Generality Considered Harmful —
A Critique of Descriptive Semantics

E.A. Ashcroft
Department of Computer Science
University of Waterloo

W.W. Wadge
Department of Computer Science
University of Warwick
Research Report CS-79-01

May 1979

Generality Considered Harmful —
A Critique of Descriptive Semantics
E.A. Ashcroft
Department of Computer Science
University of Waterloo
W.W. Wadge

Department of Computer Science
University of Warwick

We would like in this note to offer a criticiéh of the use of
mathematics in most of the current work in the semantics of programming
Tanguages. Our complaint is not that the wrong amount of mathematics
(either too Tittle or too much) is being used, or that the wrong kind is
being used, but rather that mathematics is being used in the wrong way.
In semantics, and computer science as a whole, there have always been
two points of view concerning the role of mathematics.

One point of view sees mathematics as playing primarily a

passive role. According to this point of view the entities considered
by computer scientists (machines, languages, systems) are shaped mainly
by forces outside mathematicians' control; the job of the mathematician
is therefore to develop the necessary tools to study computer science,
j.e. to describe, to model, to classify. This we might call the
"descriptive" approach.

The other point of view sees mathematics as playing primarily
an active role. According to this point of view, machines, languages,
and systems are (or should be) our own creations, and we can freely
choose to create them so that they conform to mathematically simple
principles. The mathematical tools developed are used mainly for

design rather than study. Mathematics is used not so much to describe

existing objects as to plan new objects. This we shall call the

"prescriptive"+

approach.

Our criticism of semantics, be it operational or mathematical,
Vienna Definition Language [5] or Scott/Strachey semantics [7], functional
or relational, is that it almost always takes the descriptive rather than
the prescriptive approach.

In the field of syntax, the difference between the descriptive
and prescriptive approaches, and the superiority of the latter, can
clearly be seen. The first programming languages (such as FORTRAN or
COBOL) were designed in an incremental and ad hoc manner and grammar (as
well as everything else) was specified by an informal mixture of English
and examples. This was quickly seen to be inadequate, and, in the course
of designing Algol 58, Backus, Naur and others (and Chomsky independently)
devised what are now known as context-free grammars (or BNF). These
grammars are simple and powerful, but, even so, are still not adequate
to describe completely the peculiarities of FORTRAN. The Algol 58
committee recognized the limitations of BNF but did not try to extend it
to make it more general; instead, they fashioned Algol 60 in such a way
as to allow a simple BNF specification. This is an example of the
prescriptive approach.

Since that time however, a number of researchers has been

unable to resist the temptation to "rectify" the descriptive inadequacies

+ According to the Oxford English Dictionary, the first meaning of
“prescriptive" is "That prescribes or directs, giving definite,
precise directions or instructions".

-3 -

of BNF. The most comprehensive of these generalizations is the system

of two-level grammars of Van Wijngaarden, invented to describe Algol 68

[8]. These two-level grammars are completely general in the sense that
any recursively enumerable set (for example, the set of valid first-order
formulas) can be so specified. Yet in spite of this generality it

cannot be said that two-level grammars are really successful. In fact,

we maintain that their lack of success is a consequence of their generality.
These grammars offer no guidance to the language designer. True, the
grammars can describe any language, but in general the description will

be so complex and unnatural as to be almost useless. 1In particular, there
is no general way to devise a parsing algorithm for a grammar. This is
not surprising, since there may be no’such algorithm at all (of any

kind) that can recognize the language.

In this field of grammar, the Van Wijngaarden two-level grammars
exemplify the passive or descriptive approach.

The area of grammar is one of the most successful in theoretical
computer science. We would claim that this is because the prescriptive
approach has won out over the descriptive approach. Language designers
take great care that the grammars of their languages can be easily
specified in BNF or in some even simpler form (e.g. LR(k)Jr), and
consequently can use all the well-understood theoretical and practical

properties of such grammars.

+ The definition of what constitutes an LR(k) grammar is more complicated
than the definition of context-free grammars. However, the actual
grammars are simpler and easier to understand.

The same tension between the two approaches can be seen in
another branch of syntax, namely program verificationf. At first, after
the initial work of Floyd [3], and Hoare [4], much work went into trying
to extend verification techniques to more and more complicated
languages, for example, languages with go-to's and various types of
parameter passing. This reflects the descriptive or passive viewpoint.

Recently, however, a prescriptive trend has developed, which
is to design languages and write programs with verification in mind.
Previously, programmers criticized verifiers because their systems were
not general enough; now verifiers criticize programmers for using constructs
which make their programs hard to verify.

The study of both grammar and inference started off in a
passive or descriptive mode, but real progress was achieved only when
the move was made to the active or prescriptive mode. It is our
contention that the problem with semantics is that it is still in the
immature, descriptive mode, and a move to the prescriptive mode is well
overdue.

It would not be correct to say that there have been no attempts
in semantics to use the prescriptive approach. In fact, one of the most
important programming languages, LISP, was designed prescriptively.

Other examples are ISWIM, APL, Dijkstra's guarded commands, PROLOG and
Lucid. Unfortunately, most of the effort in semantics has gone not into

the design of languages but into the design and study of semantic description

+ We are using the word "syntax" in the way that logicians do, to denote
everything pertaining to form rather than meaning. Thus grammar is a
branch of syntax, but proof theory is also.

systems, the two main ones being the Vienna Definition Language
(operational) and the Scott/Strachey method {mathematical). Both

are intended to be as general as possible so that they can "handle"
whatever the language designer might produce. Semanticists, from these
two schools especially, regard programming languages almost as naturally
occurring objects; they see the semanticist as being in essentially the
same position as an astronomer gazing through his telescope at some
star or ga]axy+. We might continue this analogy further and liken the
various semantic descriptions to the cosmological theories of the ancient
astronomer Ptolomy, which described (reasonably adequately) the apparent
motions of the planets in terms of an ihgenious system of cycles and
epicycles.

The problem with a mainly descriptive approach, whether in
astronomy or computer science, is that description itself is not the same
as understanding. The Scott/Strachey or Vienna methods may allow us to
describe PL/I, but that doesn't mean we necessarily understand what is
wrong with it, or what should be done about it. As with two-level
grammars in syntax, these semantics systems offer no real guidance to
language designers because they are so general and can describe anything
the designer might produce. They offer language designers a blank cheque
or, to paraphrase Dijkstra [2], they constitute an open invitation to the

language designer to make a mess of his language.

+ Algol is in fact the second brightest star in the constellation
Perseus!

-

A1l criticisms of the prescriptive approach are essentially
the same, namely that it is too restrictive. According to this complaint,
the prescriptive approach does not allow programmersor language
designers the freedom to use whatever constructs they wish. From this
point of view, generality is the road to freedom. We claim, however,
that it is understanding, not generality, that leads to freedom. For
example, even if a programming language is general enough to allow go-to
statements, programmers will not really be free to make their programs
work unless they understand the necessity of restricting their use.
Furthermore, language designers themselves will not be free to devote
their energies to really interesting problems if they have to worry
about the consequences of the unfettered interaction between different
parts of the language being designed. In other words, they should first
understand the necessity of restricting these interactions. In this
context at least, we can agree with the maxim of the philosopher Engels
that "freedom is the recognition of necessity".

It can be argued that the comparison of descriptive semantics
to Ptolomaic cosmological theories loses a 1ot of its force when it is
realized that no cosmological theory can be prescriptive (unless the
cosmologist has awesome supernatural powers!). This is true because
cosmology is in fact a natural (not an engineering) science; that is to
say, it is in fact the study of naturally occurring objects (planets,
stars, galaxies) shaped by forces outside our control. Nevertheless, it
is not correct to say that cosmology, and natural sciences 1in general,
must be purely descriptive. We would argue that the later theories of

Newton and Einstein are different in kind from that of Ptolomy. The genius

of Newton was the realization that the reason an apple fell in his
garden was the same as the reason the moon went around the earth. From
this he formulated a general principle, the Law of Gravitation. Ptolemy
described the motions of the planets but Newton was the first to really
understand and explain them. In natural sciences the relevant dis-
tinction is not between the descriptive and the prescriptive, but
between the descriptive and what we might call the "explicative".

The distinction between description and explanation is crucial
in the engineering sciences as well, because the prescriptive method
requires explanations. Newton's laws of motion can be used to describe
the behaviour of particular naturally occurring objects, such as the
solar system, but it also can be used fo tell us what must be done to
travel to the moon, for example, something Ptolemy's (or Copernicus')
system could never do. For that matter, Newton's (and Einstein's)
theories do allow, on a small scale, a prescriptive approach to
cosmology itself: we can make new moons (satellites). Using the
theory of relativity, we can even 'manufacture' suns (in the form of
reactors and bombs).

In semantics the works of Kleene, Scott [6] and others constitute
the explanatory basis of semantics - they have yielded real under-
standing of the nature of recursion. These principles are used as the
basis of descriptive systems, but can also be used prescriptively, as
the basis of (say) LISP or Lucid [1].

We would argue that all scientific endeavours involve des-

cription, and usually begin by going through a descriptive phase.

In fact, the better the description the more likely it is to lead to a
correct general explanation. The works of Copernicus and Kepler, though
descriptive, were essential preliminaries to the work of Newton. The
periodic table of Mendeleev provided inspiration to Niels Bohr in his
formulation of atomic structure. (High-energy physics is still at the
descriptive, classifying stage, however.) A good description is not an
end in itself, but a beginning.

We strongly hope that this is the stage that is being reached

in computer science.

References

[1] Ashcroft E.A. and Wadge, W.W. "Lucid, a Nonprocedural Language
with Iteration". CACM 20, No. 7, (1977) 519-526.

[2] Dijkstra E.W. "Goto Statement Considered Harmful". CACM 11,
(1968), 147-148, 538, 541.

[3] Floyd R.W. "Assigning Meaning to Programs". In Proc. Sym. in
Applied Math, 19, Mathematical Aspects of Computer Science
(J.T. Schwartz, ed.) American Math. Soc. (1967), 19-32.

[4] Hoare C.A.R. "An Axiomatic Basis for Computer Programming"”.
CACM 12 (1969) 576-580, 583.

[5] Neuhold E.J. "The Formal Description of Programming Languages."
IBM Syst. J., 2 (1971), 86-112.

[6] Scott D.S. "Data Types as Lattices". SIAM Journal on Computing,
5, No. 3 (1976).

[7] Scott D.S. and Strachey C. "Towards a Mathematical Semantics for
Computer Languages". Proceedings of the Symposium on Computers
and Automata. Polytechnic Institute of Brooklyn, New York,

(1971) 19-46.

[8] van Wijngaarden A., Sintzoff M., Lindsey C.H., Meertens L.G.L.T.,
and Fisker R.G. "Revised Report on the Algorithmic Language
Algol 68". Acta Informatica 5 (1975) 1-236.

	
	
	
	
	
	
	
	
	

