+1 of Xi generated by the MDA-satisfies

B Xiage o Xiape ) = G



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

