ABSTRACT DATA TYPES
AND
A SEMANTICS FOR THE ANSI/SPARC ARCHITECTURE*
by
T.S.E. Maibaum

Computer Science Technical Report
CS~02-79

Computer Science Dept.
University of Waterloo
Waterloo, Ontario, Canada

January 1979

#The work outlined in this report was partially supported by a grant
from the National Research Council of Canada.

ABSTRACT

The concept of abstract data type developed for modelling complex
data structures is combined with an algebraic formalisation of environments
as developed in mathematical semantics to provide algebraic models of data
base systems. The models improve on previous models in the sense that
both queries and updates are integral parts of the same model. Moreover,
the algebraic method allows us to define exactly such concepts as
"semantic data independence" and "implementation''.

These abstract data type models of data bases then allow us to
formulate an exact mathematical semantics for the proposed ANSI/SPARC data
base architecture. The schemas are represented by abstract data types and

the interfaces by the formalisation of the concept of 'representation of".

0. Introduction

The purpose of this report is two-fold. Firstly, we intend to
show that the theory of abstract data types can be used to provide models
for data bases such that the models take account of both queries and updates.
That this is possible is not clear from models outlined in the literature
(D, T&L). These models tend to concentrate on the static aspects of data
base design. Much effort has been put into studying the properties of
updates (normal forms in the relational model were motivated by the need to
eliminate the so-called update anomalies) but these efforts seem to be in a
world quite separate from data base models in which queries are studied.

For example, Codd's relational algebra has no facilities for defining updates
- new sets can be constructed and tuples inserted or deleted from sets but

no operation will assign a new (updated) value to the relation R in the set
of relations R defining a data base. The problem can perhaps be made clear
by analogy with the assignment statement in programs. Operations on

integers can be used to define values (as relational operations can be used
to define relations), but this would not be helpful without the ability of
recording these values (by assigning the value to some variable) and

changing (updating) the vaiues assigned to variables. We hope to rectify
this update "anomaly" in data base models.

Secondly, assuming a data base model including both updates and
queries, we would like to provide a simple mathematical model of the
ANST/SPARC data base architecture (T&K, S, Y). The architecture was an
attempt at standardisation of data base design concepts but because of its
non-mathematical nature, many controversies arose as to its intended
meaning. By providing a mathematical model (i.e. a semantics) for the

ANSI/SPARC architecture, we hope to provide a sharper focus for these

debates. As to the model itself, the main tool is the concept of abstract
data type and the representation of one abstract data type by another
(ADJ(1), G, L, L&M(3)).

We adopt the algebraic method for both purposes because it seems
to present a number of advantages. For example, the concept of data
independence in data base design becomes in the algebraic framework the
notion of abstractness (i.e., independent of any representation). This is
achieved by taking as the meaning of some specification an isomorphism class
of algebras. Thus the meaning (semantics) of a data type is independent of
the representation used in any element of the isomorphism class. The
algebraic methéd also allows us to proceed in the time-honoured fashion of
computer science (and mathematical logic) - separation of syntax and
semantics. The former is provided by a specification of the names of
operations and the sorts of arguments they each take and the sorts of values
they each return. The latter is provided by an axiomatisation of the
behaviour of the operations (i.e., a definition of how the operations behave
in combination with each other).

Nor do we take any isomorphism class of algebras satisfying some
set of axioms. We must use some unique class and this uniqueness is
provided by taking the least isomorphism class satisfying the equations. An

element of this least class is called an initial algebra in the class

satisfying the equations.

To be a little bit more precise, we provide some definitions and
results on which our work is based. Let I be an alphabet of operation

names. (I will in general be a many-sorted alphabet ADJ(1), L, L&N(3)).

Let © be a set of (equational) axioms over the symbols in I. Let AlgZ E be
s’

the class of algebras with operations named by I and satisfying the

equations in E. An algebra A in a class C is initial if there is a unique

homomorphism from A to any B in C.
Theorem: If A and B are initial in C, then A and B are isomorphic.

The above theorem allows us to talk about the initial algebra in a
class because initial algebras are unique up to isomorphism. Now, given any
set of equations E (over L), we have the following result which will be of
paramount importance in the sequel. (See C, ADJ(1) for further details

and proofs.)
Theorem: The class AlgZ E has an initial algebra which we denote TZ B
3 b

We will talk about T as the initial algebra in Ang,E' TZ’ the

%,E
algebra initial in élgz - the class of all I-algebras (the class defined by

the empty set of equations) - can be thought of as the algebra of expressions.

Given some E, T is the algebra obtained by grouping together expressions

%,E
which the equations indicate should be identified. Thus any model for data
bases should be TZ B for some Z and some E. Moreover, 2 is such that

9

ZQ c & is a set of query (access) operations and ZU-S L is a set of update
operations. The equations E will indicate the inter-relationships of the
query operations amongst themselves and with respect to the update
operations.

The justification for this approach is two-fold. Firstly, the use-
fulness of abstract data types in programming methodology has been amply

demonstrated (Z, L&Z(1)-(2), G, L). There is no reason why data base design

should not benefit from this experience. Indeed, there has already been some

movement in this direction (M(1), M&L, T, W, EK&W). Secondly, any model
which allows us to model queries and updates in the same setting is at least
a start in the right direction.

In the next section, we will provide a data base model in the style
of abstract data types. We begin with the concept of quotient relations
(F&K) as formalised by (T) as an abstract data type. A quotient relation
is a set pf blocks of tuples as opposed to the usual concept of relations
as a set of tuples. The blocks are defined by requiring all tuples of a
given block to have certain attributes equivalent. We then modify this
model by introducing update operations and the changes necessary to support
these operations.

In the third section, we proceed to define an exact mathematical
semantics for the ANSI/SPARC architecture by using the theory of represent-
ations (for abstract data types) as presented in (ADJ(1l)) and then formalised
in (L&M(3)). Since this semantics is a mathematical semantics, there can be
no argument as to the meaning of certain components of the architecture

as long as the semantics is accepted. There can be argument, of course, over

whether the semantics is acceptable. However, we hope that the semantics
presented is at least a start in the process of formalisation which we feel

is necessary in this area.

1. Data Base Models

Suppose that we have a (relational) data base in which there are a
number of relations R amongst which is the relation COURSE defined by the

table below:

Figure 1
COURSE = | Dept. | Course # Title
CS 140 Introduction to Mathematical
Problem Solving by Computer
cS 180 Introduction to File Processing
Math 124a Algebra and Geometry

We can query the data base in order to access the information stored therein.
We could thus ask for

Title (COURSE) where Dept.(COURSE) = C&0 and Course #(COURSE) = 452.
This involves simply projecting out the Title attribute value of any tuple
with the other attribute values defined as above. (Thus, in this case we
would get "error".) More complicated queries may involve more complicated
constructions on the relations of the data base (including joins, cross
products, etc.). These constructions use as operands objects built from the
relations of the data base, such as COURSE, and "constant" relations (such
as the empty n-ary relation for each n € w) available to the system. Thus,
at the time of this query, the universe of objects (derived relations) which
can be constructed in the course of answering queries is fixed and depends
only on the values.of COURSE (and the other relations R of the data base)
and the values of the "constant" relations. Thus, as far as queries are
concerned, the value of COURSE (and the other relations in R) is fixed or
constant.

Now consider updating COURSE by

add to COURSE tuple (C&0, 452, Advanced Linear Programming) .
We get the following table to represent COURSE (and we suppose for simplicity

that the other relations are unaffected by this update):

Figure 2
COURSE = | Dept. | Course # Title
CS 140 Introduction to Mathematical
Problem Solving by Computer
cs 180 Introduction to File Processing
Math 124a Algebra and Geometry
C&0 452 Advanced Linear Programming

Thus we are associating with COURSE a different value (which in this case is
a set of tuples obtained from the original set of tuples of Figure 1 by the
specified update).

Now queries on this new (instance of the) data base will construct
objects using the same operations as before and the same constants as before
but the new value of COURSE (and the other relations R of the data base).
The query above will now return Advanced Linear Programming obtained by
projecting out the value for the Title attribute of the tuple (C&0, 452,
Advanced Linear Programming) in (the new instance of) COURSE. Thus, we have
to somehow reconcile the fact that operations used to answer queries treat
COURSE as a constant in the same way that the empty or universal relations
are constants and the fact that COURSE is in fact not fixed over time.

Another possible analysis for this situation as outlined in
M&L, M(1) is as follows. In thinking about data base systems, we make a
clear logical (and mathematical) distinction between query functions and
update functions. Query programs on a data base differ from normal programs
on "normal machines" in the important respect that the result of exactly the

same query program may be different before and after an update. Forgetting

these update capabilities for the moment, the basic query functions (i.e.
the ones built into the so-called query language) together with the valid
sets of data on which the query functions could be defined form a system
similar to the basic machine functions on a computer (addition, multiplication,
tests, etc.) together with the valid sets of data on which these basic
operations are defined. That is, the query portion of a data base is
essentially a special purpose machine with basic query functions as basic
machine functions.

Since an update can change the meaning of a query, it must
obviously modify the special purpose query machine in some way. This change
is usually accomplished by changing the value of a basic query function at
some point in its domain. Thus updates can be viewed as operations which
manipulate basic query functions (by:changing the definition of the latter
in some way).

Our solution to this problem is somewhat more sophisticated than
that proposed in (M(1), M&L) and is based on the work presented in
(L, L&M(1), L&M(2)) on abstract data types. As in (M(1), M&L), we would
like to make the algebra of relations in which an instance of R is used as a

"update" algebra. This means

set of "constant" relations the object of an
that we have to provide some mechanism which will attach a particular value
to the names (of relations) in R. Moreover, the update operations in the
algebra will change the value attached to a particular relation name. Since
all components of our model are abstract data types, we hope to define
(axiomatically) an algebra whose operations are query and update operations
and whose objects are relations.

We start, as indicated in the introduction, with an abstract data

type. specification of the algebra of quotient relations defined in (F&K).

This axiomatisation was presented in (T) as a practical example of data

type specification and we present here a slightly altered version which we

call Q.

(See the appendix for a full specification.) The operators of the

data type may be described as follows:

create

display
partition

a quotient relatioﬁ, denoted R¢, from a set of tuples, such that
there is only one block, consisting of all the tuples (¢ is the
empty set of attributes).

a quotient relation by listing the component tuples.

a quotient relation by a set of attributes B

l‘/l =R

departition a quotient relation by a set of attributes B

uaion

project

CYrOss

rename

two quotient relations by merging blocks

LN T R RuR' 1
RA®RA RA {[t]A |teRUR'},

a quotient relation partitioned on A onto a set of attributs B

!
RA[B]— RA

where A ¢ B; each tuple in R' is defined on the attribute subset
B only; and every tuple in R corresponds to a tuple in R' such
that on the subset B, the values of the tuples are identical.
two quotient relations defined on non-intersecting sets of

attributes by forming the caresian product of their blocks
R, ® R' = R" = {Et]R X [t']R'lteR and E'eR'}
A @B = Raum A B :

the defining attribute set for the tuples in a quotient relation

R (8} R'g

9.
where S is a mapping from old attribute names to new ones and
each tuple in R' corresponds to one in R but defined on the new
set of names.

restrict a quotient relation to contain only blocks satisfying some
property expressed by a set comparison operation (e.g. set
containment, set equality) involving the valﬁes in one (ordered)
sequence of attributes of the relation and either another such

sequence of attributes or a set of constant tuples. Thus

R,[X6¥1 = {[t], | [tTaeR, and [eT,TXIereINTx T}

where Y is a sequence of attribute names, or

R,[X0C] = {[t]; | [tIreR and [tIa[x76C}

where C is a set of constant tuples.

As is common with axiomatisations of abstract data types, we take
advantage of the existence of canonical forms (umique .expressions represent-

ing congruence classes of expressions) to simplify our axiomatisation. 1In

is used to define the canonical forms of expressions. (That is, given a
partitioned relation with defining set of attributes a, defining set of
tuples T, and partitioning set of attributes a', R(a,T, a') is the canonical
form of the congruence class to which this relation belongs.)

As indicated previously, this model cannot take into account the
updates made available in a data base. First of all, the relations R in our
particular data base are not even objects of the algebra (although their
values as sets of tuples could be constructed). We begin by including each
relation name R in R as a name of a constant relation (with the same attribute

set as R) in the sort relation. The operations defined above now are defined

10.

on arguments which include these relation names. However, the axioms do not
tell us anything about the value of expressions using names in R and so we
cannot evaluate sﬁch expressions. We could perform this evaluation if we
knew which instantiation of R we were using. Thus we must somehow encode
the instantiation in our algebra.

The way that this is done is suggested by the concept of environ-
ment in the mathematical semantics of programs. An environment is a binding
of (program) variables to values (plus perhaps some other information). It
is this binding of variables to values which was cast in an algebraic
setting in (L, L&M(2), M(2)). Let o be an environment (or data base
instance (dbi) as it might more properly be called in this context) and let
ReR. We write R(o) to denote the value of R in the dbi o. Thus the syntax
of R is now

where dbi is the set of possible data base instances. We add to the sorts

of Q the sort dbi and add the constant dbi ¢ with syntax

$: + dbi.

This dbi ¢ will be used to denote the initial dbi in which the value of
ReR is R(®) = R(aR, d, a§)= (the empty relation with attribute set a and
partitioning set a'). In fact we write axioms &f this form for each ReR.
We must as a consequence add some new operations (corresponding to some of

the operations in Q) which take the dbi into account. For example,

11.

This is because the relation which is the argument of EDISPLAY may be
defined in terms of the names in R and so evaluation is possible only with
the knowledge of the values attached to the names in R in the dbi in
question. In fact, any of the operations which have arguments of sort

relation will now have a corresponding operation taking the extra argument

of sort dbi. Figure 3 gives the new syntax for operations which are intro-

duced in this way.

Figure 3

EDISPLAY: relation x dbi - setltuplel

EPARTITION: relation x set[attribute] x db1 - relation

EDEPARTITION: relation x setl[attributel] x dbi + relation

EUNION: relation X relation x dbi + relation

EPROJECT: relation x setlattributel] xdbi + relation

ECROSS: relation X relation X dbi + relation

ERENAME: relation X substitution X dbi > relation

ERESTRICT: relation X sequencelattribute] X comparator x restrictor

x dbi + relation

(We have not included the new syntax for the hidden (auxiliary) functions

- corresponding to the hidden functions in Q.)

Now that we have changed the syntax of the data type, we must
reflect this change in the equations which define the behaviour of the type.
First of all, we need to define the value of an expression whose result is a
relation when the expression is evaluated in a particular dbi o. If the
expression is ReR, then we know that its value is R(c). Assume also that
R(o) is in canonical form. That is, R(0) = R(a,t,a') for some set of tuples
t, attribute set a, and partitioning set a'. If we have some other relation

R(a,t,a'), then its value in ¢ is just R(a,t,a'). Thus we have the axioms for

12.

EDISPLAY:

EDISPLAY(R(a,t,a'),U) = DISPLAY(R(a,t,a'))

EDISPLAY (R,0) = DISPLAY(R(0c)) for each R in R.
Similarly for EPARTITION we have:

EPARTITION(R(a,t,a'),a",0) = PARTITION(R(a,t,a'),a")

EPARTITION(R(a",0) = PARTITION(R(0),a") for each R in R.
Thus the strategy for axiomatising "E-operations" is to evaluate R in o and
then invoke the corresponding operation on the result of this evaluation.
We will not give any more of the new axioms but the interested reader may
find them in the appendix.

Now we must explain how new values are attached to the names in R.
To do this, we will define some update operations which alter the value
attached to R by changing the dbi o to a new one ¢'. We define three
operations whose syntax is presented below. We need a new sort in our
algebra called name which has as constants the names in R. Thus we have

R: - name

for each R in R. The update operations are:

UPDATE: name X tuple x tuple X dbi - dbi

INSERT: name x tuple x dbi - dbi

DELETE: name X tuple x dbi -+ dbi

UPDATE is meant to change the value of some tuple in some ReR to another

value (thus producing a new value of R). INSERT and DELETE have the obvious

meanings. We must now axiomatise these operations and we generally do so by

defining the behaviour of queries on the new dbi. Thus we have
R(UPDATER',t,t',0)) = if R = = R'

R(a,t,a") then R(a,(t-{t}) < t',a"))

then(if R(o)

else R(0).

13.

That is, we first of all check to see if R is syntactically the
same as R' (i.e. that R and R' are the same name), If they are, then the
updated relation is being queried and the value of the relation in the new
dbi is the result of adding t' to the value of R in ¢ less the tuple t.
(We have not worried about the error condition in which téR(c). This can
be done with a more complicated axiomatisation.) If R is not R', then the
value of R in the updated dbi is just the value of R in o. We have
assumed that updating a relation named by R' does not affect any of the
other relations. If this were not so, we would need a more complicated
axiom to reflect the change to other relations. The axioms for the other
update operations are:

if R = = R’ then

R(INSERT(R',t,0))

(if R(0) = R(a,t,a")
then R(a,t<t,a'))

else R(o).

R(DELETE(R',t,0)) = if R = = R' then

(if R(o) = R(a,T,a')

then R(a,t-{t},a'))
else R(0).
(Again, we have not worried about error conditions and we have assumed that
neither operation affects any relation other than the relation being
updated.)

So far we have not at all worried about the .use of functional

dependencies in the definition of relations such as those in R. We can in
fact add axioms to govern the behaviour of updates so that functional

dependencies are preserved. Let teT be a logical function on tuples and

sets of tuples (testing for membership of t in t) and use PIECE(t,a) to

14,

indicate the tuple obtained from t by only taking values of attribures in a.
Let b >~ b' be a functional dependency defined on the relation named by
R in R. Then
UPDATE (R, t,t',0) =
if PIECE(t',b) = PIECE(t",b)
A t" e EDISPLAY(R,0) - {t}
A 1T ¥PIECE(t',b') = PIECE(t",b"))
then error.
That is, if R already contains a tuple t" (other than t) whose b components
are the same as those of t', then the update is allowed only if the b'-
attributes of t' and t" are the same. Otherwise there is an error.
For INSERT we have:
INSERT(R, t,0) =
if PIECE(t,b) = PIECE(t',b)
A t' ¢ EDISPLAY(R,o)
A 1 -(PIECE(t,b') = PIECE(t',b'))
DELETE does not present a ppoblem as far as functional dependencies are
concerned.

Thus we can take functional dependencies into account and many of
the concepts related to functional dependencies become encoded in the
algebraic framework. For example, the closure of a set of functional
dependencies becomes in the algebraic framework the set of equations of the
above form derivable from the above equations and the usual (algebraic)
rules of reasoning. Moreover, if we start with the initial dbi ®, then the
above axioms guarantee that any dbi ¢ obtained by use of the three update

operations will satisfy the functional dependencies.

15.

The example we have (incompletely) presented above was based on
the relational model. However, the idea of environments encoding data base
instances is independent of the model with which we begin. There is,
unfortunately, not enough space here to present the uﬁderlying theory in
all its generality. This will have to be presented elsewhere. We have also
neglected to a large extent the problem of errors in a model and the problems
introduced by "don't care" values in tuples. The former can be handled in a
straight-forward manner using techniques outlined in (ADJ(1), G).
"Don't care' values ean be handled by the introduction of special "don't
care" constants and appropriate axiomatisation of the behaviour of tuples

and relations containing these values.

16.

2., A Semantics for the ANSI/SPARC Architecture

We intend in this section to present a mathematical model to make
precise the meaning of the ANSI/SPARC architecture for data base systems.

We will focus our attention‘on the main elements of the architecture as we
lack the sbace to provide a more detailed treatment.

The main components of the ANSI/SPARC architecture are the three
schemas (conceptual, interpal,and external) and the interfaces between these
schemas. As to the details of the schemas and the interfaces, we assume
the reader is familiar with their description as in (S, T&L, Y). We have
already indicated the mathematical meaning we ascribe to the conceptual
schema - it is an abstract data type DB representing both the query and
update capabilities of a data base. The fact that DB is an abstract data
type (ie., an isomorphism class of algebras) guarantees that our schema is
independent of the representation which will be used to support an imple~
mentation of the data base system - i.e., we have semantic data independence.
This is a great advantage in the design stage of the construction of a data
base system for the same reason that the use of abstract data types in
programming is useful - decisions about details which do not affect the
logical structure of the data base system are postponed to the implementation
stage. If the model is truly representation independent, future imple-
mentation changes in the system can be accomplished without changing the
conceptual model. The advantages of using an axiomatic (and algebraic)
specification of the model will become apparent when we discuss the other
schemas.

The internal schema DB(I) is an implementation of the conceptual
schema DB. Since DB is an abstract data type, we can make precise the mean-

ing of the word implementation. In general terms, we proceed as follows.

17.

Let TZ E be an abstract data type defined on the symbols I and equations E.
b

A representation of TZ,E is a L-algebra AZ such that AZ and TZ,E are iso-

morphic. (Thus A, is initial in Ang,E') So T and AZ differ only in

Z,E
the representation of the objects and the concomittant changes in the mean-
ings of the symbols in X. But how do we obtain such an algebra AZ?

Generally, we have available already implemented abstract data types and we

define AZ in terms of these. For example, if T arose from the speci-

%L,E
fication of stacks of integers and we had available implementations of
integer arrays BQ and integers CA’ then we could define AZ as follows. The
objects would be pairs of arrays and integers. The stack operations would

be specified as procedures in terms of array and integer operations. To
verify that the algebra AE constructed in this way was truly a representation
5,E were isomorphic.

(For techniques to provide such proofs see (ADJ(1), G, GH&M).) Thus the

of TZ E we would have to show that this AZ and T
3

internal schema DB(I) is an algebra isomorphic to DB and it is constructed
from some already defined data types. For our example, we could choose a
hierarchical model of data bases (making the kinds of extensions to this
model outlined in the previous section to provide for updates) and then
provide an implementation of the conceptual schema (defined in terms of
partitioned relations) in the obvious way. If this were not suitable, then
we could base our implementation on a network model or any other abstract
data type(s) suitable for the purpose.

The interface between the conceptual and internal schemas is
provided by the formalisation of the representation map assigning to each
object in DB its representation in DB(I). 1In fact the concept of represent-—
ing one abstract data type in terms of other types can itself be formalised

as an abstract data type (L&M(3)) and it is in fact this "representation

18.

data type" which would be used to define the conceptual/internal schema
interface.

An external schema is the '"view'" presented to a class of users and
in keeping with our philosophy it must be an abstract data type. Whether
this type is presented to the user as an axiomatic specification or as some
intuitively appealing (set theoretic) model isomorphic to it is immaterial.
(In fact, the set theoretic model would provide the more reasonable method.)
For example, we could define an external schema DB(E) in the style of Codd
() (i.e., using unpartitioned relations). We then have to relate this
external schema DB(E) to the conceptual schema DB. Clearly we have to define
a representation for DB(E) in terms of the type DB. The representation of a
relation in DB(E) will of course be a partitioned relation in DB. As to ‘the
usual operations of the relationai model we have the following implementations
(F&K, T) using the operations on partitioned relations defined in the

previous section.

Figure 4
Relational Operations
projection: R[A] R, (8)
restriction: R[A6B] R, (r) [AOBI*a(R)
join: R[A6BIS (R, ()% (syIABB] % (R) #a(S)
division: R[A:B]S - ((R, (g))@, [B]) [A3B] [o:(R) AT * (o (R) -A)
cartesian product: RxS R85, .
union: RuS R,®S,
intersection: RnS (Ra(R)®sa(S)) [a(R)=a(S) I[a(R) 1%u(R)
difference: R-S (Roc(R)®S¢) [a(R)#2(S)][a(R)]*a(R)

(a(R) is the set of defining attributes of the relation R,)

19.

If update operations were provided in DB(E), then they would also
have to be modelled in terms of the update operations available in DB.
Suppose that update operation CHANGE (taking as arguments a relation name,

a relation and a tuple and producing a new value for the named relation)

was part of the specification of DB(E). Then the fact that we had defined a
representation RDB for DB(E) would guarantee that any update defined by
CHANGE in DB(E) can be simulated by a derived update operation in DB. (the
implementation of CHANGE in RDB in terms of the update operations in DB).

Consgider the following diagram:

fa]

X X [.Y X X
name RDstléEier_l RDBEEBEE bB (E)Eézls DB (8) relation b8 (E)EEELE
CHANGE CHANGE
v =~
< -»
RDBrelation DB(E)relation

RDB_ (or DB(E)S) is the set of objects of sort s in RDB (or DB(E)). Thus

is the set of (unpartitioned) relations and RDB is the

DB (E) relation

relation

representation of these relations using DB. < is the isomorphism between
RDB and DB(E) and CHANGE is the representation in RDB of the operation CHANGE
in DB(E). (So CHANGE is a derived operation of DB.) We claim that this

diagram commutes. That is, if an update in DB(E) caused by CHANGE results

o

in a value in DB(E) and this value is then mapped by & into

relation

RDB then we should get the same result by mapping the original

relation

arguments of CHANGE into the corresponding values in RDB and then applying
CHANGE.
If we have more than one external schema, say DB(E) and DB(E'), then

each can be represented separately in terms of DB. However, we now have a

20.

consistency problem. Namely, an update in DB(E), for example, must not cause
anything untoward to happen to the schema BB(E'). This can happen if an
update in DB(E) causes a change in a relation R in DB (used in the represent-
ation of both DB(E) and DB(E')) such that the new value of this relation R'
is "inconsistent" with the axiomatisation of DB(E'). The new value of the
relation in DB(E') can be "inconsistent" with the axiomatisation #f the new
value of any relation which uses R in its representation cannot be obtained
from the old value using only available updates in DB(E').

A sufficient condition for proving the consistency of external
schemas DB(E) and DB(E') can be obtained by showing that either one can be
used to represent the other. That is, we can define a representation
RE'DB(E) for DB(E) in terms of DB(E') and a representation REDB(E') for
DB(E') in terms of DB(E). (This is quite a strong condition and might
possibly be weakened.)

The interface between the external schema(s) and the conceptual
schema is again the "representation data type" developed in the process of
representing the external schema(s) by the conceptual schema. The interface
between the external schema(s) and the internal schema is the representation
defined by combining the external/conceptual and conceptual/internal inter-
faces. That is, the fact that we can represent the data type defined by the
external schema(s) in terms of the data type defined by the conceptual
schema and we can represent the latter by the data type(s) used in the
intennal schema guarantees that we can represent the external schema(s) in
the internal schema.

We should point out, however, an extremely important difference
between the external/conceptual and conceptual/internal interfaces. In the

latter case, we are allowed to pick any data types we need (and can implement)

21.

to define a representation for the conceptual schema. In the former case,
our implementation language is fixed - we must represent the external

schema(s) only in terms of the types defined in the conceptual schema.

22.

3. Conclusions

Beginning with the concept of abstract data type, we have
illustrated a method which allows us to model data base systems in such a
way that both queries and updates are an integral part of the whole. This
method is general and can be used in conjunction with any of the existing
models for data bases or any other model which seems suitable.

Onee it has been established that data base systems are examples
of abstract data types, it is then possible to assign a precise mathematical
semantics for the ANSI/SPARC architecture. This architecture may be

described diagrammatically as follows:

I/C : N DBGE

DB(I) DB (En)

Here DB is the abstract data type(s) used to model the data base system

and represents the conceptual schema. DB(I) is (are) the abstract data
type(s) determined by the machine architecture, the programming language and
the characteristics of the conceptual schema used to provide a representation
for the conceptual schema DB. DB(Ei) is the i'th external schema - again
specified as an abstract data type. The notation A~®B means that the data
type€s) B is (are) used in the representation of the data type A. I/C and
C/Ei are the internal/conceputal and conceptual/external schema interfaces
described in the previous section. The external/internal schema interface

is provided by combining the above. That is DB(I)Q~‘DB‘—”DB(Ei) gives us

DB (I) 4~~DB (Ei) .

23.

Finally, we would like to conclude with a remark concerning the
nature of the programming languages to be used in data base systems
modelled on this architecture. As indicated before, the query portion of
our models can be used only to evaluate expressions (denoting relations,
tuples, or components of tuples) without permanently affecting the "constant"
relations of the data base. The update operations do leave a permanent
mark by changing the values of these constant relations. The analogous
comparison for programming languages is between declarative and imperative
languages. Thus a language appropriate for data base applications should
consist of two parts: a declarative query sublanguage and an imperative

update language.

Acknowledgements: The author would like to thank M.R. Levy and F.W. Tompa

for their helpful suggestions and interest in this work.

24,

APPENDIX A

type

Q(partitioned relations)

syntax

DEPARTITION: relation X set[attribute] - relation

UNION: relation X relation = relation

PROJECT: relation * setfattribute] - relation

CROSS: relation X relation - relation

RENAME: relation X substitution - relation

RESTRICT: relation X sequence[attribute] X comparator

X restrictor - relation

BLOCK: set[tuple] x set[attribute] x tuple > set[tuple]

OK: set[tuple] x sequencelattribute] X comparator

x sequence[attribute] + logical

VALUES: set[tuple] X sequence[attribute] - set[sequence[value]]

MIN: set[tuple] x sequencelattribute] - sequence[value]

MAX: set[tuple] x sequencelattribute] - sequence[value]

variables
a,a’,a",a"s set[attribute]
T: set[tuple]

A,A': sequence[attribute]

c: comparator

25.

semantics

CREATE(¢) = R(¢,¢,¢)
CREATE (t<t) = R(COLUMNS(t),t<t,9)
if HOMOGENEOUS (t<t)
HOMOGENEOUS (¢) = true
HOMOGENEOUS (¢<t) = true
HOMOGENEQUS (T« t «t') = (COLUMNS(t) = COLUMNS(t')) A HOMOGENEOUS (t<t)
DISPLAY (R(a,za')) =
ATTRIBUTE(R(a,T,a')) = a
PARTS(R(a,T,a')) = a'
PARTITION(R(a,T,a'),a'") = R(a,t@" v a'")
ji a'l S a
DEPARTITION(R(a,t,a'),a'') = R(a,t,a' - a''")
1f .'I C a
DWION(R(2.7.2') ,R(a,t 2" = »fa = v 7° ,a')
mmcr(x(a.o,) a") = R(a'",4,a")
‘!:-f— a" —c- a A a S_ a"
PROJECT(R(a,T¢t,a'),a'') = R(a'',DISPLAY(PROJECT(R(a,T,a'),a'")
« PIECE(t,a''),a")
if a''' ca A a' ca''
CROSS (R(a,t,a"),R(a"',¢,a'"'")) = R(a u a'',t,a' v a''")

if ana'' = ¢

CROSS (R(a,T,a'),R(a'",t¢t,a' ")) = R(a u a'',DISPLAY(CROSS(R(a,7,a"),
R(a'',t',a"""))) u COMPOSE(T,t),a' u a''")
if ana''' =9

RENAME (R(a,$,a"),s) = R(MAP(s,a),,MAP(s,a'))
if a = COLMS(s)
RENAME (R(a,t+t,a'),s) = R(MAP(s,a),DISPLAY(RENAME(R(a,T,a'),s))
< ALIAS(t,s),MAP(s,a’)) ‘
if a = COLMS(s)
RESTRICT(R(a,¢,a"') ,A,c,NAMES(A")) = R(a,¢,a')
if MEMBERS(A) < a A MEMBERS(A') < a A COMPARABLE(c,A,A',R(a,?,a'))
RESTRICT(R(a T+t a') A,c,NAMES(A")) =
if OK(BLOCK(tT,a',t),A,c,A")
~then R(a, DISPLAY(RESTRICT(R(a T-BLOCK(T,a',t),a'),A,c,A"))
’ u BLOCK(T a',t),a')
else RESTRICT(R(a T-BLOCK(T,a',t),a"') ,A,c,A").
if MEMBERS(A) c a A MEMBERS(A') caA COM'PARABLE(C A,A' ,R(a,T¢t,a'))
RESTRICT(r A,c, CONST(t)) RESTRICT(r ® CREATE(t) ,A,c NAMES(SEQ(ATTRIBS
(CREATE(t))))) [ATTRIBS(r)]
if MEMBERS a) < ATTRIBS (r) A MEMBERS(A'") < ATTRIBS (r) A COMPARABLE
(c,A,A! ,r)
BLOCK(¢,a, t)
BLOCK(t+t,a,t') =
if MATCH(t,t',a)
then BLOCK(T,a,t') <« t
else BLOCK(T,a,t")
OK(T,A,/c,A') == OK(T A,c,A")
OK(t,A,c,A') = case c of

=,

L
|>'.
Text:
Tust.
Texe':
Tesets

26.

VALUES (T,A) = VALUES(T,A'")

VALUES (1,A) n VALUES(t,A') # ¢

VALUES(T,A) 2 VALUES (t,A")

VALUES(t,A) 2 VALUES(t,A') A—(VALUES(t,a) = VALUES(t,a'))
OK(t,A',2,A) '

OK(T,A',2,A)

(MAX(t,A) < MAX(t,A') v (MAX(t,A) = MAX(T,A'"))

. MAX(T,A) < MAX(1,A')

(MIN(t,A) < MAX(T,A')) v (MIN(r,A) = MAX(tT,A")
MIN(t,A) < MAX(t,A")

(MIN(7,A) < MIN(T,A')) VvV (MIN(t,A) = MIN(t,A'))

: MIN(T,A) < MIN(t,A")

MAX(t,A) < MIN(T,A")) v (MAX(T,A) = MIN(T,A")
MAX(t,A) < MIN(T,A")

: OK(T,A',*<,A)
: OK(T,A'",*<,A)

OK(T,A',%34)
OK(t,A',<,A)
OK(t,A",<+,A)
OK(t,A",<*,A)
OK(T,A", <<+ ,A)
OK(T,A",*<+,A)

VALUES (¢,A) = ¢ B

VALUES (t<t,A). = VALUES(T,A) < SEQ(PIECE(t,MEMBER(A))A)
MIN(¢<t,A) = t

MIN(T¢t<t',A) =

if

BEFORE(t,t',A)
then MIN(t<t,A)
else MIN(t<t',A)

MAX(¢<t,A) = t
MAX (T<t<t',A) =

if

We

BEFORE(t,t',A)
then MAX(t<t',A)
else MAX(1<t,A)

have used in this definition some further types: set[value]

(a parameterised type), restrictor (used in the RESTRICT function), tuple

(maps from sets of attributes to values), substitution (used in the RENAME

function), and sequence[value] (used in the RESTRICT function). These will

not be defined here but the reader is referred to (T) for details. (The

operations which appear above and are not defined above come from some of

these types.)

27.

APPENDIX B

The Extended Type Q

The new functions are those of Figure 3 together with:
EATTRIBS: relation x dbi - set[attribute]

EPARTS: relation x dbi - set[attribute]

The additional axioms may be obtained by anology with the rules for
EDISPLAY and EPARTITION presented in the text. There are two rules for each
E-function Efn. The first reduces Efn to the corresponding original
function n when the argument of sort relatiom is R(a,T,a'). Otherwise
Efn applied to R e name (and other possible arguments)and o € dbi is fn

applied to R(c) (and the other possible arguments).

ADE&L:

ADJ(1):

ADJI(2):

B&S::

Co:

DD&H ¢

EK&W:

F&K:

G&G:

Gu:

28.

Bibliography

J.R. Abrial - Data Semantics, "Data Base Management", eds.
J.W. Klimbie and K.L. Koffeman, North-Holland, 1974.

M. Adiba, C. Delobel, M. Leonard - A Unified Approach for Modelling
Data in Logical Data Base Design, '"Modelling in Data Base Management
Systems", ed. Nijssen, North-Holland, 1976.

J.A. Goguen, J.W. Thatcher, E.G. Wagner, J.B. Wright — An Initial
Algebra Approach to the Specification, Correctness, and Implemen-—
tation of Abstract Data Types, '"'Current Trends in Programming
Methodology, Volume IV", ed. R.T. Yeh, Prentice Hall, 1978.

J.A. Goguen, J.W. Thatcher, E.G. Wagner, J.B. Wright - Data Type
Specification: Parameterization and the Power of Specification
Techniques, Proceedings of the 10th SIGACT Symposium on the Theory
of Computing, 1978.

M.L. Brodie, J. Schmidt - What is the Use of Abstract Data Types in
Data Bases? Proceedings of the 4th International Conference on
Very Large Data Bases, ed. S. Bing Yao, 1978.

P.P.S. Chen - The Entity Relationship Model - Toward a Unified
View of Data, ACHM Transactions on Data Base Systems, Vol. 1, No. 1,
1976.

E.F. Codd - A Relational Model for Shared Data Banks, CACM, Vol. 13,
No. 6, 1970.

P.M. Cohn - "Universal Algebra", Harper and Row, 1965.

J. Dahl, E.W. Dijkstra, C.A.R. Hoare - "Structured Programming",
Academic Press, 1972.

C.J. Date = "An Introduction to Database Systems", Addison Wesley,
1976.

H.Ehrig, H-J. Kreowski, H. Weber - Algebraic Specification Schemes
for Database Systems, Proceeding of the 4th International Conference
on Very Large Data Bases, ed. S. Bing Yao, 1978.

A.L. Furtado, L. Kerschberg - An Algebra of Quotient Relations,
Proceeding of the SIGMOD Conference, 1977.

J.A. Goguen - Abstract Errors for Abstract Data Types, Semantics and
Theory of Computation Report #6, UCLA, 1977.

C.C. Gottlieb, L.R. Gottleib - "Data Types and Structures',
Prentice-Hall, 1978.

J.V. Guttag - Abstract Data Types and the Development of Data
Structures, CACM, Vol. 20, No. 6, 1977.

GH&M :

L&M(1):

L&M(2):

L&M(3):

L&Z(1):

L&Z(2):

M(@1):

M(2):

M&L:

S&S:

T&K:

T&L:

29.

J.V. Guttag, E. Horowitz, D.R. Musser - Some Extensions to Algebraic
Specifications, Proceedings of the ACM Conference on Language
Design for Reliable Software, SIGPLAN Notices, Vol. 12, No. 3, 1977.

M.R. Levy - Verification of Programs with Data Referencing,
Proceedings of the 3¢ Colloque International sur la Programmation,
Dunod, 1978.

M.R. Levy, T.S.E. Maibaum - Continuous Data Types, in preparation.

M.R. Levy, T.S.E. Maibaum - Data Types with Sharing and Circularity,
in preparation.

M.R. Levy, T.S.E. Maibaum - in preparation.

B.H. Liskov, S.N. Zilles - Programming with Abstract Data Types,
Proceedings of the ACM Symposium on Very High Level Languages,
SIGPLAN Notices, Vol. 9, No. 4, 1974.

B.H. Liskov, S.N. Zilles - Specification Techniques for Data
Abstraction, IEEE Transactions on Software Engineering SE-1, Vol. 1,
1975.

T.S.E. Maibaum - Mathematical Semantics and a Model for Data Bases,
Proceedings of IFIP Congress 77, ed. B. Gilchrist, North-Holland,
1977.

T.S.E. Maibaum - The Semantics of Shared Variables in Parallel
Processing, submitted for publlcatlon.

T.5.E. Maibaum, C.J. Lucena — Higher Order Data Types, to appear in
the International Journal of Computing and Information Sciences.

C. Pair - Formalizations of the Notions of Data, Information, and
Information Structure, '"Data Base Management", eds. J.W. Klimbie
and K.L. Koffeman, North-Holland, 1974.

J.M. Smith, D.C.P. Smith - Data Base Abstraction, Proceedings of the
ACM Conference on Data Abstraction, Definition, and Structure, 1976.

SPARC Interim Report, ANSI document no. 7514TS01, 1975.

F.W. Tompa - A Practical Example of the Specification of Abstract
Data Types, submitted for publication.

D.C. Tsichritzis, A. Klug - The ANSI/SPARC DBMS Framework, Tech-Note
12, Computer Systems Research Group, University of Toroato, 1977.

D.C. Tsichritzis, F.H. Lochovsky - '"Data Base Management Systems',
Academic Press, 1977.

H. Weber - A Software Engineering View of Data Base Systems, Proceed-
ings of the 4th International Conference on Very Large Data Bases, ed.
S. Bing Yao, 1978.

30.

S.N. Zilles - Abstract Specifications for Data Types, IBM Research
Report, San Jose, Ca., 1975.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

