THEORETICAL FOUNDATIONS FOR
ROBUST DATA STRUCTURE IMPLEMENTATIONS

David J. Taylor
Research Report CS$S-78-52
Department of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

December 1978

ABSTRACT

Systems which are required to operate reliably must
usually contain mechanisms for detecting, and possibly
correcting, errors. One such detection and correction
technique makes wuse of redundancy in a system's data
structures. This paper describes techniques for analysing
the benefits obtainable from &a redundantly-encoded data

structure.,

1. INTRODUCTION

There are two complementary approaches to software
reliability: fault tolerance and fault intolerance. Fault
intolerance embodies such techniques as: structured design
and coding, proof of correctness, and debugging. Fault
tolerance embodies the detection of, analysis of, and
recovery from faults so that they do not lead to failures.
This paper describes one particular approach to fault
tolerance: the detection and correction of errors in stored
representations of data structures.

The terms just introduced are in general wuse but are
not always wused with precisely the same meaning. Here,
definitions proposed by Melliar-Smith and Randell [6] will
be used: A failure occurs when a system does not meet its
specifications: it is an externally observable event. An

erroneous state is a system state that can lead to a failure

which we attribute to some aspect of that state, An error
is that part of an erroneous state which can lead to a
failure. A fault is a mechanical or algorithmic cause of an

error, and a potential fault is a construction which under

some circumstances could produce an error. A fault tolerant

system is one which attempts to prevent erroneous states
from producing failures.
In discussing data structures, the following terms will

be used: A data structure is defined to be a 1logical

organisation of data. We define a data structure

December 1978 -1- Taylor

implementation to be a representation, on some storage

medium, of a data structure. A data structure instance is a

particular occurrence of a data structure implementation.
Thus, "binary tree" is a data structure; a representation in
which there are pointers from each node to the left and
right sons of the node is an implementation of a binary
tree; and if a particular set of data is stored according to
this implementation, that is a data structure instance.
Here, a data structure implementation is considered to

be defined by 1its detection procedure. A detection

procedure is an algorithm which is given an alleged instance
of a data structure implementation and returns a binary
value indicating whether the instance is acceptable. 1If a
data structure implementation is described in some other
form, it 1is possible to show equivalence with a detection
procedure using arguments similar to a proof of program
correctness, Thus, throughout the paper, implementations
will be identified by their detection procedures, frequently
denoted "<proc>",

The ultimate objective of the research described here
is to provide guidance in constructing data structure
implementations for fault-tolerant systems. Ideally, given
a data structure and a fault-tolerance requirement, one
would like to have a method for ©producing an appropriate
implementation. The work described here accomplishes a more

limited goal. It allows error detection and «correction

December 1978 -2- Taylor

properties of data structure implementations to be
determined, which provides a basis for choosing among a set
of alternative implementations, The work 1is in a sense
parallel to (and complements) that of Gotlieb and Tompa [3]
which provides a technique for selecting an implementation
from a set of alternatives based on efficiency
considerations.

The work described here 1is also restricted to the
"structural" aspects of data structures, as opposed to their
"data content." Superior robustness can likely be achieved
in many cases by a wunified treatment of content and
structure, but this course has not yet been pursued because
the possible information content of data structures varies
so widely.

The subject of this paper may be called "data structure
robustness," where "robustness" is used to denote error
detection and correction capabilities., Section 2 provides
the basic mathematical foundations for the study of data
structure robustness. Sections 3 and 4 present results
related to error detection and error correction,
respectively. The last section provides some conclusions
and outlines areas requiring further study. The results
presented in this paper have been applied to various
implementations of linear lists and binary trees. These

applications are described in another paper [7].

December 1978 -3- Taylor

2. BASIC CONCEPTS

Before discussing the mathematical model used 1in
studying robustness, the forms of redundancy which will be
considered should be mentioned. Three form; of redundancy
are studied: stored counts of the number of nodes in an
instance, additional pointers, and identifier fields. It
may be useful to define "identifier field" fairly precisely:
it is a group of one or more words, usually at the beginning
of a node, in which a value is stored explicitly indicating
the type of the node. Here, only redundant identifier
fields will be considered, that is, it will be assumed that
the type of each node, and hence proper identifier field
values, can be determined from pointer data.

To illustrate the forms of redundancy just introduced,
an example of a redundant implementation is shown in Figure
2.1. The example 1is a double-linked implementation of a
simple list. Each node contains an identifier field, each
node has a "back" pointer which is not essential, and a
count of the number of non-list-head nodes is stored.

We would 1like to quantify the error detection and
correction properties of data structure implementations. 1In
order to do this, we need first to quantify modifications to
data structures. For this purpose, the term change is
defined to be the alteration in type and/or value of a
single elementary item in a memory state. We consider

changes as they affect data structure instances contained in

December 1978 -4 - Taylor

ID

List Head

ID

S— Y

ID

ID

Figure 2.1

Double-linked list implementation

December 1978

IDField

Forward

Back

Taylor

such memory states. Thus a single "error" in a software
routine can easily introduce multiple erroneous changes 1if
the routine is executed several times, or even if it is only
executed once.

The size of the "elementary item" in the preceding
definition should be selected in terms of the application
being considered. Normally, a change will be any
modification which can be the result of a single store
instruction.

To illustrate the concept of change, we may consider a
simple example. If we have a list of four items, A, B, C,
D, each of the first three containing a pointer to the next
and D containing a null pointer:

A ->»B ->»C =->D =-» null
and somewhere in storage there is a node which contains X
and a null pointer, then a single change in the pointer of
node C can produce:
A -»B =>C -» X =-> null
This single change effectively replaces D by X.

The basic assumption, on which the remainder of the
work relies, is that an incorrectly modified data structure
instance is exactly the same as the correctly modified (or
unmodified, if no modification was intended) instance except
for a set of k changes. This assumption is referred to as

the fault hypothesis. 1In general, k or fewer fields will be

affected by k changes. Fewer fields will be affected if

December 1978 -6~ Taylor

several changes modify the same field.

A system state will be called valid if it satisfies the
following two conditions: (A) For each identifier field in
each kind of node in each data structure instance, there is
a unique identifier field wvalue which is stored in that
field; this value is not stored in any other location which
could mistakenly be interpreted as a correct identifier
field. (B) The only pointers to a node are found in other
nodes of the data structure instance containing that node.

In practice, there will likely be a restricted area of
main or secondary storage in which nodes of a data structure
instance may occur. When considering that instance, we need
only require the above conditions to be satisfied by that
area of storage.

Requiring all memory states to be valid simplifies
analysis, but is unreasonably restrictive in many cases. An
important reason for relaxing the second restriction is to
allow linking between different data structure instances or
to allow a single node to be part of two instances
simul taneously. Thus, we will allow limited violation of
the above assumptions.

We wish to define a measure of the wviolation of the
valid state -conditions with respect to a particular data
structure instance. To do this, we consider the fields of
each type of node 1in the instance to be classified as:

identifier field, pointer, or other. For each type of node

December 1978 -7~ Taylor

in the instance we examine all areas of storage which are
not nodes of that type (belonging to this instance) and
count the number of "identifier fields" which have the
correct identifier value. The maximum count, for all node
types and all areas of storage, 1is defined to be the

identifier field invalidity. Similarly, we count the number

of pointer fields, in such areas, which point to the nodes
of the instance in question. The maximum of these counts is

defined to be the pointer invalidity. The invalidity is

simply an ordered pair:

(identifier field invalidity, pointer invalidity).
(Note that if boundary alignment restrictions do not prevent
nodes from overlapping, pointers in the instance itself may
have to be counted in determining the invalidity. For
example, 1if nodes are eight words long and must begin on a
"quad-word" boundary, then we must consider as "areas which
are not nodes" those which overlap the first or last half of
a node. Thus, pointers in genuine nodes may contribute to
pointer invalidity. Figure 2.2 shows an example of such an
implementation, in which the pointer invalidity must be one
or greater.)

The concept of invalidity was not used in [8]. 1Its use
here is the major difference between these results and those
previous ones. Thus when (8] is cited for further details,
it should be noted that the discussion there will not

consider invalidity.

December 1978 -8~ Taylor

Figure 2.2

Implementation with pointer invalidity

ID1

ID 2

Pir 1

Other 1

Other 2

Ptr 2

ID1

Pir3

ID2

Other 3

Ptr 1

greater than or equal to one

December 1978

Other 1

Other 2

Ptr 2

Ptr 3

Other 3

Taylor

We can now develop a mathematical model of change
detection and correction in terms of metric spaces. The
metric wused is analogous to the one used by Hamming in the
study of binary codes [4].

Let S be a set of memory states. Define a metric d on
S by: 1if x and y are states in S, then d(x, y) is the
minimum number of changes needed to transform x into y. To
verify that 4 is a metric, one can easily show:

d(x, vy) = 0 iff x = y

d(x, vy) d(y, x) for all x, y in S
d(x, y) + d(y, 2z) > d(x, z) for all x, y, z in S.
Let <proc> be a detection, and possibly correction,
procedure for a data structure implementation stored in the
memory whose states are represented by S. Then <proc>

induces an equivalence relation ind(<proc>) on S, which we

will call indistinguishability: x ind(<proc>) y <=> <proc>

cannot distinguish between x and y (that is, each memory
location examined by <proc> has the same value in x as in
y) . It 1is trivial to wverify that 1ind(<proc>) 1is an
equivalence relation,

Let E(<proc>) (x) denote the equivalence <class of x
under ind(<proc>), that 1is, {y | x ind(<proc>) vyl}. When
confusion will not arise, E(<proc>) will simply be
denoted E.

For each memory state in S, <proc> either accepts, that

is, concludes that the data structure instance 1is correct,

December 1978 -10- Taylor

or rejects, that 1is, concludes that the data structure
instance 1is 1incorrect and possibly also <corrects the
structure. Define the subset C(<proc>) of S to be the set
of memory states for which <proc> accepts. When the
interpretation is obvious from context, C(<proc>) will
simply be denoted C. Since two equivalent states are
indistinguishable by <proc>, we observe that:
X ind(<proc>) y => (x in C <=> y in C).

Thus, for all x in S, E(X) is a subset of either C or the
complement of C.

Define V(<proc>)(i,p) to be the set of all memory
states whose identifier field invalidity does not exceed i
and whose pointer invalidity does not exceed p. Let
C'(<proc>)(i,p) be the intersection of C(<proc>) and
V(<proc>) (i,p). When they are understood, the specification
of the procedure and/or the specification of the invalidity
will be omitted.

Call a detection and/or correction procedure reasonable

iff given the address of the header of a data structure
instance, it locates all other nodes or potential nodes of
the instance by following pointers from nodes it has already
located. (The main objective of this definition 1is to
exclude the use of exhaustive memory searches,)

Subsequently, unless otherwise specified, all
detection/correction procedures will be assumed to be

reasonable.

December 1978 -11- Taylor

We now wish to define the detectability of an
implementation in terms of the mathematical model. The
essential idea 1is to state that if a minimum of n changes
separate any two distinct correct instances of an
implementation, then any set of n-1 or fewer changes can be
detected. We may restrict one or both of the memory states
involved by specifying a maximum invalidity. We thus define

three forms of detectability:

det(<Kproc>, (i,p)) = min d(x,y) - 1
X in C'(i,p), v in C

weak—-det (<proc>) = min d(x,y) -1
X, ¥y in C

abs-det(<Kproc>, (i,p)) = min d(x,y) - 1
X, y in C'(i,p)

For each minimum the additional condition
“(x ind(<proc>) y) is to be understood.

We will refer to these as detectability, weak
detectability, and absolute detectability, respectively.
Intuitively, detectability says that, starting from a
well-behaved correct state (invalidity at most the specified
value), a certain number of changes must be made to reach
any distinct correct state. Absolute detectability requires
that the correct state reached after applying changes also
be well-behaved. Weak detectability allows arbitrary
violations of the valid state conditions. (Note that 1if 1
and p are sufficiently large, all three detectabilities will
specify the same value.)

If n < det(<proc>, (i,p)) and the values of i and p are

December 1978 -12- Taylor

understood from context, we will simply say that the
implementation is n-detectable,. Similarly,
n-weak-detectable and n-abs-detectable can be defined.

We will be taking the intuitive meaning of n-detectable
to be that 1if a correct instance in a well-behaved memory
state has n changes applied to it, then we can detect that
the <changes have been made, by observing that the resulting
instance is incorrect. This is justified by the following

theorem:

Theorem 2.1: If n changes are made to a memory state
containing a data structure instance which is correct, the
invalidity of the state is at most (i,p), and 1 < n <
det(<proc>, (i,p)), then either <proc> rejects the changed
data structure instance or the two instances are
indistinguishable.

Proof: Let ¢ be in C'(i,p). Let c with n changes applied
be b. Then d(c,b) < n. Since

n < min d(x,y) -1
x in C'"(i,p), vy in C

then

n < min d(x,y)
X in C'(i,p), v in C

and hence, if <proc> does not reject (i.e., b in C) we must

have b ind(<proc>) c. (]

We can easily show a relationship among the three kinds

of detectability.

December 1978 -13- Taylor

Theorem 2.2: For all i, p
weak-det (<proc>) < det(<proc>, (i,p))
and

det(<proc>, (i,p)) £ abs-det(<proc>, (i,p)).

Proof: If we substitute the definitions of these
detectabilities, the results follow immediately from the

fact that C'(i,p) is a subset of C, for all i and p. []

We can also define correctability: corr(<proc>, (i,p))

is the maximum number of changes which can be made to a
correct instance in a memory state with invalidity (i,p)
such that a procedure exists which, given the state
containing the changes, can create a state indistinguishable
from the state without the changes. Similarly, we define
weak-corr(<proc>) by allowing the 1initial state to have
arbitrary invalidity. If n < corr(<proc>, (i,p)) and the
invalidity is understood, we will say that an implementation
is n-correctable. We define n-weak-correctable similarly.
Using these definitions it is possible to prove a basic

relationship between detectability and correctability.

Theorem 2.3: If a data structure implementation is
n-correctable then it is 2n-abs-detectable (using an
arbitrary invalidity throughout).

Proof: Suppo se to the contrary that there 1is an
implementation which is n-correctable but has abs-det = m <

2n., Then there exist two correct and valid memory states,

December 1978 -14- Taylor

81 and 852, which are distinguishable such that d(Sl, §2) =
m+ 1. There is thus a set of m + 1 changes which
transforms Sl to S2. Select

k = min{(n, m + 1)
of these and apply them to S1, yielding X. Then 4(sl, X) <
n and d(S2, X) < n. Thus an n-correction procedure does not
exist which works for state X, since X might have arisen

from either S1 or S2 by n or fewer changes. []

Theorem 2,4: If a data structure implementation is
n-weak-correctable then it is 2n-weak-detectable.
The proof is completely analogous to the proof of the

preceding theorem.

The converses of these results are not true. In
particular, it 1is a simple consequence of Theorem 4.5 that
the converse of Theorem 2.3 is not true. Section 4 of the

paper develops a partial converse of Theorem 2. 3.

3. DETECTABILITY RESULTS

This section presents a collection of results on the
detectability of data structure implementations. The
results in some cases allow detectability to be determined
exactly. 1In other cases, the results will provide upper and
lower bounds on detectability,. In addition, the methods
used in establishing the results may prove useful as models

for special proofs about particular implementations. It is

December 1978 -15~- Taylor

known that the results 1in this section are (numerically)
max imal and that the hypotheses in the theorems are
essential. Examples can be constructed to demonstrate these
facts, but are not included here for reasons of space.
Several such examples can be found in [8].

The following terminology is needed for some of the
results., We will say that a subset of the pointers in an

instance determines the complete structure, if given the

subset, all other structural data can be determined, that
is, all counts and identifier fields and all other pointers.

We will say that an implementation is k-determined if it

satisfies the following conditions:

(1) each instance contains k disjoint sets of pointers,
each of which determines the complete structure;

(2) there 1is an algorithm select(j) for j =1, ..., k

which locates all the pointers in the j'th set, given the
header address for a structure instance, using only pointers
in the j'th set. Select(j) must wuse only the relative
location of pointer fields within a node in determining
which pointers belong to set j.
The final part of condition (2) excludes some
implementations in which the use of a pointer 1is indicated
by a tag field. Changes to the tag field would invalidate
the arguments in some of the following proofs.

The implementation shown in Figure 2.1 is 2~determined.

It is easy to see that the forward pointers and the back

December 1978 ~-16~ Taylor

pointers both determine the complete structure.

Theoren 3.1: A k-determined implementation is
(k~1)~detectable.

Proof: Consider the following detection procedure: For
each j =1, ..., kK use select(j) to locate the j'th set of
pointers. Use these ©pointers to determine values for all
other structural data and compare with the values which are
actually 1in storage. If there 1is a mismatch, report an
error. If there are no mismatches for any Jj, report that
the instance is correct.

To prove (k-1)-detectability we must show that any set
of k-1 or fewer changes is detected., Since there are fewer
than k changes, at 1least one of the sets, say set q,
contains no changes. Then select(q) finds the same data it
would find in the unchanged instance and thus all the other
structural data is determined to be as in the unchanged
instance. Since some changes to the stored data structure
have been made, a mismatch will occur and thus an error will
be reported. 1If there have been no changes, the procedure
will accept the structure instance, so the implementation is

(k-=1l)-detectable. []

Theorem 3.2: If a k-determined implementation whose
detection procedure is <proc> contains m identifier fields
per node and has a stored count, and if one or more of the k

sets of pointers has only one pointer to each node, then for

December 1978 -17- Taylor

all p, for all i < m, det(<proc>, (i,p)) > k.
Proof: Use the detection procedure defined in the proof of
Theorem 3.1.

If k or fewer changes are made to a correct instance
and one of the k sets has no changes, the argument of
Theorem 3.1 applies. The only other possibility 1is that
exactly k changes are made, one in each set of pointers. By
hypothesis, one set contains only one pointer to each node.
The one pointer change made in this set causes the node
pointed to by the unchanged pointer value to disappear from
the structure determined by this set of pointers, so the
stored count cannot agree, unless a "foreign" node has been
added to the structure.

If a foreign node has been added, to create a correct
instance there must be a pointer to it in each of the k
sets, but the foreign node initially contains at most i
correct identifier fields, so at least m-i > 1 changes must
be made to the foreign node. Thus, at least k+1 changes are

required to insert a foreign node into a correct instance. [j

Theorems 3.1 and 3.2 can be applied to the
implementation of Figure 2.1. Theorem 3.1 proves it is (at
least) 1l-detectable; Theorem 3.2 proves that it is (at
least) 2-detectable.

Since the entire set of pointers 1in a structure
instance determines the count (or counts) and all identifier

fields, every structure is l-determined. Thus we have the

December 1978 ~18-~ Taylor

following as a simple corollary of Theorem 3.2:

Corollary 3.1: If an implementation whose detection
procedure is <proc> has m identifier fields per node and a
stored count, and there is only one pointer to each node,

then for all p, for all i < m, det(<proc>, (i,p)) > 1.

We next define two properties of an implementation which may
be use ful as intermediate steps in calculating
detectability. For convenience, the specification of
<proc>, the detection procedure, is omitted. We define
ch-same(i,p) to be the minimum number of changes that
transforms an instance in C'(i,p) into a distinct correct
instance with the same number of nodes. Similarly, let
ch-diff(i,p) be the minimum number of changes that
transforms an instance in C'(i,p) into a correct instance
with a different number of nodes.

First, we state an obvious result which indicates how

to calculate detectability if ch-same and ch-diff are known.

Theorem 3.3: For any implementation,

det(<proc>, (i,p)) = min(ch-same(i,p), ch-diff(i,p)) - 1.

The following result requires quite strong conditions on a
k-determined implementation, but does provide a means of
evaluating detectability in terms of several parameters for

implementations which do satisfy the conditions.
Theorem 3.4: If each of the Kk sets of pointers in a

December 1978 -19- Taylor

k-determined implementation contains only one pointer to

each node, there are a minimum of n identifier fields per

node, and there is a stored count, then for i < n
ch-same(i,p) > k + min(n - i, k).

(For i > n, ch-same(i,p) = ch-same(n,p). This could be

written directly into the expression for ch-same, but it

seems an unnecessary complication. The proof will consider

explicitly only the case i < n.)

Proof: Consider an undetectable sequence of changes which
leaves the number of nodes unchanged. There are two
possibilities: the same set of nodes exists, differently
structured, or one or more nodes have been replaced by
"foreign" nodes. To insert a foreign node, we must change
at least one pointer 1in each of the k sets and we must
insert at least n-i identifier fields in the foreign node.
So, the minimum number of <c¢hanges to insert one or more
foreign nodes is k + n - 1i.

If no foreign nodes have been inserted, then there must
be at least two changes in each of the k sets of pointers,
If only one change is made, then if the unchanged value is
non-null, the node formerly pointed to now does not have any
pointer pointing to it; if the changed value is non-null, a
node now has two pointers pointing to it. (If both wvalues
are null, the pointer has not been changed.) Thus 2k

changes are required.

December 1978 ~20- Taylor

We thus have
ch-same > min(k + n - 1, 2k)

= k 4+ min(n - i, k). [

For the implementation in Figure 2.1, k=2, n=1 so
dh%mﬂOJ)ZB.

We <can obtain a better bound in the case p= 0. Ifm
of the k sets of pointers have exactly one pointer in each
node, then

ch-same(i, 0) > k + min(n + m - i, k).
(for a proof see [8, Theorem 4.4.5].)

We next prove a result which complements the preceding

one, by giving a bound on ch-diff. First, we define an

implementation to be k-count-determined 1if there exist k

disjoint sets of pointers, each one of which can be used to

determine the number of nodes in a structure instance.

Theorem 3.5: If a k-~count-determined implementation has j
stored counts, ch-diff > k + j.

Proof: Suppose an undetectable change sequence alters the
number of nodes in a structure instance. To yield a correct
instance, each of the Jj counts must be changed and since
there are k disjoint sets of pointers which determine the
count, we must change at least one pointer in each of the k
sets, for a total of k + j changes. Note that the result is
true even if j = 0 since the counts derived from the

different sets can be compared with each other. It 1is

December 1978 ~-21- Taylor

impossible to have k = 0, since the count must be determined

by the complete set of pointers. (]

The implementation in Figure 2.1 is 2-count-determined
(in general if an implementation is k-count-determined and
g-determined, k > g; here they are equal) so we conclude
that ch-diff > 3, 1If we apply Theorem 3.3 to this result
and the result of Theorem 3.4, we conclude that the
implementation 1is 2-detectable. This was already shown by
applying Theorem 3.2, but there are cases 1in which one
technique would be better than the other.

Finally, we prove three results which provide upper
bounds on detectability. The first gives an upper bound on
ch-same, which provides a bound on detectability, since
det < ch-same - 1. The second provides a direct bound on
detectability. The third is phrased to provide a lower
bound on the update cost, given the detectability, but also
provides an upper bound on detectability, given the update

cost.

Theorem 3.6: If an implementation has a maximum of m

pointers in a node, k pointers entering a node, and n

identifier fields in a node, then for i < n, p < m
ch-same(i,p) < m+ k + n- i - p.

(For i > n, ch-same(i,p) = ch-same(n,p) and for p > m,

ch-same(i,p) = ch-same(i,m). Again, this could be written

directly into the expression for ch-same, but it seems an

December 1978 -22- Taylor

unnecessary complication. The proof will consider
explicitly only the case i < n, p < m.)

Proof: Given a correct instance which contains one or more
nodes (other than a list head node), we can substitute an
arbitrary region of storage for a non-list-head node, as
follows. Insert appropriate identifier field values
(max imum of n-i changes). Insert pointers equal to the
pointers in some selected node, except that pointers from
the node to itself are set to point to the new node (maximum
of m-p changes). Change all pointers to the selected node
to point to the new node (maximum of k changes). The result

is a correct instance, so ch-same < m + k + n - i - p. []

Theorem 3.7: If an implementation allows an "empty"
instance and n 1is the number of pointers in the list head
which do not permanently point to a fixed 1location in the
list head, and there are q stored counts, then the
detectability of the implementation is at most n + g - 1.

(A simple example of a fixed list head pointer can be
seen in the threaded tree implementation of [5, Section
2.3.11.)

Proof: The list head of an empty instance differs by at
most n pointer changes from any other instance, so n pointer
changes and g count changes can transform any 1instance to
the empty instance. Thus the detectability 1is at most

n+qg-1. 10

December 1978 -23- Taylor

The implementation of Figure 2.1 has n=2, g=1, so
Theorem 3.7 shows that the detectability is at most 2. We
earlier showed it was at least 2, so we have determined the

exact value of the detectability.

Theorem 3.8: If an implementation is k~detectable, then any
correct update of an instance must make at least k + 1
changes to structural and redundant data.

Proof: By a "correct" update, we mean one which transforms
one correct instance in a state of specified invalidity into
another such instance. 1In a k-detectable implementation, a
correct instance in a state of specified invalidity is at
least k + 1 changes distant from any other correct instance,
and hence from any other correct instance in a state of
specified invalidity. Thus, a correct update must make at

least k + 1 changes. [

This result 1is significant because it illustrates an
important rel ationship between detectability and cost. The
theorem shows that if an implementation is k-detectable for
large k, the cost of updating the implementation must also

be large.

4. CORRECTABILITY RESULTS

In order to study correctability, two additional

concepts are needed. The first is called the accessible set

of a data structure instance. It is the set of all nodes

December 1978 ~24- Taylor

which can be accessed by a reasonable procedure which is
given the header of the structure. For a correct instance
which does not contain pointers to other instances, the
accessible set is simply the set of nodes which are
(intuitively) "part of" the structure. We write
acc(x, <proc>) to denote the accessible set in memory state
X. When the procedure, and hence the structure, are clear
from the context, we simply write acc(x). (Note that 1in
this definition and the following one, <proc> specifies the
implementation involved; the procedure 1itself is not
relevant.)

We define the correctability radius of an

implementation, denoted cr(<proc>), to be the maximum r such
that for any correct state x and any state vy with
d(x, yv) < r, acc(x, <proc>) is a subset of acc(y, <proc>).
Thus, intuitively, the correctability radius is the 1largest
number of changes which can be made such that it is possible
to guarantee no nodes in a correct instance become
inaccessible to & reasonable procedure.

We now wish to prove that a data structure
implementation is r-correctable for

r = min(cr(<proc>), det(<proc>)/2).

We will assume throughout that the implementation employs a
sufficient number of identifier fields (as specified
precisely below). First we prove that there is an effective

procedure for locating all the nodes of the structure

December 1978 -25- Taylor

instance, and then that 1if a superset of nodes in the
structure instance can be found, the instance can be

corrected.

Lemma 4.1: If k < cr(<proc>) changes have been made to a
correct instance in a memory state with identifier
invalidity i, and each node of the instance has at least i+l
identifier fields, then all the nodes in the unmodified
instance can be located by a reasonable procedure which
locates only finitely many nodes not part of the wunmodified
instance.

Proof: The complete proof of this lemma is rather lengthy;
an abbreviated version is given here. (The details may be
found in [8, Lemma 4.3.1].)

First, we claim that all nodes of the unmodified
instance may be reached by following a sequence of pointers
from the 1list head and that there is such a path with no
more than k nodes having bad identifier fields. Let the
nodes of the path be a(0), a(l), ..., a(n), with a(o) = list
head, a(n) = desired node, and a(j-1) pointing to a(j) for
j= 1, ..., n. This claim is not proven here: the first
part is a direct consequence of the definition of cr(<proc>)
and the second part should be intuitively clear, since only
k changes have been made.

We now prove that the reasonable procedure in Figure
4.1, given the changed instance, locates all nodes in the

unchanged instance, and that only a2 finite number of other

December 1978 -26- Taylor

procedure NCDE.LOC(LIST.HEAD, R)
begin

end

pointer LIST.HEAD, integer R, pointer NODE.PTR,

table of (pointer PTR key, integer LEVEL) NODE.TABLE,

stack of (pointer, integer) NODE.STACK,
pointer Q, integer I;
create empty table NODE.TABLE;
put (null, 0) in NODE.TABLE;
push (LIST.HEAD, 0) onto NODE.STACK;
while (NODE.STACK is not empty) do
begin
(NODE.PTR, I) <- top of NODE.STACK;
pop NODE.STACK;
if(NODE.PTR 1is not in NODE.TABLE or
LEVEL (NODE.PTR) > I) then
begin
1f(NODE.PTR is not in NODE.TABLE) then
put (NODE.PTR, I) in NODE.TABLE
else
LEVEL (NODE.PTR) <~ I;
for each pointer Q in NODE (NODE.PTR) do
if(ID(Q) is correct) then
push (Q, I) onto NODE.STACK
else
if(I < R) then
push (Q, I+l) onto NODE.STACK;
end
end

Figure 4.1
Node locator procedure

December 1978 -27~-

Taylor

nodes are located,

The parameters of the procedure are: a pointer to the
list head of the structure instance (LIST.HEAD) and a bound
on the number of changes which may have been made to the
instance (R). The technique wused 1is essentially a
depth-first search [1, pl76 and followingl of the instance,
with the restriction that no path have more than R incorrect
identifier fields. Pointers are 1initially placed on
NODE.STACK; as they are removed from NODE,STACK they are
inserted in NODE.TABLE and the pointers from the
corresponding node are placed on NODE.STACK. When a pointer
is removed from NODE.STACK which is already 1in NODE.TABLE
the pointer is normally ignored.

Associated with each pointer on NODE.STACK or in
NODE.TABLE is a "level" number. Intuitively, this number is
the number of incorrect identifier fields encountered on a
path to the node. If the level number increases beyond R,
the pointer is discarded. When a pointer 1is removed from
NODE.STACK which is already in NODE.TABLE but with a higher
level number, the pointer is treated essentially as if it
were not in NODE.TABLE.

The need for level numbers in NODE.STACK 1is obvious:
if they were not present, the procedure could wander through
an unbounded number of "foreign" nodes. It may not be clear
that the 1level numbers in NODE.TABLE aré essential for the

correct operation of NODE.LOC. In most cases, omitting

December 1978 -28- Taylor

those 1level numbers would not affect the operation of the
algorithm. For a pathological case in which they are
essential, see [8].

We now proceed to prove that NODE.LOC behaves as
claimed. Specifically, we prove that if NODE.LOC is given
the list head of an instance which differs from a correct
instance by r or fewer changes, NODE.LOC terminates and at
termination, NODE.TABLE contains: & null pointer, a pointer
to each node in the correct instance, and a finite number of
other pointers.

Termination follows from the other properties to be
proved because they establish a bound on the size of
NODE. TABLE, Each iteration of the main loop either adds a
new entry to NODE.TABLE, decreases the level number of an
entry in NODE.TABLE, or decreases the size of NODE.STACK.
(Each iteration pops an entry from the stack. Thus the size
of the stack decreases unless the first IF is successful.
When the first IF is successful either a new entry is added
to NODE.TABLE or the level number of an existing entry is
decreased.) Since the size of NODE.TABLE is bounded and
level numbers are never decreased below zero, NODE.STACK
must eventually become empty, terminating the procedure.

We now claim that all of the nodes a(j), j =0, ..., n
are placed in NODE.TABLE and that eventually each has a
level number 1less than or equal to the number of nodes in

{a(0), ..., a(j)} with bad identifier fields. We can prove

December 1978 -29- Taylor

this by induction. It is clearly true for a(0). If it is
true for a(j-1l) then, when a(j-1) is placed in NODE.TABLE or
when its level number is reduced to the appropriate value,
a(j) will be stacked with an appropriate level number, and
hence eventually placed in NODE.TABLE.

Thus, the arbitrarily selected node a(n) will be placed
in NODE.TABLE, showing that all nodes of the correct
instance are placed in NODE.TABLE.

Let m be the maximum number of pointers in any node.
We show that the number of pointers to nodes not in the
correct instance is bounded by

R*¥* (m*¥* (2*R-1) - 1)/(m - 1).

For each pointer which 1is changed to point to a foreign
node, a path through foreign nodes of length at most 2*R-1
may be followed before the level number exceeds R. (The
max imum occurs if the path includes R-1 nodes who se
identifier fields have been changed to the correct value.)

Thus, a pointer change can add at most an m-ary tree of
height 2*R-1 to the set of pointers in NODE.TABLE. The
number of nodes in such a tree is (m**(2*R-1) - 1)/(m - 1).
Multiplying by R for R possible pointer changes yields the
indicated bound. This bound can obviously be improved, but

in this context the existence of a bound is sufficient. []

Theorem 4.1: Define r by
r = min(cr(<proc>), det(<proc>, (i,p))/2)

and let k < r. If k changes have been made to a correct

December 1978 -30- Taylor

instance in a memory state with identifier invalidity i and
pointer invalidity p, and each node in the instance has at
least i+1 identifier fields, then a reasonable procedure
exists which can restore the modified instance to the
unchanged form. That is,
corr(<proc>, (i,p)) > min(cr(<proc>), det(<proc>, (i,p))/2).
For simplicity it 1is assumed in the following proof
that each node has exactly m pointers to other nodes. The
theorem is true if the nodes are of different kinds having
different numbers of pointers, but this generality
introduces additional inessential complexity to the
correction procedure and the proof. Similarly, to simplify
the algorithm and the proof, we assume that each node has
only one identifier field. The extension to multiple
identifier fields is straightforward.
Proof: By Lemma 4.1 we can find a superset of the nodes 1in
the correct 1instance. We claim that procedure GEN.CORR in
Figure 4.2, given such a superset, performs the required
function. The parameters are: a pointer to the list head
of the instance to be corrected, the number of nodes
supposed to be in the instance (which may be in error), the
order of correction to be performed (r), the name of a
2r-detection procedure for the implementation (CHECK.Z2R),
and a table containing a superset of the nodes in the
correct instance. Since at most r changes are made, some of

which may reverse some of the initial r changes, at most

December 1978 -31- Taylor

procedure GEN,.,CORR(LIST.HEAD, COUNT, R, CHECK.2R, NODE.TABLR)
begin
pointer LIST.HEAD, integer COUNT, integer R,
procedure CHECK. 2R,
table of (pointer PTR key, integer LEVEL) NODE.TABLE,
integer I, integer J;
define A to be the power set of
{o, 1, ..., M} X (NODE.TABLE - {null}) X NODE.TABLE;
for I <- 0 to R do
for each I-tuple ALPHA in A do
/* by this, we mean to select a set of cardinality I
and arbitrarily order the elements
to form a tuple */
begin
Ll: for J <- 1 to I do
if(ALPHA(J, 1) = 0) then
begin
T(J) <~ ID(ALPHA(J, 2))
ID(ALPHA(J, 2)) <- correct i.d.;
end
el se
begin
T(J) <- pointer ALPHA(J, 1)
in node ALPHA(J, 2);
pointer ALPHA(J, 1) in
node ALPHA(J, 2) <- ALPHA(J, 3);
end
if(CHECK.2R (LIST.HEAD)) then return
else
if(I < R) then
begin
SAVE.COUNT <~ COUNT;
L2: for J <~ 0 to cardinality of
NODE.TABLE do
begin
COUNT <- J;
if(CHECK.2R(LIST.HEAD)) then return;
end
COUNT <- SAVE.COUNT;
end
for J <~ 1 to I do
if(ALPHA(J, 1) = 0) then
ID(ALPHA(J, 2)) <= T(J)
else
pointer ALPHA(J, 1) in
node ALPHA(J, 2) <- T(J);
end
"correction unsuccessful";
end

Figure 4.2
General correction procedure

December 1978 -32~ Taylor

r+k < 2r changes to the correct instance exist during the
execution of GEN.CORR. Since the implementation is
2r-detectable, 1if CHECK.?2R accepts an instance, it must be
the unchanged, correct instance,

Now we demonstrate that each set of k changes will be
reversed during execution of GEN.CORR.

First, suppose that the count was not changed. Then
change j for j =1, ..., k is either a change to the
identifier field of some node a(j) or a change to the
b(j)'th pointer in some node a(j). Denote the first case by
(0, a(j), null) and the second by (b(j), a(j), c(j)) where
c(j) is the original (unchanged) value of the pointer. Then
a set consisting of these k changes is an element of the set
A in the procedure. When this element of A is selected by
the for loop at L1, the changes will be reversed.

Secondly, if the count is changed, then the k-1 other
changes will be reversed in the manner just described and
since k-1 < r the for loop at L2 which varies the count will
be executed. Since NODE.TABLE contains at least as many
nodes as the correct instance, at some point the correct
count will be generated.

We have implicitly assumed that after a set of changes
is tried, they are removed, leaving the instance as
originally passed to GEN.CORR, before the next set of
changes 1is tried. This can be easily verified: the vector

T is used to hold the values in fields which are changed and

December 1978 -33~ Taylor

after an unsuccessful try, is used to restore the values of

the fields. []

It is probably unnecessary to consider the execution
time of GEN.CORR 1in any detail. It 1is clear that its
execution time will make it impractical for wuse as a
correction procedure. GEN.CORR simply serves the purpose of
showing the correctability of a broad range of
implementations. Once the correctability is known, an
efficient correction procedure can be sought.

The preceding theorem provides the basic result on
correctability but it 1is not easily applicable because
"correctability radius" is not an obvious property of a data
structure implementation. The following lemmaz and theorem

provide more directly applicable results.

Lemma 4.2: If a data structure implementation provides r+l
edge-disjoint paths from the list head to each node of the
structure, the correctability radius of the implementation
is at least r.

Proof: Suppose the correctability radius is 1less than r.
Then there 1is a <correct instance and a set of r or fewer
changes which makes a node inaccessible to all reasonable
procedures, But there are r + 1 edge (pointer)-disjoint

paths to each node, so this is impossible. []

Theorem 4.2 (General Correction Theorem): Suppose a data

structure implementation has at least i+l identifier fields

December 1978 ~-34- Taylor

in each node. Using an identifier field invalidity of i and
any constant pointer invalidity throughout, if the
implementation 1is 2r-detectable and there are at least r+l
edge-disjoint paths to each node of the instance, then the
implementation is r-correctable.

Proof: By Lemma 4.2 the correctability radius of such a
structure Iimplementation 1is at least r. Thus, by Theorem
4,1, the implementation 1is at least min(r, 2r/2) =

r-correctable. []

Only Lemma 4.1 made direct use of the presence of
identifier fields. There, the presence of i+l identifier
fields (with an identifier field invalidity of i) was needed
to prove termination of NODE,LOC. If one allows an
alternative termination argument, appealing to the
finiteness of storage, the requirement for identifier fields
can be eliminated.

The results in Theorems 4.1 and 4.2 are the most
generally useful correctability results, but they are not
max imal. The following theorems, which use absolute
detectability, provide maximal results for correctability

and prove their maximality.

Theorem 4,3: Define r by
r = min{cr(<proc>), abs-det(<Kproc>, (i,p))/2)
and let k < r. 1If k changes have been made to an instance

in C'(i,p) and each node in the instance has at 1least i+l

December 1978 ~-35- Taylor

identifier fields, then a reasonable procedure exists which
can restore the modified instance to the unchanged form.
Proof: Use GEN.CORR of Figure 4.2 modified so that if
CHECK.2R accepts, then NODE.LOC is executed on the current
memory state and CHECK.VALID of Figure 4,3 is invoked with
parameters: NODE.TABLE. 1 the original NODE. TABLE,
NODE.TABLE.2 the new NODE.TABLE, ID.INV = i, PTR.INV = p,
and I and R from GEN,CORR, CHECK.VALID determines the
invalidity of the nodes in NODE.TABLE.1 with respect to the
structure represented in NODE.TABLE.2. It succeeds if this
invalidity 1is 1less than (ID.INV, PTR.INV). The modified
GEN.CORR accepts a state (and thus terminates) if and only
if both CHECK.2R and CHECK.VALID succeed.

For each node in NODE.TABLE.2 which is not in
NODE.TABLE.1 (not part of the correct instance), CHECK.VALID
counts the number of excess correct identifier fields and
excess pointers into the instance. If the total count for
all nodes, plus the number of changes made by GEN.CORR (I)
exceeds the total number of changes (R), then CHECK.VALID
rejects the state, since it cannot be transformed to a state
in C'(i,p) without exceeding the allowed total number of
changes.

Thus, any state accepted by the modified GEN.CORR must
be indistinguishable from a state in C'(i,p) and since the
total number of changes (from the original, unchanged state)

is at most r + k < 2r, GEN.CORR must create a state which is

December 1978 -36- Taylor

procedure CHECK.VALID(NODE.TABLE.1l, NODE.TABLE.?Z2,
ID.INV, PTR.INV, I, R)
begin
pointer X, pointer Y¥;
integer ID.COUNT, PTR.COUNT, INV.COUNT;

INV.COUNT <- 0;
for each entry X in NODE.TABLE.1l do
if (X is not in NODE.TABLE.2) then
begin
ID.COUNT <- the number of correct identifier
fields in the node at X;
PTR.COUNT <- the number of pointers in the node
at X which are in NODE.TABLE. 2;
if (ID.COUNT > ID.INV) then
INV,COUNT <- INV.,COUNT + ID.COUNT - ID.INV;
if (PTR.COUNT > PTR.,INV) then
INV.COUNT <- INV.COUNT + PTR.COUNT - PTR.INV;
end
if (INV.COUNT + I < R) then return(true)
else return(false);

end

Figure 4.3
Validity checking procedure

December 1978 -37-~ Taylor

indistinguishable from the original state, and thus restores
the unmodified instance. GEN.CORR does not attempt to
create a state in C'(i,p) since that would involve changing
nodes outside the instance it is correcting. Presumably, in
an actual system, other correction routines would eventually
correct those nodes.

By the same argument as in Theorem 4.1, any set of
changes to nodes part of the instance will be reversed. Any
changes to nodes not in NODE,TABLE.l will be completely
ignored and any changes to nodes in NODE.TABLE.1l but not in
the instance will be counted as reversed by CHECK.VALID.
So, under the conditions of the theorem, the unchanged state
will be implicitly recreated, and the instance itself will
be recreated in its unmodified form.

Thus, the modified GEN. CORR will recreate the
unmodified instance and will accept no instance distinct

from the unmodified instance, as required. []

Using Lemma 4.2, we easily can prove an analogue of

Theorem 4.2.

Theorem 4.4: Suppose a data structure implementation has at
least i+l identifier fields 1in each node. Using an
identifier field 1invalidity of i and any constant pointer
invalidity throughout, if the implementation is
2r-abs-detectable and there are at least r+l edge-disjoint

paths to each node of the instance, then the implementation

December 1978 -38- Taylor

is r-correctable.

To prove these results maximal we need the converse of

Lemma 4. 2.

Lemma 4.3: If a data structure implementation has
correctability radius r, then there are at 1least r + 1
edge-disjoint paths to each node of any instance.

Proof: Suppose the result 1is false,. Then there 1is an
implementation with correctability radius r such that some
instance contains a node X which has r or fewer
edge-disjoint paths from the header of the instance.

By Theorem 11.4 in [2] the max imum number of
edge-disjoint paths is equal to the minimum number of edges
whose deletion destroys all paths. Thus there is a set of r
or fewer pointers which are essential in accessing X from
the header, Change all of these to nulls (r or fewer
changes) . Then X 1s not in the accessible set, so the

correctability radius is less than r, contradiction. []

The following two theorems show that the results of
Theorems 4.3 and 4.4 are maximal and thus that they are all
that is needed in determining the correctability of
implementations which use a sufficient number of identifier

fields.

Theorem 4.5: If a data structure implementation is

r-correctable then abs-det(<proc>) > 2r and cr(<proc>) > r.

December 1978 -39- Taylor

(Using any constant invalidities throughout.)

Proof: The first part was proven in Theorem 2.3. To prove
the second part, we note that if cr(<proc>) < r, then part
of the structure could be made inaccessible to all
reasonable procedures by r changes, preventing any

reasonable procedure from performing correction. f{]

Theorem 4.6 If a data structure implementation is

r-correctable, then abs-det(<proc>) > 2r and there are r+l
edge~-disjoint paths to each node of each instance. (Using
any constant invalidities throughout.)

Proof: Again, the first part has already been proven. By
Theorem 4.5 we have cr(<proc>) > r and by Lemma 4.3 there
are then at least r+l edge-disjoint paths to each node of

each instance. [

5. CONCLUSIONS AND FURTHER WORK

The preceding sections introduce the study of data
structure robustness and provide a number of basic theorems
on the detectability and correctability of data structure
implementations. The correctability results are, 1in a
sense, complete, subject to a simple assumption about
identifier fields. The detectability results are incomplete
but should be useful, both as a collection of results which
can be appl ied directly and as models for special-purpose

proofs about individual implementations.

December 1978 -40- Taylor

The results in Sections 3 and 4 are useful in
determining the resistance to damage of wvarious data
structure implementations. Examples of applying those
results to particular data structure implementations are not
included here, but can be found in [7, 8]. Some of these
implementations have also been subjected to empirical
testing, not to wverify the theoretical results, but to
determine behaviour under conditions not described by the
theory. For example, if an implementation with detection
procedure <proc> has det(<proc>) = 2, then we know any set
of one or two changes will be detected and that at least one
set of three changes cannot be detected. However, the
theory does not predict what fraction of the set of all
possible triples of changes produces undetectable errors.
In the implementations tested which have det(<proc>) > 1, no
"randomly" generated set of changes ever produced an
undetectable error (3000 sets were tried for each number of
changes tested). Thus, in some cases, implementations may
be even more robust in practice than the theoretical values
developed here would indicate.

One 1line of research which should be pursued is to
develop theoretical methods for determining such
"probabilistic" detection and correction ©properties of
implementations. This seems to be much more difficult to do
than the "absolute" analysis developed here. One problem is

that more parameters must be considered. An example of such

December 1978 -41- Taylor

a parameter is the number of nodes in an instance. This 4id
not have to be considered in the analysis performed in
Sections 3 and 4, but some of the empirical results strongly
suggest that this is a relevant parameter for probabilistic
analysis,

A difficulty with the results presented here 1is that
they treat data structure instances as single units for
detection and correction purposes. This is undesirable 1If
instances are very large (as in a data base, for example).
Two approaches should be considered. One is to determine
"local™ detectability and correctability. For example, we
could define an implementation to be locally l-detectable if
an arbitrary number of changes can be detected provided they
are "sufficiently far apart.” (Defining the distance
between changes is one of the problems which must be solved
in order to develop the concepts of local detectability and
correctability.) The other approach is to determine ways of
partitioning large instances so they can be checked and
corrected without reference to the entire instance. Of
course, the objective must Dbe to accompl ish this
partitioning without wunduly complicating update and access

routines for the implementation.

December 19783 -4 2- Taylor

Acknowledgements

Professors D. E. Morgan and F. W. Tompa provided
helpful comments on the development of the results in this
paper. Mr. J. P. Black, as well as Professors Morgan and
Tompa, read earlier drafts of the paper and suggested
clarifications to the presentation.

This research was supported by the Natural Sciences and

Engineering Research Council of Canada under grant number

A3078,

December 1978 43~ Taylor

BIBLIOGRAPHY

1. Aho, Alfred V., John E. Hopcroft, and Jeffrey D.
Ullman. The Design and Analysis of Computer
Algorithms. Reading, Massachusetts, Addison-Wesley,
1974,

2. Bondy, J. A. and U. S. R. Murty. Graph Theory
with Applications. London, Macmillan Press Ltd.,
1976,

3. Gotlieb, C, C. and F. W. Tompa. Choosing a
storage schema. Acta Informatica, wvol. 2 (1974).
pPp297-319.

4, Hamming, R. W, Error detecting and error

correcting codes. Bell System Technical Journal,
vol., 26, no. 2 (April 1950). ppl4da7-160.

5. Knuth, Donald E. The Art of Computer Programming,
volume 1: Fundamental Algorithms. Addison-Wesley,
1968.

b, Melliar-Smith, P. M. and B. Randell. Software
reliability: the role of programmed exception

handling. Proceedings of an ACM Conference on
Language Design for Reliable Software, Raleigh, North
Carolina, March 28-30, 1977. (Published as SIGPLAN
Notices, vol. 12, no. 3, March 1977.) pp95-100.

7. Taylor, Dav id J. and David E. Morgan.
Detectability and «correctabbility of data structure
implementations. Submitted to Transactions on

Programming Languages and Systems.

8. Taylor, Dav id J. Robust data structure
implementations for software reliability. Ph.D.
Thesis, Department of Computer Science, University of
Waterloo, Ontario, 1977.

December 1978 -44- Taylor

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

