DETECTABILITY AND CORRECTABILITY
OF DATA STRUCTURE IMPLEMENTATIONS

David J. Taylor
David E. Morgan

Research Report CS-78-51
Department of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

November 1978



Key Words and Phrases: data structures, data
representation, robust systems, redundant encoding, fault
tolerance, error detection, error correction, linear lists,
binary trees

CR Categories: 4.34, 4.6



ABSTRACT

This paper describes one method for enhancing software
fault tolerance, the implementation of robust data
structures. A robust data structure implementation is one
containing redundancy which can be wused to detect and
correct erroneous changes made to an instance of the data
structure. Three commonly used forms of redundancy are
considered here: storing a count of the number of nodes in
a structure instance, using node type identifier fields, and
using additional pointers.

Some basic concepts are defined which allow data
structure robustness to be studied, and some general results
are presented which allow the detection and correction
properties of implementations to be determined. Four
possible implementations of linear 1lists are examined to
determine their robustness and the costs of the robustness.

Analytic techniques are used to establish the levels of
detectability and <correctability that are possible for a
particular implementation. Empirical results indicate that
the effective detectability of an implementation can be
higher than that which is analytically shown to be possible.
This is true because the combinations of changes that are
required to produce an undetectable error rarely occur in
practice, but must be considered 1in a proof. Thus, one
implementation of a linear 1list that 1is 2-detectable in

theory appears to be better than 12-detectable in practice.



However, an implementation which is l-detectable in theory

also appears to be l-detectable in practice.



1., INTRODUCTION

Software systems encounter faults from a number of
sources: design flaws, program bugs, hardware malfunctions,
and incorrect wuser actions. A desirable property of
software systems is "fault tolerance," the ability to
continue to provide services in spite of such faults. For
some real-time applications, fault-tolerance may be an
extremely important property.

In discussing fault-tolerance, we will use some
definitions suggested by Melliar-Smith and Randell [3]. A
failure occurs when a system does not meet its
specifications: it 1is an externally observable event. An

erroneous state is a system state that can lead to a failure

which we attribute to some aspect of that state. An error
is that part of an erroneous state which can 1lead to a
failure. A fault is a mechanical or algorithmic cause of an

error, and a potential fault is a construction which under

some circumstances could produce an error. A fault tolerant

system is one which attempts to ©prevent erroneous states
from producing failures. This ©paper presents a specific
aspect of fault tolerance: the identification and removal
of errors in data structure instances.

The following definitions will be wused in discussing

data structures. A data structure 1is defined to be a

logical organisation of data. We define a data structure

implementation to be a representation, on some storage

November 1978 -3- Taylor, Morgan



medium, of a data structure. A data structure instance is a

particular occurrence of a data structure implementation.
Thus, "binary tree" is a data structure; a representation in
which there are pointers from each node to the 1left and
right sons of the node 1is an implementation of a binary
tree; and if a particular set of data is stored according to
this implementation, that is a data structure instance.

A change is defined to be an elementary modification to
a data structure instance. To illustrate this definition,
consider the following implementation of a 1linear 1list.
Suppose the 1list contains four items, each of the first
three has a pointer to the next, and the 1last contains a
null pointer:

A ->B ->C ->»D ->» NULL
If somewhere in storage there is a node which contains X and
a null pointer, then a single change in the pointer of node
C can produce:

A ->B ->» C -> X -> NULL
This single change effectively replaces D by X.

In this @paper, only changes affecting structural
information (such as pointers, counts, and identifier
fields) will be considered. The effect of changes on the
"data <content”™ of an instance is also an important problem
but is outside the scope of the present discussion.

Detection properties of a data structure implementation

are stated in terms of changes. If a single change can

November 1978 -4~ Taylor, Morgan



transform a <correct data structure instance into another
correct instance, as in this example, the implementation has
no detection capabilities. If at least two changes are
required to transform any correct instance into another,
then single change detection is possible. In general, if at
least N changes are required to transform any correct
instance into another, N-1 change detection is possible.

If all sets of N or fewer changes can be detected, we
say the implementation is N-detectable. Similarly, if all
sets of N or fewer changes can be corrected, we say the
implementation is N-correctable. These definitions of
detectability and correctability are closely related to
Hamming's definitions for binary codes [1]. (Note that
N-detectability implies K-detectability for K < N, and
similarly for correctability.)

A robust data structure implementation is an
implementation containing redundant data which allows
erroneous changes to be detected, and possibly corrected as
well., Thus, the robustness of a data structure
implementation is defined in terms of its detectability and
correctability. The purposes of this paper are to provide
ways of determining the robustness of implementations, and
to suggest some ways of designing robust implementations.

The theme of this paper is that the fault-tolerance of
a system can be enhanced by increasing the robustness of the

data structure implementations it uses. Naturally,

November 1978 -5~- Taylor, Morgan



fault-tolerance will be improved only 1if appropriate
routines for performing detection and correction are also
included.

Section 2 of this paper presents some useful results
about the detectability and correctability of data structure
implementations., The methods used to establish these
results are sketched in this paper; complete proofs for
these and other results can be found in [4]. Section 3
discusses the results of applying the theory to linear lists
and binary trees. 1In Section 4, some interesting empirical
results are presented that relate the robustness that is
theoretically possible to the effective robustness that can
be achieved in practice. The empirical techniques used are
outlined. The final section draws some conclusions and

outlines some areas needing further study.

2. DETECTABILITY AND CORRECTABILITY

2.1 Detectability

The purpose of this section 1is to provide means of
determining upper and lower bounds on the detectability of a
data structure implementation. The first result provides a
means of determining an upper bound on detectability. Two
techniques for finding lower bounds on detectability are
developed. One allows detectability to be calculated
directly. The other makes use of the intermediate

properties ch-same and ch-diff (defined below). Section 2.3

November 1977 -6~ Taylor, Morgan



contains another useful upper bound result.

The results will be illustrated by an example, the
double-linked implementation of a simple list (Figure 2.1).
In this example, the two lower bound techniques will provide
the same result. In other cases, one technique will provide

a greater lower bound than the other.

Theorem 1: If an implementation allows an "empty" instance,
and n 1is the number of pointers in the list head which do
not permanently point to a fixed location in the 1list head,
and there are j stored counts, then the detectability of the
implementation is at most n + j - 1.

(A fixed 1list head pointer which points to the list
head may seem unlikely, but does occur 1in practice. For
example, see the threaded tree implementation in (2, p322].)
Proof: The 1list head of an empty instance differs by at
most n pointer changes from any other instance, so n pointer
changes and j count changes can transform any instance to
the empty instance, Thus the detectability is at most

Figure 2.1(a) shows a double-linked list
implementation. Since the list head contains two pointers
and there is one stored count, the "empty"” list (2.1(b)) can
be obtained from the other (2.1(a)) by three changes, thus
showing that double-linked lists are at most 2-detectable,

as proven by the theorem.

November 1978 -7- ‘ Taylor, Morgan



Figure 2.1(a)

A

A\

° (¢

AL

/

Figure 2.1(b) Double-~Linked List Implementation



Several detectability results are related to the
concepts k-determined and k-count-determined. These may be

defined informally as follows. An implementation 1is

k-determined if the pointers in each instance of the
implementation can be partititioned into k disjoint sets,
such that each set of pointers can be wused to reconstruct
all counts, identifier fields, and other pointers. (It must
also be possible to determine which pointers are in a
particular set without reference to any other pointers.) An

implementation is k-count-determined if the pointers in each

instance of the implementation <can be partitioned into k
disjoint sets, such that each set can be used to calculate
the number of nodes in the instance.

These definitions can be used in stating a number of

detectability results.

Theorem 2: A k-determined implementation is
(k-1)-detectable.

Proof: We may detect errors in such an implementation by
using each of the k sets of pointers to determine the values
which all counts, 1identifier fields, and other pointers
should have, and then comparing these with the actual
values. 1If at most k-1 changes have been made, then one set
of pointers contains no changes. Thus, when it is used to
check the rest of the structural data, an error will be

detected .B

November 1978 -3=- Taylor, Morgan



Figure 2.2 shows the list of Figure 2.1(2) twice, once
with the backward links and the count omitted, and once with
the forward 1links and the count omitted. In either case,
all omitted structural data can be determined from that
remaining. Thus, double-linked lists are 2-determined, and

by Theorem 2 are (at least) l-detectable.

Theorem 3: If a k-determined implementation contains
identifier fields and a stored count, and if one or more of
the k sets of pointers contains only one pointer to each
node, then the implementation is k-detectable,

Proof: The proof of the previous theorem can be used except
in the case of exactly k changes, one to each of the k sets
of pointers.

In this case, consider a set of pointers which has only
one pointer to each node. 1In this set, one pointer has been
changed, so the node it pointed to has disappeared. Thus
either the stored count cannot agree with the actual number
of nodes 1in the list or a "foreign" node has been added to
the instance. (That is, an area of storage which is not a
node now appears to be one.) In the latter case, each of
the k sets of pointers would need to <contain a changed
pointer to the foreign node, and a change is also required
to place a proper identifier field value in that node. This
is a total of k+1 changes, so the implementation is

k-detectable.®

November 1978 -18- Taylor, Morgan



Figure 2.2 2~Determined Implementation

-11-



We conclude from Theorems 1 and 3 that double-linked

lists are exactly 2-detectable,

Since the entire set of pointers in a structure
instance determines the count (or counts) and all identifier
fields, every structure is l-determined. Thus we have the

following as a simple corollary of Theorem 3:

Corollary: 1If an implementation uses identifier fields and
a stored count, and there is only one pointer to each node,

then the implementation is 1-detectable.

Two properties of a data structure implementation are
now defined which provide an alternative method of
determining lower bounds on detectability. The minimum
number of changes that transforms a correct structure
instance into another correct instance with the same number
of nodes is defined to be ch-same. Similarly, ch-diff is
defined to be the minimum number of changes that transforms
a data structure instance into another correct instance with

a different number of nodes.

Theorem 4: The detectability of an implementation is
min(ch-same, ch-diff) - 1.
Proof: This result is very simple to prove. The minimum

number of changes which transforms one correct instance into
another is simply min(ch-same, ch-diff), =~ and the

detectability is defined to be one less than this value.®

November 1978 -12- Taylor, Morgan



Theorem 5: If each of the k sets of pointers 1in a
k-determined implementation contains only one pointer to
each node, if m of those sets have exactly one pointer in
each node, and if there are a minimum of n identifier fields
per node, then

ch-same > k + min(n + m, k).

Proof: Consider an undetectable sequence of changes which
leaves the number of nodes unchanged. There are two
possibilities: the same set of nodes exists, differently

structured, or one or more nodes have been replaced by
"foreign" nodes. To insert a foreign node, we must change
at least one pointer in each of the k sets and we must
insert n identifier fields in the foreign node. For m of
the k sets there must be an equal number of pointers
entering and leaving any set of nodes, so there must be at
least m pointers from foreign nodes to nodes in the
unchanged structure, So, the minimum number of changes to
insert one or more foreign nodes is k + n + m.

If no foreign nodes have been inserted, then there must
be at least two changes in each of the k sets of pointers.
If only one change is made, there are two cases: (1) The
unchanged value was null and the changed value is non-null.
In this case, some node must now have two pointers pointing
to it, which violates the hypothesis of the theorem and can
be detected. (2) The unchanged value was non-null. 1In this

case the node formerly pointed to does not now have a

November 1978 =13~ Taylor, Morgan



pointer to it in this set, which can be detected. (If both
values are null, the pointer has not been changed.)
Therefore at least 2k changes are required.
We thus have
ch-same > min (k + n + m, 2k)

= k + min(n + m, k) .®

It might seem that we could take m as the minimum number of
non-null pointers in a node, thus increasing ch~same in some
cases. For a counterexample to this, see [4, Example
4.4.4].

For double-linked lists, k 2, m= 2, n = 1; thus

ch-same > 4. 1In fact, ch-same 5 for double-linked lists,
but a lengthy argument, from first principles, would be

required to show this.

Theorem 6: If a k-count-determined implementation has J
stored counts, ch-diff > k + j.

Proof: 1If we change the number of nodes in an instance, we
must change one pointer in each of the k sets of pointers

and also each of the j stored counts.®B

For double-linked lists k = 2, jJ =1 so ch-diff > 3.
(In fact, ch~diff = 3.) Applying Theorem 4 to the values
obtained for ch-same and ch~-diff we conclude that
double-linked 1lists are (at least) 2-detectable. This is
independent of the previous method which showed the same

result. Note that although the bound on ch-same is not

November 1978 ~-14- Taylor, Morgan



max imal, the resulting detectability is, since in this case
ch-diff 1is the limiting factor. Very often, the
detectability of an implementation may most easily be
computed by first computing ch-same and <ch-diff, then
applying Theorem 3.

It is possible to give examples which show that the
results of Theorems 2, 3, 5, and 6 are numerically maximal
and that none of the hypotheses can be removed from these

theorems,

2.2 Correctability

The following theorem allows the correctability of an
implementation to be determined‘ if the detectability is
known, provided the implementation contains identifier

fields.

Theorem 7: If a data structure implementation employing
identifier fields 1is 2r-detectable and there are at least
r+1 edge-disjoint paths to each node of the structure, then
the implementation is r-correctable.
Proof: To prove this result we need an algorithm which can
perform the indicated correction. The algorithm has two
main phases: first, collection of all nodes 1in the data
structure instance and, second, the restoration of the
instance to a correct state.

The collection phase essentially consists of a

depth-first search of the instance. Since pointers may have

November 1978 -15~ Taylor, Morgan



been modified, this search may lead outside the instance,
but checking of the identifier fields places a bound on the
number of nodes which can be examined which are not part of
the actual data structure instance, The algorithm
terminates 1its scan along any path which includes more than
r bad identifier fields.

Because there were originally r+l paths to each node,
this procedure must be able to find all nodes which were in
the instance before it was changed. It'may also "find"
other nodes, but there is a bound on the number of such
nodes it will locate.

Once a superset of the nodes has been found, correction
can be performed on a trial and error basis. Sets of r or
fewer changes are used; since the desired instance is the
only correct instance this "close" to the given bne, this
procedure will always yield the desired result,
Unfortunately, the execution time behaviour of this
algorithm is very poor. Typically, to perform r-correction

on an instance of n nodes will take time O(n**(2r+1)).®

We have shown that double-linked lists are
2-detectable, We clearly have two edge-disjoint paths to
each node: one using forward pointers and one using
backward pointers. Thus the hypothesis of the theorem Iis
satisfied for r equal to 1, and we conclude that
double-linked lists are l-correctable.

We may also use double-linked lists to illustrate the

November 1978 =16- Taylor, Morgan



operation of the correction algorithm. Figure 2.3 shows a
double-linked list in which one pointer has been changed, so
that it now points to an area of storage which is not a node
of the 1list, The figure also shows the contents of
NODE.TABLE (the set of nodes collected by the correction
algorithm), which consists of node addresses and "bad
identifier field" counts. In this case, "node" X, which is
not part of the <correct 1list, 1is the only one with a
non-zero "bad identifier field" count. We cannot conclude
that X must be removed--if the change had damaged an
identifier field rather than a pointer, the appropriate
correction would be to change the identifier field wvalue.
The correction procedure will try a number of corrections,
passing each "corrected" instance to the detection routine,
until one 1is accepted. It will attempt: setting ID(A) to
the correct identifier value; setting the forward pointer in
A to point to A itself; then setting this pointer to point
to B, and so on until we reach "Back(C) = B",. This will
produce a correct instance (one accepted by the detection
routine), so the correction procedure will terminate with
this correction applied to the instance.

For a linear list of n nodes, this correction procedure
will take time O(n3); however, it is also possible to write
a special-purpose correction procedure for 1linear 1lists,
which takes time 0O(n).

This result allows correctability to be determined in

November 1978 -17- Taylor, Morgan



0
O
O
O
[

X1 O|W|>

Figure 2.3 Operation of General Correction Procedure

-183-



most cases of practical interest. Unfortunately, no
analogous result is known which allows detectability to be

determined in general.

2.3 Costs and Effectiveness

The addition of redundancy to stored data combined with
software to make effective use of that redundancy can make a
system more fault-tolerant and will also 1likely affect
performance, In some cases, the added redundant data will
allow simplification of some processing, thus improving
efficiency, but adding redundancy will usually degrade
performance. Thus, a tradeoff typically exists between
robustness and performance.

In the past, such tradeoffs have been made on an ad hoc
basis, because there was no appropriate theoretical
foundation for studying them. The purpose of this section
is to elucidate the relationships between robustness and
per formance and to show that it is possible to establish a
balance between them. It is suggested that proper choice of
redundancy can yield a high effective degree of robustness
at low cost,.

The benefits and costs of a robust data structure
implementation cannot be stated in absolute terms. They
depend on the particular enviromment in which the data
structure is to be used. In this section, we therefore

provide only an outline of the costs and the effectiveness

November 1978 -19- Taylor, Morgan



of the techniques considered here. A graphical technique
for displaying costs and effectiveness, which may help
visualise the nature of parameterised implementations, is
also developed.

The benefits are here considered only 1in terms of
detectability and correctability, which are measures of the
robustness of a data structure implementation., Benefits
such as simplification of processing due to the presence of
additional pointers will not be considered.

Various costs are associated with the robust
implementations considered here. We identify three:
additional storage requirements, increased processing time
for insertions and deletions, and processing time to perform
change detection. The final one will not be considered
fur ther, In practice, the execution time of a detection
procedure always seems to be 1linear in the size of the
structure instance being checked. ("Size" can generally be
taken as the number of nodes in a structure instance. If
nodes can vary in length with no fixed upper bound, "size"
should be taken as the total storage area occupied by the
instance.) The processing time used in checking can also be
adjusted by varying the interval between executions of the
detection procedure, but consideration must also be given to
the fault rate,

The storage cost of an implementation can be considered

to be made up of three parts: data content, structural

November 1978 -20- Taylor, Morgan



information, and redundancy. The redundant data used in
implementations discussed here is largely of a structural
nature. In many cases, it is an arbitrary decision as to
what is structural information and what 1is redundancy.
Thus, we consider the storage cost to be the number of words
needed to store structural data (including redundant
structural data), per node. Fixed storage costs, which do
not vary with the number of nodes are generally of minor
importance unless the "typical" structure instance is very
small,

Because insertion and deletion are inverse operations,
their costs are closely related. Thus we consider the cost
of an insertion as being representative of both, For
reasons similar to those discussed above, we will consider
the cost of an insertion to be the number of changes which
must be made to pointers, counts, and identifier fields when
inserting a node.

Two theorems are now presented which provide 1lower

bounds on storage and insertion costs.

Theorem 8: If an implementation is k-~detectable, then any
correct update of an instance must make at 1least k + 1
changes to structural and redundant data.

Proof: By a "correct" update, we mean one which transforms
one correct instance into another. Thus, this is a direct
consequence of the definition of detectability (as stated

informally 1in the introduction), since any sequence of k or

November 1978 -21- Taylor, Morgan



fewer changes to an instance of a k-detectable

implementation must produce an incorrect instance.®

This result directly bounds the number of changes which
must be made in updating an instance. In the case of
double-linked lists, we have 2-~detectability, so at least
three changes are required in any correct update.

In practice, the bound of Theorem 8 is 1likely to be
significantly smaller than the number of changes performed
by a "typical" update routine. For many families of related
implementations, the number of changes performed by an
update routine will always be much greater than the bound,
but the wvariation between implementations will <closely
follow the variation in the bound. Thus, detectability may
be of even greater significance in determining update cost

than the result of the theorem directly indicates.

Theorem 9: If a data structure implementation is
r-correctable then there are at 1least r+1 edge-disjoint
paths to each node of the instance.

Proof: We make wuse of a graph-theoretic result, which
states that the maximum number of edge-disjoint paths is
equal to the minimum number of edges whose deletion destroys
all paths (Theorem 11.4 in [11). Thus if there are fewer
than r+l edge-disjoint paths leading to some node in an
instance of an implementation, there is a set of r changes

which destroys all the paths to that node. (For example,

November 1978 -22~ Taylor, Morgan



change all those pointers to nulls.) This would bé a
sequence of r or fewer changes which would completely
disconnect the node from the rest of the instance, making it
impossible for a correction routine to perform correction,
because it is completely unable to find the node in
question. (The 1last part of the argument may sound
unconvincing, but it 1is easy to demonstrate formally once

the proper foundation is available.)®

This result means that, minimally, there must be r+l
pointers to each node in an r-correctable implementation.
0Of course, this does not mean that each node must contain at
least r+1 pointers (some nodes may not contain any
pointers), but does mean that the total number of pointers
in an instance of N nodes must be at least N*(r+l). Thus,
the correctability determines a lower bound on the storage
cost, and this lower bound rises 1linearly with the
correctability.

We may present the storage and insertion costs and the
detectability and correctability of a set of implementations
on a single graph to help visualise the effects of selecting
different implementation options. Such graphs will be used
in the next section to summarise the results obtained for
linear lists and binary trees. The independent variable may
be a parameter of the implementation, or members of a set of
related implementations may simply be assigned arbitrary

locations on the abscissa. The dependent variable for

November 1978 -Z3~ Taylor, Morgan



detectability and correctability is the number of changes.
For storage cost, it is the number of storage locations and

for update cost it is the number of changes.

3. APPLICATIONS

In this section, the theory 1is applied to four
implementations of linear lists and three implementations of
binary trees. Both robustness and performance implications

are examined for each implementation.

3.1 Linear Lists

The easiest way of implementing a linear list is simply
to store a pointer in each node to the next node of the
list, placing a null pointer in the last node. Adding nodes
to, and deleting nodes from, instances of such an
implementation 1is quite simple and efficient, but the
implementation is not at all robust. Specifically, it |is
0-detectable and O0O-correctable. Such an implementation
contains no explicit redundancy and uses only one word of
structural data in each node (the pointer field). Inserting
a node in the list requires two changes, one in the inserted
node and one in the preceding node.

A commonly-used implementation which 1is more robust
adds an identifier field to each node, replaces the null

pointer in the last node by a pointer to the "1list head”

November 1978 -z4- Taylor, Morgan



node of the list, and stores a count of the number of nodes
on the list. This adds an additional word to each node of
the 1list, and requires four changes to insert a node: two
pointers, an identifier field, and the count. It also has
the effect of making the implementation 1l-detectable,
although still O0-correctable. (Let us call this a
"single-linked" implementation.)

The most robust of commonly-used implementations is the
double-linked 1list. In a double-linked 1list, there is an
additional pointer from a node to its predecessor on the
list. This adds one more word of storage per node and
increases the number of changes for inserting a node to six:
two forward pointers, two backward pointers, an identifier
field, and the count. This implementation 1is 2-detectable
and l-correctable, as we have already shown.

Finally, we may consider a novel implementation, which
is similar to the double-linked one, but 1in which the
"backward" pointers point to the second preceding node
rather than the immediately preceding node. The storage
required per node is clearly the same as for a double-linked
list, but one more change is required when inserting a node.
(Three backward pointers must be changed, rather than two.)
This implementation, which is referred to as a "modified(2)
double-linked list," is 3-detectable and l-correctable.

Using the results of Section 2, we can sketch a proof

of the 3-detectability and l-correctability. The

November 1978 -25- Taylor, Morgan



implementation 1is 2-determined and 3-~count-determined (we
can use the forward pointers or either of the two
interleaved sets of back pointers to calculate the count).
Thus, by Theorem 5 (with n=1 and k=m=2) we conclude that
ch-same > 4. By Theorem 6 (k=3, j=1) we conclude that
ch-diff > 4. Inserting these wvalues in the result of
Theorem 4, we obtain the 3-detectability result. Then
Theorem 7 indicates that the implementation is
l-correctable.

This last implementation illustrates that the
"standard" double-linked list implementation may not always
be the best way of using two pointers per node in a 1linear
list. If one is willing to pay a slight price in terms of
update time, it is possible to achieve greater detectability
using the modified(2) double-linked implementation.

We can summarize the robustness and the performance
costs of these four implementations iIn a "cost and

effectiveness graph" (Figure 3.1).

3.2 Binary Trees

The binary tree is a very commonly-used data structure,
but ad hoc detection and correction techniques for such
structures are not as well developed as for 1linear 1lists.
This section presents new techniques for achieving the same

level of robustness in binary trees as is provided by the

common techniques used for linear lists.

November 1978 Y. Taylor, Morgan



suorirjuswaTdur 3ISTT AeSul] I0J ydead SSouUsATIONII®

A1T1TQB31084J00

A9 T1T4®ID93 8D

: {(SPJIOM)
1500 9JeJ03s

{s85ucyd)
1J8SUT JOJ SWT] UOTINOSXd

payuill
-3Tqnop pevqull
Amvmmﬂwmnoz nmﬁpmoo

pue 1s0) T1°'¢ 2an81Jg

i

¥

X

)

SplatTy
nmmwwwwwgﬂ mﬁﬁsﬂm
. _
+ 0
— 1
s
T €
TH
+6
+9
+4

-27-



The wusual implementation of binary trees will be
considered, namely one in which each node of the tree
contains two pointers, one to its left son and one to its
right son. If either son does not exist, the <corresponding
pointer will have a null value. Procedures for traversing
binary trees form the basis for detection and correction
procedures, Generally, an in-order traversal will be used.
In-order may be defined simply by: traverse the left
subtree (in in-order), "visit" the root, traverse the right
subtree (in in-order). This suggests an obvious recursive
implementation; a simple non-recursive implementation using
a stack 1is also possible. For more details on tree
traversal see [2, pp3l5-332].

Two obvious kinds of redundancy to add to a binary tree
implementation are identifier fields and a count of the
number of nodes in the tree. By the corollary to Theorem 3,
this yields l-detectability and 0-correctability.
Performing change detection is difficult because of problems
associated with detecting the change of a pointer so that it
points to a different subtree of the same size. It appears
that all detection procedures which do not modify the tree
structure instance require O(n log n) time and 0(n) working
storage, for a tree of n nodes. (These are worst case
results; better average case behaviour could be obtained.)

A simple example will illustrate the source of the

difficulty. Consider a three node tree: a root A and two

November 1978 -28- Taylor, Morgan



sons of A, denoted B and C. Suppose the pointer from A to C
is changed to point to B. The only difference from the
original tree is that one node, B, now appears to be in two
different locations in the tree. If modification is allowed
we may set a flag in each node visited to detect
dupl ication. However, if the tree may not be modified, we
must compare each node against all other nodes in order to
detect this type of change. The only effective way of
detecting duplication is to store all node addresses in a
structure which has 0(log n) search and insertion times,
thus producing the results cited above. An alternative is
to re-scan the previous part of the tree structure, thus
eliminating the 0(n) storage space but increasing the
execution time to O(n2). If we are considering only single
changes it is only necessary to test for duplication at leaf
nodes; however, since in a balanced tree of n nodes there
are approximately n/2 leaves, the above order statistics are
not changed.

Another kind of redundancy which is sometimes added to
binary trees to improve efficiency is a "thread 1link" [2,
pp349-320]. 1In the case of "right threading," which will be
used here, each null right 1ink is replaced by a pointer to
the in-order successor of the node containing the thread
link. A flag in each node is used to indicate whether the
right pointer is a normal link or a thread. As shown in [4,

Section 5.4], this implementation 1is 1-detectable and a

November 1978 -29- Taylor, Morgan



detection procedure exists which, for a tree of n nodes,
requires 0O(n) time and space proportional to the height of
the tree (0(log n) for a balanced tree).

The threaded tree structure is not 2-detectable, as
shown by Theorem 1 and illustrated in Figure 3.2. The
instance on the right differs in the count and one link from
the 1instance on the left, and both are properly threaded
binary trees,

We would like to obtain a l-correctable implementation
of a binary tree. To satisfy the hypothesis of Theorem 7,
therek must be two edge-disjoint paths to each node of a
structure, This clearly implies that there be at least two
pointers to each node, a condition which does not hold for
threaded trees. We note that each node has exactly one
non-thread link pointing to it and either zero or one thread
links pointing to it. 1In fact, a node has a thread 1link
pointing to it iff it has a non-null left subtree. (If the
left subtree is non-null, the final inorder node in the
subtree contains a thread to the node in question.) Thus,
nodes with null left links have only one incoming edge, so
an obvious possibility is to 1link these nodes together,
using the left link field. A tag must be added to each node
indicating the use of the left link, and the list head must
now contain a pointer to the "first" node with a null 1left
link. The nodes could be 1linked in any order, but for
obvious reasons, inorder will be most convenient.

-3

November 1978 Taylor, Morgan



@8uey) oTqnoq 2[qe3io19pun g°§ 2InsSTg

-3] -



This structure will be called a chained and threaded
binary tree. The nodes with 1logically null 1left 1links,
joined in 1inorder, will be called the chain, and the 1links
joining them will be called chain links. It <can be shown
4, Section 5.4} that this implementation is 2-detectable
and l-correctable.

The resul ts obtained here for binary tree
implementations are summarized in a cost and effectiveness
graph (Figure 3.3). It should be noted that the simple
implementation with a count is 1-detectable but does not
have a linear time, read-only detection procedure, whereas
all other detectabilities can be achieved by 1linear time

procedures.

4., EMPIRICAL RESULTS

The purpose of the experimentation is to determine the
effect of applying "random™ changes to a data structure
instance. This investigation is distinct from the
theoretical results, which assume an "intelligent" source of
changes.

An analogy from network design may be helpful in
understanding the distinction. When selecting a topology
intended to keep a network connected in spite of 1line or
node failures, one of two assumptions about failures must be
selected: failures are random, or failures are caused by an

intelligent adversary who knows the structure of the network

November 1978 -32- Taylor, Morgan



4 — - - ZX
- —a o oo}
2
O _
I N !
SIMPLE THREADED CHAINED
AND
THREADED
A execution time (changes) ‘
0] storage cost (words)
o detectability
G correctability
Figure 3.3

Cost and effectiveness graph for binary tree implementations

-33-~



[6]. The situation in data structure robustness is similar.
The theoretical results determine the minimum number of
changes which are necessary to make the changes undetectable
or uncorrectable, and thus correspond to an "intelligent
adversary" model for the source of the changes. The
experiments, in contrast, use a random source of changes.

Although the change sources are different, the
theoretical results do partially predict the results of the
experiments. For example, if an implementation is exactly
2-detectable, we know that any randomly-selected change or
pair of changes cannot produce an undetectable error, but
that a set of three changes can. The experiments provide an
indication of the probability that a set of three changes
will produce an undetectable error.

It may be possible to calculate such probabilities
directly from the specification of an implementation, but
at present only empirical results are available. (It should
also be noted that the question, as stated, is quite vagque.
The answer depends on various parameters, such as how one

selects "random changes.")

4.1 Methodology

The basic experimental technique was to introduce
changes to data structure instances in a pseudo-random
manner and observe the behaviour of detection and correction

routines applied to the changed instances.

November 1978 -34- Taylor, Morgan



The experiments work with data structures that appear
to be on external storage. There are two reasons for this.
The first is that the theoretical results, although
applicable to both internal and external data structures,
will in many cases be more important for external data
structures. The second is that external data structures
constrain a program to perform all accesses through read and
write routines, simplifying the experiments.

The data structures are actually kept in main storage,
a large buffer being used to simulate a random-access file.
A set of routines called the "I0SYS Pseudo File System,”
developed in order to perform the experiments, provide
support for such simulated files, and various auxiliary
services such as long-term storage of simulated files on
real external storage. An important facility provided is
the "mangler" which allows pseudo-random changes to be
inserted in a simulated file.

There are many ways of introducing erroneous changes in
a data structure instance (i.e., mangling it) in order to
test its robustness. Alternative methods of mangling range
from inserting random values 1into randomly selected
locations to making subtle changes to <carefully selected
locations 1in the instance. If no use is made of knowledge
of the implementation, subtle combinations of changes that
could be <caused by software containing errors will occur

with very small probability. If full knowledge of the data

November 1978 -35- Taylor, Morgan



structure 1is used, it is likely that the mangler will only
introduce those errors that the programmer thought of. A
full discussion of manglers is beyond the scope of this
paper.

The mangler used for these experiments is a compromise
intended to minimize the disadvantages of either extreme.
It is implemented as part of the write function of IOSYS.
It pseudo-randomly chooses whether or not to <change the
record being written, which word to change, and by what
amount to change the word. Small increments or decrements
are used for changes rather than arbitrary replacement of a
word, since the chosen method tends to introduce more
"subtle" changes.

For flexibility, the mangler is driven by a set of
user-specified parameters which determine: the probability
of mangling a/record, the probability density of changes
over the words of a record, and the maximum value to be used
as an increment or decrement. There are presently two
distributions available: uniform, and skewed towards the
beginning of the record. The increment to be used is chosen
uniformly from the integers in the range -max to max,
excluding zero. All parameters can be specified

individually for the separate simulated files.

November 1978 -36- Taylor, Morgan



4.2 Detectability results

The purpose of one set of experiments was to estimate
the probability of random changes producing undetectable
errors in linear list implementations. 2 routine
"pretended" to delete records from a linear list by reading
and writing those records which a delete routine would read
and write. As records were written, words in the list nodes
were "randomly" altered by adding or subtracting a small
value. When a specified number of changes had been made, a
detection procedure was executed to determine if the
resulting instance could be detected as in error.

Three implementations were tested in this experiment:
the single-1linked, double-1inked, and modified(2)
double-linked implementations described above. These have
detectabilities of 1, 2, and 3, respectively, as described
previously. For single-linked lists, 23000 sets each of one
up to five changes were applied. For exactly two changes,
five pairs of changes produced undetectable errors; no other
number of changes produced undetectable errors. For both
double-linked 1lists and modified(2) double-linked lists,
3000 sets of one to twelve <changes were applied and no
undetectable errors occurred.

Probably the most surprising aspect of these results is
that single-linked 1lists seem more resistant to triples or
quadruples of changes than to pairs of changes. It is

hypothesized that this results from the tendency of sets of

November 1978 -37- Taylor, Morgan



more than two changes to include destruction of an
identifier field in addition to an otherwise undetectable

set of changes.

4.3 Correctability results

In order to study correctability, two additional

concepts are needed. The first is called the accessible set

of a data structure instance. It is the set of all nodes
which can be accessed by a reasonable procedure which is
given the header of the structure. For a correct instance
which does not contain pointers to other instances, the
accessible set is simply the set of nodes which are
(intuitively) "part of" the structure. We define the
correctability radius to be one less than the minimum number
of changes which can cause any node to become inaccessible.
No attempt was made to correct the instances found to
be in error, but all the changed instances were checked to
see 1if there was still a path to each node of the unchanged
instance, which is a prerequisite for <correction. We are
particularly interested in determining how frequently
disconnections occur once the correctability radius is
exceeded. (In all the examples of Section 3, the
correctability radius is equal to the correctability.) The
following table shows the probabilities of disconnecting an

instance (destroying all paths to a node):

November 1978 -38-~ Taylor, Morgan



Number Single-1linketl Double-1inked Modified(2)
of Double-linked
Changes
1 .424 0.00 0.00
(.406, .442) (0.00, .001) (0.00, .001)
2 .675 .143 .002
(.658, .692) (.131, .1548) (.006, .012)
3 .841 .332 .020
(.828, .854) (.315, .349) (.015, .025)
4 . 942 .510 .044
(.933, .950) (.492, .528) (.038, .052)
5 .978 . 555 .079
(.972, .983) (.638, .672) (.070,. .090)

(The parenthesized figures are 95% confidence intervals.)

We can observe that for the first two implementations
there is a direct practical significance for the
correctability radius (which is 0 for single-linked 1lists
and 1 for double-linked 1lists). If the correctability
radius is exceeded we immediately encounter a significant
number of disconnections, precluding correction. The
modified(2) double-linked implementation also experiences
some disconnections as soon as the correctability radius is
exceeded, but there are not nearly as many. Another much
more robust implementation, not described here, was also
tested. It has a correctability radius of four, but in the
experiment no disconnections were observed for sets of fewer

than fourteen changes, and even with as many as twenty

November 1978 -39~ Taylor, Morgan



changes applied, the number of disconnections was very
small, not exceeding seven disconnections in 3000 trials in

any of the test runs.

5. SUMMARY, CONCLUSIONS, AND FURTHER WORK

From the theoretical results, we observe that achieving
very high detectability or correctability heas serious
performance implications. It is thus comforting to observe
that, in practical situations, comparatively modest degrees
of detectability and correctability can prove to be quite
effective. One might state, that for typical applications
requiring fairly robust data structure implementations, a
2-detectable, l-correctable implementation should initially
be assumed to be sufficient. Only if such an implementation
proves to be insufficiently robust in practice should a more
robust implementation be sought.

We have seen that commonly-used techniques, in the case
of 1linear 1lists, can be quite effective. The modified(2)
double-linked implementation suggests that the commonly-used
techniques may not necessarily be the best. The increased
detectability could be useful in some cases; the decreased
probability of disconnection is important because it helps

in performing correction.

For binary trees, the authors are aware of no
commonly-used implementations which are l-correctable. The
chained and threaded implementation described here is

November 1978 ~d- Taylor, Morgan



l-correctable, uses no additional storage (assuming space is
available for tag bits), and can still be updated in time
proportional to the height of the tree,

An important practical conclusion from the experiments
is that 1introducing random changes to a stored data
structure instance is an excellent method for testing
detection and <correction procedures, and update algorithms
which are intended to be fault-tolerant. Although manglers
have been used occasionally for many years, they do not seem
to be widely known. They are highly recommended for testing
fault—-tolerant software.

In Sections 2 and 3, we frequently assumed that we did
not find nodes "outside" an instance which have pointers to
nodes of the instance or identifier values belonging to the
instance. A discussion of the restrictions which must be
placed on a system to make this assumption true is 1in [4].
A more general approach to detectability which does not
require this assumption can be found in [5].

There are a number of areas related to the work
described in this paper which require further study. The
most obvious of these 1is the development of a unified
approach to robustness encompassing both content and
structural data. It may well be impossible to prove
completely general results, but even limited results would
be quite helpful.

A second area which has also already been alluded to is

November 1978 -41- Taylor, Morgan



the theoretical analysis of random changes. This is likely
a very challenging problem since it is necessary to identify
the significant parameters which may affect the result and
then to perform analysis, allowing as many as possible of
these parameters to vary. Underlying the desire to perform
probabilistic analysis is a concern about the nature of
changes which a robust system must cope with in a practical
situation. It is presently unknown whether such changes can
best be modelled by a "random" model, the deterministic
model implicitly used in the present theoretical analysis,
or some intermediate model.

The results can be extended to more complex structures
by noting that compl ex structures can be factored
(decomposed) into basic structures such as trees and lists.
These basic structures may be made more robust in order to
improve the robustness of the complex structure, thereby

enhancing the robustness of the software system.

Taylor, Morgan

e
b
1

November 1978 -y,



BIBLTOGRAPHY

1. Hamming, R. W, Error detecting and error
correcting codes. Bell ©System Technical Journal,
vol. 26, no. 2 (April 1950). ppl47-160.

2. Knuth, Donald E. The Art of Computer Programming,
volume 1: Fundamental Algorithms, Second edition.

Addison-Wesley, 1973.

3. Melliar-Smith, P. M. and B. Randell. Software
reliability: the role of programmed exception
handling. Proceedings of an ACM Conference on

Language Design for Relliable Software, Raleigh, North
Carolina, March 28-30, 1977. (Published as SIGPLAN
Notices, vol. 12, no. 3, March 1977.) pp95-100.

4. Taylor, Dav id J. Robust data structure
implementations for software reliability. Ph.D.
Thesis, Department of Computer Science, University of
Waterloo, Ontario, 1977.

5. Taylor, David J. Theoretical foundations for
robust data structure implementations. Submitted to
Journal of the ACM. Also available as Computer
Science TResearch Report, €S-78-52, University of
Waterloo, Waterloo, Ontario, Canada.

6. Wilkov, R. S. Analysis and design of reliable
computer networks, IEEE Transactions on
Communications, vol., 20, no. 3 (June 1972).

Pp650-678.

November 1978 -43- Taylor, Morgan



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

