RELATIONAL PROGRAMMING
illustrated by a program for
the game of Mastermind

by
M.H. van Emden

Research Report CS-78-48
Department of Computer Science
University of Waterloo

December 1978
(Revised May 1979)

1. Introduction

Many difficulties in programming are caused by the use of imperative
languages (those which are based on commands) such as Fortran, Algol, or

Pascal. These difficulties can be avoided by using a definitional language

such as Lisp or Prolog. Lisp is based on the lambda-calculus and is typically
used for the definition of functions. Prolog is based on first-order
predicate logic and is typically used for the definition of relations.

This paper aims to show an advantage of specifying a relation instead
of a function: the same relation can specify several different functions,
depending on which arguments are given. As a result, the Prolog interpreter
can use the same relational specification to compute several of the different
functions implied in the relation. Several examples of this phenomenon are
exhibited and discussed in this paper.

Prolog programs are an essential part of this paper. Between different
implementations of Prolog there are minor variations in syntax and in the
effect of system—defined predicates. The original Marseille implementation
[GDM] is the common ancestor of the systems developed in Budapest [PPL],
Edinburgh [CLP], and Waterloo [IOP]. The programs in this paper have been
run on the latter system. A more advanced version is IC-Prolog [ICP], which
is being developed in Imperial College, London, by K.L. Clark, R.A. Kowalski,
and F.G. McCabe. Another recent development is by J.A. Robinson and E. Sibert
in the University of Syracuse, where an implementation of logic programming
is embedded in Lisp.

Prolog is based on Kowalski's proposal [PLPL] for using logic as a
programming language, which , in turn, is based on J.A. Robinson's resolution
principle [MOL]. Although not conceptually related, Prolog has similarities

to several earlier systems, such as [ABSYS], [PLANNER], and [ABSET].

2. The Principle

The principle of relational programming is explained by means of the

following binary relation between natural numbers:
R = {(1,1), (2,4), (3,9), (4,16)}

Depending on which argument is given, the relation specifies a subset of the
squaring function, or a subset of the square-root function.
In logic the relation can be specified by the conjunction of the fellowing

atomic formulas:

R(1,1).
R(2,4).
R(3,9).

R(4,16).

The atomic formulas are special cases of clauses, the components of a Prolog
program. Not only in this example, but in general also, Prolog programs are
regarded as specifying relations.

The Prolog interpreter can be instructed to find a y such that R(3,y)
is provable from the specification. It will respond with y = 9, thus
computing a value of the squaring function. Or the Prolog interpreter
may be instructed to find an x such that R(x,16) is provable from the
specification. It will respond with x = 4, thus computing a wvalue of
the square-~root function.

Both of these computations are, of course, nothing but table look-ups.
The remainder of this paper is devoted to less trivial applications, which

can, however, be viewed as look-up in virtual tables implicit in specifications

consisting of clauses which have a less restricted form than those of the

present example. This point of view is elaborated in [CDI].

3. A simple example of relational programming

In logic programs, as in first-order logic, terms denote objects. The
syntax requires that a term is either a constant (in Prolog an identifier or
a'decimal number), or a variable (in Prolog a constant preceded by an
asterisk), or f(tl,...,tm) where f 1is an m-place functor and tl,...,tm
are terms.

For example,
.(c,.(b,nil))

is a term, where "." 1is a 2-place functor and b,c,nil are constants.

Prolog allows infix notation for 2-place functors so that we can also write
c.(b.nil)

As a further convenience, we are allowed to write

and to specify whether it means
tl.(tz.(... .tn)...)

or
(...(tl.tz). . .tn_l).t

Throughout this paper we assume that the former option is in force.

In this section we discuss a specification of the relation, called append,
between theee lists which holds if the last list is the result of appending
the first two. In this example the objects to be denoted by terms are lists.
A nonempty list is a composite object: it consists of a head, which is the
first element, and a tail, which is the list of the remaining elements. A

where the term t

non-empty list is denoted by a term of the form tl.t2 1

is the head and the term t2 is the tail. An empty list has no components

and is therefore denoted by a constant (in this paper, as is usual, by nil).

The logic program specifying the append relation is the conjunction of

the following two clauses:

append (nil ,*y,*y).

(3.1) append (*u.*x,*y,%u.*z) < append (*x,%*y,*z),

In general we are concerned with clauses of the form

\%
o

A<B &...8B, n

where A,B B are atomic formulas containing the variables KyseeesX s

13 B, o

where p 2= 0. The clause should be read as

for all XysenesX s A if (Bl and ... and Bn)

p

In case n = 0 we drop the left arrow. 1In that case the clauses should be
read as an uncdenditional assertion. It should how be clear that the clauses
(3.1) are true of the append relation between lists.

A program, which consists of clauses, is activated by a goal statement,

which has the form

~
v
o

<A & .8 A,

where Al""

non-empty goal statement is distinguished and is called the selected goal.

,Ak are atomic formulas, called goals. One of the goals in a

From a goal statement

(3.2) <« Al & ... & Ak

with selected goal Ai there may be derived the goal statement

(3.3) <« (A1 & ... & A, & B, & ... & Bn & Ai+

i-1 1 & ... & Ak)to

1

if the program contains a clause

A<B &...8&B, n =0,

which matches the goal Ai' This is said to be the case if At = Ait for
some substitution t of terms for ¥ariables. If such a t exists, then
there also exists a 'most general' one, here called LY which is such that

t is the

At can be obtained by substitution (possibly null) from Ato; 0

substitution produced by the derivation of (3.3) from (3.2).

A proof is a sequence of goal statements, ending in an empty goal

statement, and such that each successive goal statement is derived from the

preceding one. Suppose now that a proof exists with < A1 & ... & Ak as

initial goal statement and with t ,t.. as substitutions. What is now

0ty

proved by the proof is that

for all xl,...,xq, (Al & ... & Ak)t0 .o tN

follows from the conjunction of the ¢lauses in the program, where Xl,...,Xq

(q =2 0) are the variables in (Al & ... & Ak)tO oo By

Let us look at an example, using the logic program (3.1), where we
require the result of appending the three lists c.nil, a.nil, and b.nil.

This requirement is specified by the initial goal statement
< append (a.nil,b.nil,*x) & append(c.nil,*x,*y)

If a proof is found, then the composition of all substitutions in the proof
substitutes for #*y the required result.

For the Prolog interpreter the selected goal is always the leftmost.
Hence the interpreter will attempt initially to match the leftmost goal in
the above goal statement with the first clause of (3.1), which is not possible.

The second clause'does match, deriving the goal statement

< append (nil,b.nil,*x1) & append(c.nil,a.*xl,*y)
Now the first clause matches the leftmost goal, deriving

< append(c.nil,a.b.nil, *y)
The next goal statement is

< append (nil,a.b.nil, *yl)

with a substitution replacing *y by c.*yl. The selected goal now matches
the first clause, so that the next goal statement is empty. A proof has been
found. The variable *y in the initial goal statement is replaced by
c.a.b.nil.

So much for the basic mechanism of Prolog. Here we are concerned with

relational programming; that is, we want to make use of the fact that (3.1)

specifies a relation between the three arguments of append, rather than a
funetion from the first two to the third. Take for example the goal

statement

<+ append (a2.nil,*y,a.b.c.nil)

In finding a proof, Prolog will substitute b.c.nil for *y, thus performing
list subtraction. Below (3.4, 3.5, 3.6) we list several other examples of
goal statements causing Prolog to compute functions other than the append

function, all by means of the same relational specification (3.1).

(3.4) < append (*x,c.nil,a.b.cnil)

substitution: #%*x := a.b.nil

(3.5) <+ append (*u,c.*v,a.b.c.nil)

substitution: %*u := a.b.nil

%y := nil

o

(3.6) < append (*u,b.c.nil,*v) & append (*v,*w,a.b.c.d.nil)

substitution: *u := a.nil

*v := a.b.c.nil

*w := d.nil
The goal statement (3.4) causes another form of list subtraction. The goal
statement (3.5) has the effect of checking whether ¢ occurs in a.b.c.nil;

this suggests the following definition of list membership:

append (nil,*y,*y).
append (*u.*x,*y *u,%z) < append (*x,%y,*%z),

member (*c ,¥w) < append (*u,*c.*v,*w).

The goal statement (3.6) has the effect of checking whether b.c.nil 1is a
sublist of a.b.c.d.nil; this suggests therfollowing definition of the

sublist relation:

append (nil,*y,*y).
append (*u.*x,*y,*u.*z) <+ append (*x,*y,*z).

sublist (*x,%z) < append (*u,*x,*v) & append (*v,*w,*z),

This definition of sublist is not restricted to completely specified

lists as first argument. TFor example,

< sublist(*x.*y,*x,nil) m.a.d.a.m.nil)

will result in

*x 1= a

*y 1= d

In other words, sublist can be used to search for incompletely specified
sublists: things that may well be called "patterns'.

We have shown that a single specification can be used to compute a
variety of functions, each of which would require a different program in a
conventional language. We call relational programming the technique of using
this phenomenon. Another adwvantage is that the more general relational

specification may be easier to find than the particular function required.

Prolog is far from perfect as a vehicle for relational programming.
Finding a proof depends on having in each goal statement the correct choice
of selected goal or, given the selected goal, using the correct choice of
clause-in case more than one matches. Prolog often fails to find a proof
because it always selects the leftmost goal and because it always tries to
match the clauses in the order in which they occur in the program. IC-Prolog
[ICP] will find proofs in cases where Prolog does not because it is more

flexible in determining the selected goal.

4, The game of Mastermind

In the abstract game of Mastermind the following types of object exist:

CODE = PROBE = the set of ordered 4-tuples with elements in a set of colours
SCORE = the set of ordered pairs with elements in the set of numbers
0 through 4

f: PROBE x €ODE - SCORE; we call £ the 'scoring function'.

The elements of the ordered 4-tuples correspond to the 'code pegs' of
the concrete game, and they may be black, blue, green, red, white, or yellow.

In the abstract game we take the set of colours to be

{BLACK, BLUE, GREEN, RED, WHITE, YELLOW}

The first (second) compohent of an element of SCORE corresponds to the number
of 'black (white) key pegs' of the concrete game. We will find it convenient
to represent in the abstract game these numbers in successor notation, because
then the relation between predecessor and successor can be specified

succinctly, without explicitly referring to the sum relation. The successor

10

function is denoted by + so that +(x) is the successor of x in
functional notation. However, suffix notation is more concise and traditional;

therefore we represent the set of numbers 0 through 4 as
{0, 0+, O+, O+, O++H+}

The scoring function has the property that the higher the score, the
greater the similarity between its arguments. This statement is only
intended to help the intuftion, as it is formally meaningless without a
definition of order among scores or of similarity between codes and probes.
The value f£(p,C) of the scoring function contains a black key peg for
every position where p and C have the same colour,. Such an occurrence
is called a 'strong match'. For every one of the remaining positions,
f(p,C) contains a white key peg for every element of p with the same
colour as an element of C. Such an occurrence is called a 'weak match'.

The game is played as follows. There are two players, the Codemaker
and the Codebreaker. The Godemaker selects a code C which is concealed
from the Codebreaker. The Codebreaker ean obtain information about C by
selecting a probe p in response to which the Codemaker reveals the result
g = £(p,C) of the scoring function.

This is repeated until the Codebreaker has selected a probe equal to
C. 1In other words, the Codebreaker constructs a sequence PyseeesP of
probes with 1 #C for i#n and P, = C. The Codemaker constructs a
sequence S;,...,S such that s; = f(pi,C). The selection of P, by the
Codebreaker may depend on (pl’sl)""’(pi—l’si—l)' It is the Codebreaker's

objective to make n as small as possible.

11

5. A logic program for the scoring function

Logic programs compute relations. Therefore, if one wants to compute a
function, it has to be expressed as a relation. The logic program for the

scoring function defines a relation MM such that
MM(p,c,s) iff £(p,c) = s,

where f 1is the scoring function discussed before. The relation MM is

defined by the clause

MM (*P,*C,*S1.%S2) < BLACKS (*P,*C,*P1,*C1,*S1)

& WHITES (*PL,*Cl,*S2).

The fdrst component of the score is sl, the number of black key pegs.
BLACKS is true if sl 1is the number of strong matches between p and ¢
and if pl and cl are the results of removing the strongly matching
elements from p and c¢ respectively. WHITES is true if s2 is the=
number of weak matches between pl and cl. This clause reflects the
informal description of £ given in the previous section.

The following statements in logic, which are true of MM and of the
auxiliary relations, have been run as a Prolog program for computing the
scoring function, Note that we represent an ordered n-tuple consisting of
the colours ¢

«.sCc_ by the term c¢ . ¢c_.nil; that is, just as
n n

l" l. «o e

we represented lists in section 3.

12

OP (+,SUFFIX,150).
OP(=,RL,150).

MM(*P,*C,*S51.*%*52) <- BLACKS (*P,*C,*P1,*Cl,*S1) & WHITES(*P1,*Cl,*52).
BLACKS (NIL,NIL,NIL,NIL,0).
BLACKS (*U.*P,*U.*C,*P1,*Cl,*S+) <~ BLACKS (*¥P,*C,*P1,*Cl,*S).
BLACKS (*U.*P,*V.*C,*U.*P1,*V.*Cl,*S) <~ NOT(*U=*V)
& BLACKS (*P,*C,*P1,*Cl,*S).
WHITES (NIL,*C,0).
WHITES (*U.*P,*C,*S+) <~ DEL(*U,*C,*Cl) & WHITES(*P,*Cl,*3).
WHITES (*U.*P,*C,*S) <~ NONMEM(*U,*C) & WHITES(*P,*C,*S).

DEL (*U,*U.*Y,*Y).
DEL {(*U,*V.*Y,*V ,*Y1l) <- NOT(*U=*V) & DEL(*U,*Y,*Y1l).

NONMEM (*U,NIL) .
NONMEM (*U,*V1.*V) <- NOT(*U=*V1) & NONMEM(*U,*V).

*=*X,

Fig, 1: Prolog program for the scoring function

6. A codebreaker obtained by relational programming

Suppose we want to obtain a program playing the part of the Codebreaker.
Then we have to devise a playing strategy, that is, some function with the
sequence (Pl’sl)""’(Pi—l’Si—l) as argument and with a value which can be
used as value for P, the next probe. We will use a strategy reported in
[EFP] which is to take any 15 such that f(pj,pi) = sj for j=1,...,i-1,
if i 2 2, The first probe is arbitrary. 1In the first place, such a 1

always exists, because, for example, the unknown code has this property.

In the second place, such a p, can be expected to be, in some sense, close

13

to the unknown code, the more so the larger i is.

This last observation can be made more precise if we consider the first
component of the score, namely the number s' of black key pegs. Note
that 4-s' 1is the so-called Hamming distance, which is a metric, between
fourtuples of colours. The set of P; such that for j=1,...,i-1,
f(pj,pi) = sj is therefore contained in the set of codes having given

distances to the points in a metric space. This set contains

PposeesPyg
the unknown code and it can be expected to be smaller for larger i.
The strategy therefore requires the following equation to be solved for
x: f(p,x) = s. We already wrote a program for solving for =x: f(p,c) = x.
Apparently, the relation MM’ introduced for a logic program to compute the
scoring function, also specifies the computation needed by a Codebreaker.
It should now be clear why we have chosen the game of Mastermind as a
case study in relational programming: we aim to obtain a program for the
more difficult Codebreaker's part b§ specifying in relational form the
easily programmed scoring function and then to use this relation with the
probe and score as given arguments to obtain a guess at the unknown dode.
However, it would be a mistake to believe that the program in section 5
¢an be used as a code-breaking program. The reason is that we have
inadvertently specified a relation different from the one intended. We
need a relation which is a subset of the Cartesian product PROBE x CODE x SCORE.
PROBE and CODE contain only fourtuples of colours. It is apparent that the
relation specified in section 5 can have in its first two argument places
tuples containing arbitrary elements; not necessarily
colours. The relation is usable for computing the scoring function because

then the first two arguments are given, and can be given (as required in this

14

particular application) as tuples of colours.

The relation specified in section 5 is too large, but a goal specifying
that the scoring function is to be computed happens to restrict the relation
in the desired way. However, if we want to use a goal < MM(p,x,s) to
solve for x the equation f(p,x) = s, with p and s given, then we

cannot expect the desired result, because according to the specification in

section 5, x can be a tuple containing arbitrary elements. However, if

we would extend the specification so that indeed =x is forced to consist
of colours only, then we would be able to use the modified specification
to solve for x both f(p,c) = x and f(p,x) = s. That is, we could
then use the relation MM to play both sides of Mastermind.

Let us see how we can correct this deficiency in our previous
specification of MM . The condition
not (¥u = *v)

with u equal to a colour is satisfied by values for v which are arbitrary
objects which are not necessarily colours. Hence we change occurrences of

this condition to, say, diff(u,v) and we add the clause
diff (*u,*v) < colour(*u) & colour(*v) & not(*u = *v).
and specify also explicitly which colours exist by adding the clauses

colour (black). colour(blue). colour(green).

colour(red). colour(white). colour(yellow).

15

A specification of the relation MM, which issseitable for
playing both the Codemaker's and the Codebreaker's parts, can be found as

part of the complete Prolog program for Mastermind listed in the next section.

7. The complete program

We now have a Prolog program which can solve for x f(p,c) = x by

the goal statement

+ MM(*p,*c ,*x)

and also can solve for x f(p,x) = 8 by the goal statement

We continue towards a complete program for Mastermind. As a first step we

define the relation between a sequence of (probe,score)-pairs.

(Pl’sl)’.."(pi’si)

and a candidate code . p having the property that

f(pl:P) = Sl9"'sf(PisP) = Si
The desired relation is defined by

candcode(nil,*).

candcode((*pl.*sl) ,*ps,*p) < mm(*pl,*p,*sl) & candcode (*ps,*p).

Let us call a candidate soflution a sequence

(pl,sl),---,(pi,si)

of (probe,score)-pairs such that

f(Plopk) = .1)-°'of(pk_1’pk) = sk_l, for k= 2,....1‘1.

16.

That is, each probe is a candidate code with respect to the preceding sequence
of (probe,score)-pairs. A candidate solution is a solution if the last
score has at least four black pegs, that is, if the last probe is equal to
the code.
For us it is important that a candidate solution be extendable to

a solution. Of the property of being extendable we can say that

extendable ((®. (#4444 .%)) . %),
extendable (*cs) < candcode(*cs,*cc) & score(*cc,*s)
& extendable((*cc.*s).%*cs).

score(*p,*s) < code(*c) & mm(*p,*c,*s).

A note on notation: Because each clause is, separately from the other clauses,
universally quantified, a variable name is only meaningful within a clause.

It follows that the name of a variable which occurs only once in a clause,

is immaterial, and hence can be omitted. Only the asterisk is weitten; the
variable is anonymous. Conversely, each occurrence of an anonymous variable
in a clause stands for a wariable different from any other variable in the
clause, anonymous or not.

With respect to a given candidate solution there are typically several

possible candidate codes. The above simple définition of 'extendable' has

the disadvantage that it does not extend with a best, but rather with any,
candidate code. There is hence no guarantee that only reasonably short solutions
are specified by 'extendable'. Our experience shows that with most codes
'extBndable' gives a solution of length five. An exception was found with a
code consisting of equal colours. D.E. Knuth was quoted [EFP] as having

found that a solution of length five is always possible. In order to

guarantee that our solutions do not exceed a given bound, we have restricted
the above definition of 'extendable' to mean: extendable within the number

of steps determined by an additional third argument.

17

The complete program is listed below in two parts. Omnly the part needed
for the definition of 'extendable' is of interest from the point of view of
relational programming. Yet a fairly large additional part if required for

a program that interfaces with a client not familiar with its inner mechanisms.

This part, labelled 'interactive manager' is also done in Prolog, though
it is hardly an example of definitional programming. It has also been
listed in full in order to shou thqt for this kind of progra-inc tuk
Prolog is at least serv1ceab1e, although usually not particularly insplrlng.
An exception is the way in which the backtracking of Prolog allows
one to program a check on the correctness of input. For example, in
PLAY it is desirable to check whether the #*X produced by READ is
correct. If not, CHECKSEED causes a complaint to appear and fails,
so that backtracking causes READ to be reactivated, giving the user
another opportunity for entering something.
In order to be able to understand fhe interactive manager one has to
know some of the built-in predicates of the Waterloo Prolog interpreter;
see Appendix 1 for the relevant excerpts from [IOP]. See Appendix 2

for the control flow of the interactive manager.

18

OP(+,SUFFIX,150). /* + DEFINED AS SUFFIX OPERATOR */
OP(=,RL,150). /* = DEFINED AS INFIX OPERATOR ASSOCIATING
FROM RIGHT TO LEFT */

EXTENDABLE ((*P. (*++++.%)) .% *4)
<- WRITECH('THE CODE MUST BE: ') & CHECKCODE (*P0,*P) & WRITE (*PO).
EXTENDABLE (*CS, *N+) <- CANDCODE (*CS,*CC) & WRITECH('MY NEXT PROBE IS: ')
' CHECKCODE (*C,*CC) & WRITECH(*C) & WRITECH('; SCORE: ')
SCORE {*CC,*S) & WRITESCORE (*S) -
*M+=*N & IS(*M,*MD) & WRITECH (*MD)
WRITE(' TRIES TO GO')
EXTENDABLE ((*CC.*S) .*CS, *N) .

R R

CANDCODE (NIL,*) .
CANDCODE ((*P1.*S1) .*PS,%P) <- MM(*P1,*P,*S1) & CANDCODE (*PS,*P).

SCORE (*P,*S) <~ CODE(*C) & MM(*P,*(C,*S).

[EEF kR ko kkkdkkhkhhhhhkkhkhhkkhkhhhhhhhdhhkhhhhkhhhhhhhhkhdhdhhd kb hhhkrdhkhh kb dk /
/* BEGINNING OF DEFINITION OF SCORING RELATION */

MM(*pP,*C,*S1.%¥S2) <- BLACKS (*P,*C,*P1,*Cl1,*S1) & WHITES(*P1,*Cl,*S2).

BLACKS (NIL,NIL,NIL,NIL,O0).
BLACKS (*U.*P,*U.*C,*P1,*Cl,*S+) <- BLACKS (*P,*C,*P1,*Cl,*S).
BLACKS (*U.*P,*V ,*C,*U.*P1,*V,*Cl,*S) <~ DIFF(*U,*V)

& BLACKS (*P,*C,*P1,*Cl1,*S).
WHITES (NIL,*C,0).
WHITES (*U.*P,*C,*S+) <- DEL(*U,*C,*Cl) & WHITES(*P,*Cl1,*S).
WHITES (*U.*P,*C,*3) <- NONMEM(*U,*C) & WHITES (*P,*C,*S).
/* DEL(U,Y,Yl) IF Y1 IS THE RESULT OF DELETING U FROM LIST Y */
DEL(*U,*U.*Y,*Y).
DEL (*U,*V.*Y,*V.*Y1l) <~ DIFF(*U,*V) & DEL(*U,*Y,*Y1l).
/* NONMEM(U,V) IF U IS NOT A MEMBER OF LIST Y */
NONMEM (*U,NIL).
NONMEM(*U,*V1.*V) <~ DIFF(*U,*V1) & NONMEM(*U,*V).
DIFF(*U,*V) <~ COLOUR(*U) & COLOUR(*V) & NOT(*U=*V).

COLOUR (BLACK) . COLOUR(BLUE). COLOUR (GREEN).
COLOUR (RED). COLOUR (WHITE). COLOUR (YELLOW) .

*X‘_‘*Xo

/* END OF DEFINITION OF SCORING RELATION */
JRERI ARk hhhh Ak hhhhkkhhhh kX hhhh ke hkhhhhhhhhhhhhkhkd kS hhhd bk khhkhkxhkhhhkak /

Fig. 2: Main part of Mastermind program.

19

/*INTERACTIVE MANAGER*/

PLAY <~

R

WRITE ('MASTERMIND AT YOUR SERVICE')

WRITE ('ENTER AN ARBITRARY NUMBER BETWEEN 0 AND 16383"')
READ (*X) & CHECKSEED(*X) & ADDAX(SEED(*X))
WRITECH('EXAMPLE FORMAT FOR ENTERING CODE: ‘')
WRITE('YELLOW.BLUE.WHITE.BLACK")

PLAY1.

PLAY]l <~ WRITECH('DO YOU WANT TO MAKE OR BREAK CODES? ')

& WRITE('ANSWER MAKE. OR ANSWER BREAK')
& READ(*X) & CHECKMB(*X) & START(*X).

START(MAKE) <- / & WRITE('ENTER CODE; I PROMISE NOT TO LOOK') & READ(*CO0)

& CHECKCODE (*C0,*C) & ADDAX(CODE(*C)) & GENCODE (*P) & SCORE (*P,*S)
& WRITECH('MY FIRST PROBE IS: ')&CHECKCODE (*P0,*P) & WRITECH(*PO)
& WRITECH('; SCORE: ') & WRITESCORE(*S)

& EXTENDABLE ((*P.*S) .NIL,O+++++) & DELAX(CODE(*)) & ASK.

START (BREAK) <- GENCODE (*C) & ADDAX (CODE (*C))

& WRITE('ENTER FIRST.PROBE') & READ(*P0) & CHECKPRST(*PO, *P)
& SCORE(*P,*S) & CONTBR(*S). .

CONTBR (*++++.*) <- / & WRITE('YOU GOT IT') & DELAX(CODE(*)) & ASK.
CONTBR (*S) <~ WRITECH('YOUR SCORE: ') & WRITESCORE (*S)

& WRITE('ENTER NEXT PROBE OR TYPE STOP') & READ(*XO0)
& CHECKPRST(*X0,*X) & RESPONDTO(*X).

RESPONDTO (STOP) <~ / & WRITECH('I ASSUME YOU GIVE UP; THE CODE IS: ')

& DELAX(CODE (*C)) & CHECKCODE (*C0,*C) & WRITE(*C0) & ASK.

RESPONDTOQ (YES) <- / & PLAY1.
RESPONDTO(NO) <- DELAX(SEED(*))

& WRITE('MASTERMIND WAS PLEASED TO SERVE YOU')
& WRITE('YOU ARE NOW RETURNED TO PROLOG') & EXIT.

RESPONDTO (*P) <- SCORE(*P,*S) & CONTBR(*S).

ASK <- WRITE('DO YOU WANT ANOTHER GAME? ANSWER YES. OR ANSWER NO')
& READ(*X) & CHECKYN (*X) & RESPONDTO (*X).

/* CODE GENERATOR */
GENCODE (*U.*V.*W.*X.NIL) <- RANDOMCOLOUR (*U) & RANDOMCOLOUR (*V)

& RANDOMCOLOUR (*W) & RANDOMCOLOUR (*X).

RANDOMCOLOUR (*X) <- RANDNUM(*R) & REM(*R,6,*N) & SUM(*N,1,*N1)

& AX(COLOUR (*), COLOUR(*X),*N1).

/* R IS PREVIOUS, S IS NEXT RANDOM NUMBER */
RANDNUM(*S) <- DELAX(SEED(*R)) & PROD(*R,125,*X) & SUM(*X,1,*Y)

& REM(*Y,16384,*S) & ADDAX(SEED(*S)).

Fig. 3: First part of Interactive Manager

20

/* CHECK WHETHER ARGUMENT IS CORRECT SEED FOR RANDOM-NUMBER
GENERATOR

* / :

CHECKSEED(*X) <- INT(*X) & GE(*X,0) & LE(*X,16383) & /.

CHECKSEED(*) <- COMPLAINT.

/* CHECK FOR 'MAKE' OF 'BREAK' */
CHECKMB (MAKE) <~ /. :
CHECKMB (BREAK) <- /.

CHECKMB (*) <- COMPLAINT.

/* CHECK FOR 'YES' OR 'NO' */
CHECKYN (YES) <- /.

CHECKYN (NO) <K~ /.

CHECKYN (*) <~ COMPLAINT.

/* CHECK FOR CODE OR PROBE AND CONVERSION TO OR FROM INTERNAL
FORMAT, WHICH CONTAINS 'NIL'

*/

CHECKPRST(STOP,STOP) <~ /.

CHECKPRST (*X,*Y) <~ CHECKCODE (*X,*Y).

CHECKCODE (*U,.*V,*W,*X ,*U,*V *W.*X .NIL)
<- COLOUR(*U) & COLOUR(*V) & COLOUR(*W) & COLOUR(*X) & /.
CHECKCODE (* ,*) <~ COMPLAINT. .

COMPLAINT <- WRITE('ERROR; TRY AGAIN') & FAIL.
WRITESCORE (*BLACKS.*WHITES) <- IS (*BLACKS,*X) & WRITECH(*X)

& WRITECH(' BLACK AND ') & IS (*WHITES,*Y)
& WRITECH(*Y) & WRITE(' WHITE').

/* CONVERSION FROM SUCCESSOR NOTATION TO DECIMAL NOTATION */
IS(0.0).
IS (*S+,*N1) <- IS(*S,*N) & SUM(*N,1,*N1l).

Fig. 4: Second part of Interactive Manager

21

8. Related work

Sickel has investigated [INV] how to predict in general whether it is
possible to compute a particular function from a relational definition with
a given rule for selecting a goal.

A striking application of relational programming has been found by
Colmerauer [GDM]. In his example of a compiler written in Prolog, the
analyzer takes as input the source code and outputs a parse tree decorated
with semantic information. The code generator takes such a tree as input
and outputs object code. Both parts are written by Colmerauer as relations
between strings and parse trees. The clauses defining the relation are
rewrite tules in the traditional sense. For the analyzer the first argument
is given; for the code generator the second argument is given. 1In this way
it was possible to write the code generator as a set of rewrite rules, just
as the analyzer was.

In [PRL] we showed that a logic program for quicksort could be inverted
to a permutation generator by writing it as a relation between a possibly

unsorted list and its sorted version.

9. Concluding remarks

It is w#dely accepted that definitional programming is more reliable
and more productive in terms of human effort than imperative programming. It
is also generally true that imperative programs are more productive in terms
of processor time and memory space. Définitional programming has a promising
future because computer processors and memories are expected to become
considerably cheaper than they are at present; also, it should be kept in mind

that not nearly as much effort has been spent on efficient compilation of

22

definitional languages as has been the case with imperative languages.

Of two approaches to definitional programming - functional and relational
— the first has been explored much more intensively than the second. Lisp
has been in use since about 1960 and was backed by massive and uninterrupted
support from implementers and users, initially mainly at the Artificial
Intelligence Laboratory of the Massachusetts Institute of Technology. Prolog
arrived on the scene much later. Outside of Hungary, Prolog has been, at
best, tolerated rather than supported. 1In addition to that, an entire
category of applications, namely symbolic computation, has become Lisp
territory; not because of an inherent superiority of functional over relational
programming, but simply because Lisp was there first.

Because of the growing importance of definitional programming, it is
now time to understamd the relative merits of the functional and relational
approaches. Far from presenting a comprehensive comparison, this paper has
only attempted to contribute a small part which we expect to be relevant

in such a comparison.

10. Acknowledgements

We owe a great debt of gratitude to Grant Roberts who made logic
programming feasible in Waterloo. Roberts also suggested improvements to
an earlier version of the Mastermind program. The suggestion of writing a
program for Mastermind came from David Warren.

The Canadian National Science and Engineering Research Council has

provided partial financial support.

23

11. References

[ABSET] E.W. Elcock, J.M. Foster, P.D.M. Gray, J.J.M. McGregor, and
A M. Murray: ABSET: A programming language based on sets.
Machine Intelligence 6, B. Meltzer and D. Michie (eds.),
Edinburgh University Press, 1971.

[ABSYS] J.M. Foster and E.W. Elcock: Absys 1: an incremental compiler
for assertions, Machine Intelligence 4, B. Meltzer and D. Michie
(eds.), 423-429, Edinburgh University Press, 1969.

[CDI] M.H. van Emden: Computation and Deductive Information Retrieval.
E. Neuhold (ed.): Formal Description of Programming Concepts,
North Holland, Amsterdam, 1978.

[CLP] D.H.D. Warren: TImplementing Prolog-ecompiling predicate logic
programs. DAI Research Reperts 39 and 40. Dept. of Artificial
Intelligence, University of Edinburgh, 1977.

[EFP] C. Wetherell: Etudes for programmers. Prentice-Hall, 1978.

[GDM] A. Colmerauer: Les grammaires de metamorphose; in L. Bole (ed.):
Natural Language Communication with Computers, Springer Lecture
Notes in Computer Science, 1977.

[ICP] F.G. McCabe: Programmer's Gudde to IC-Prolog. Dept. of
Computation and Control, Imperial College, 1978.

[INV] S. Sickel: Invertibility of logic programs. Fourth Workshop on
Automated Deduction. University of Texas at Austin, Feb. 1979.

[1I0P] G.M. Roberts: An implementation of PROLOG; M.Sc. Thesis,
Dept. of Computer Science, University of Waterloo, 1977.

[MOL] J.A. Robinson: A machine-oriented logic based on the resolution
principle. J. ACM 12 (1965), 23-44:

[PLANNER] C. Hewitt: Planner: a language for manipulating modeks and
proving theorems in a robot, Proc. First Int. Joint Conf. in
Artificial Intelligence, pp. 295-301.

[PLPL] R.A. Kowalski: Predicate Logic as a programming language;
Proc. IFIP 74, North Holland, 1974, 556-574.

[PPL] P. Szeredi: Prolog- a very high level language based on predicate
logic. Proc. Second Hungarian Computer Science Conference,
Budapest, July 1977.

[PRL] M.H. van Emden: Programming in resolution logic. Machine Intelligence
8 (eds. E.W. Elcock and D. Michie) by Ellis Horwood 'Ltd. and
John Wylie; 1977.

24

12. Appendix 1: Some information on the built-in predicates of the Waterloo
Prolog interpreter quoted from [IOP].

READ is a predicate with one or two arguments. The second argument is
the optional file identifier. A term is read from the indicated file and
unified with the first argument. The term must be delimited with the end
of term character. If the end of the input file has been reached the
predicate fails. If backtracking returns to the read then a read of the next
term will be attempted. If the term read cannot be unified with the first
argument or the format of the term is invalid then backtracking will cause
a read of the next term to be attempted.

WRITE is a predicate with one or two arguments. The second argument
is the optional file identifier. The term specified by the first argument is
written on the indicated file., The term is delimited by the end of term
character. The term is written using prefix, infix and suffix notation where
appropriate, as indicated by the operator declarations at the time of writing.

WRITECH is a predicate with one or two arguments. The second argument
is the optional file identifier. The fimst argument specifies a term which
is formatted using the operator declarations (as for WRITE) and placed in the
output buffer for the given file. If the buffer is filled then it is written
to the given file (and emptied). If the buffer is partially filled then it
is not written out.

There are several predicates which are included to provide the basic
operations of integer arithmetic. Each of these predicates has three
arguments. The first two are the input parameters and the last is the result
parameter. The first two arguments must be integers. The appropriate integer

function of the first arguments is unified with the third argument.

25

The arithmetic predicates are:

DIFF - difference (subtraation)

PROD

product
QUOT - quotient
REM - remainder
SUM -~ sum

The database built-in predicates provide the facility for updating
the database (i.e. the set of axioms in the active work space).

The ADDAX predicate is used to add an axiom to the database. It has
one or two arguments. The first argument must be a valid axiom. It may be:

(a) a unit axiom. 1In this case it is a skeleton or an atom.
(b) a non-unit axiom. In this case it is of the form
<head> <+ <body>. <head> must be a skeleton or atom.
The axiom specified by the first argument is added to the database. If a
single argument is specified then the axiom is added after all other axioms
with the same predicate name and number of arguments.

The DELAX predicate is used to delete an axiom from the database. It
may be called with one or two arguments. The first argument is a term
representing an axiom. The first argument may be:

(2) a unit axiom. In this case it is a skeleton or an atom.
(b) a non-unit axiom. In this case it is of the form
<head> < <body>. <head> must be a skeleton or an atom.

Thus the first argument specifies the name and number of arguments for
the axiom to be deleted. If onkty one argument is specified then an attempt
is made to unify the argument with each of the relevant axioms in the database.

The axioms are selected in the order in which they appear in the database.

26

If no axiom is found which is unifiable with the first argument then the
predicate fails. If the unification succeeds for an axiom then the axiom is
deleted and the predicate succeeds. If backtracking subsequently returns
to this point then the predicate will fail, thus preventing accidental
deletion of further axioms.
The AX predicate has two basié formats:

AX(<head>,<axiom>).

AX (<head>,<axiom>,<index>).
The AX predicate is used to retrieve axioms from the database. <head> is
a model axiom head and may be a skeleton, an atom or a variable. If <head>
is not a variable then it specifies a predicate name and number of arguments
implicitly. The axioms for this name and number of arguments are retrieved.
If an <index> 1is specified, then the i-th axiom that matches the <head>

is unified with <axiom>, where i is the value of <index>.

27

13. Appendix 2: Control flow in the interactive manager

PLAY

salutation;
request for seed
of random number
generator

PLAY 1

ask which side

START (BREAK)

START (MAKE)

read and store code;
break code;
delete code;

'enter first probe'

to play
generate code;
read probe;
8 = score
CONTBR (4.0)
‘you got it'

delete code

ASK

another game?

RESPONDTO (YES) RESPONDTO (NQ

exit

CONTBR(s)

A
'your score :

'enter next probe or
type stop'
read response

RESPONDTO (STOP) RESPONDTO (probe)

A

the code is
delete code

'L assume you give up;

8 = 8Core

|

28

14. Appendix 3: An interactive session with the Mastermind Program.

WELCOME TO PROLOG 0.0

LOAD (MMIND) <~

<-play.

MASTERMIND AT YOUR SERVICE.

ENTER AN ARBITRARY NUMBER BETWEEN O AND 16383.

02345,

EXAMPLE FORMAT FOR ENTERING CODE: YELLOW.BLUE.WHITE.BLACK.

DO YOU WANT TO MAKE OR BREAK CODES? ANSWER MAKE. OR ANSWER BREAK.
break.

ENTER FIRST PROBE.

black.blue.green.red.

YOUR SCORE: 1 BLACK AND 0 WHITE.

ENTER NEXT PROBE OR TYPE STOP.

black.black.black.black.

YOUR SCORE: 2 BLACK AND 0 WHITE.

ENTER NEXT PROBE OR TYPE STOP.

black.black.white.white,

YOUR SCORE: 1 BLACK AND 1 WHITE.

ENTER NEXT PROBE OR TYPE STOP.

black.yellow.black.yellow.

YOU GOT 1T,

DO YOU WANT ANOTHER GAME? ANSWER YES. OR ANSWER NO.

yes.

DO YOU WANT TO MAKE OR BREAK CODES? ANSWER MAKE. OR ANSWER BREAK.
make .

ENTER CODE; I PROMISE NOT TO LOOK.

red.white.bleu.yellow.

ERROR; TRY AGAIN,

so.you.have.been.looking.

ERROR; TRY AGAIN.

red.white.blue.yellow.

MY FIRST PROBE IS: WHITE.YELLOW.BLACK.RED; SCORE: 0 BLACK AND 3 WHITE.
MY NEXT PROBE IS: BLACK.BLACK.RED.WHITE; SCORE: 0 BLACK AND 2 WHITE.
3 TRIES TO GO.

MY NEXT PROBE IS: BLUE.RED.WHITE.YELLOW; SCORE: 1 BLACK AND 3 WHITE.
2 TRIES TO GO.

MY NEXT PROBE I5: RED.WHITE.BLUE.YELLOW; SCORE: 4 BLACK AND O WHITE.
1 TRIES TO GO.

THE CODE MUST BE: RED.WHITE.BLUE.YELLOW.

DO YOU WANT ANOTHER GAME? ANSWER YES. OR ANSWER NO.

no.

MASTERMIND WAS PLEASED TO SERVE YOU.

YOU ARE NOW RETURNED TO PROLOG.

PLAY<-

<-stop.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

