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ABSTRACT

A restricted version of interactive L systems is introduced.
A P2L system is called an essentially growing 2L-system (e-G2L system)
if every length-preserving production is interactionless (context-free).
It is shown that the deterministic e-G2L systems can be simulated by
codings of propagating interactionless systems, and that this is not
possible for the nondeterministic version. Some interesting properties
of e-GD2L systems are established, the main result being the decidabi-

lity of the sequence equivalence problem for them.



1. 1Introduction

The area of L systems has had a rapid growth (see Rozenberg
and Salomaa, 1976), however this is mainly due to their mathematical in-
vestigation rather than their biological application, Lindenmayer (1977)
has stressed the importance of determinism in developmental models, For
this reason the most important systems for a biologist are DOL and
DIL systems , the deterministic versions of the basic interactionless

and interactive systems.

Since the latter are much more powerful than the former it
seems to us important to investigate systems of intermediate
capability. One way to get such systems is if we allow

interaction only when cells are dividing but not when they are merely
changing states. Quite surprisingly in the case of propagating systems
(no cells dying) the behaviour of such systems will be shown to be closer
to the interactionless systems rather than to the interactive ones.

Our results seem to be well motivated mathematically, -too.

It is well known, see Baker's Theorem in (Harrison , 1978), that
certain restrictions on the form of productions of a context~sensitive
grammar make the grammar essentially lose its:'"context-sensitive-
ness', i.e, to generate a context-free language, We will introduce a

different kind of restriction on the form of productions of a deter=

ministic context-sensitive parallel rewriting system (D2L system) which



has essentially the same effect, that is, it makes an interactive
(context-sensitive) system behave in an almost interactionless (context-
free) manner. Similarly, as in the case of sequential context-sensi-
tive grammars, the restriction seems to be a mild one, and therefore
the obtained results are rather surprising. We say that a D2L system
is essentially growing (an e-GD2L system)if the system is propagating
(nonerasing) and each of its productions which is actually context-
sensitive is strictly growing. 1In other words an e~GD2L"system is-:a
PD2L system such that each of its nongrowing productions is actually
context independeént.

As our basic result we show that every e~GD2L system can
be simulated by a coding of a propagating DOL system (CPDOL system).
Then it is easy to show that both the languages and the sequences
generated by e-GD2L systems are properly between those generated by
PDOL and CPDOL systems. Hence each e-GD2L language can be generated
by a nondeterministic context-free system with nonterminals (EOL system).

In section 4 we obtain several applications of the basic
simulation result and the method of its proof. First we observe that
the length sequence equivalence problem for e-GD2L systems is decid-
able. Then we demonstrate that despite . the fact that e-GD2L
growth functions are the same as the PDOL growth functions, it is
possible to realize some growth functions with a considerably -smaller
number of symbols by e-~GD2L systems than by PDOL systems. We show a

sufficient condition for the so called "cell number minimization problem'



(see, Salomaa and Soittela, 1978, pg.l116) to be decidable, These con-
ditions are satisfied by e-GD2L systems, so the cell number minimiza-
tion problem for them is decidable.

We conclude section 4 with the main result of this paper,
namely, the decidability of the sequence equivalence problem for e-GD2L
systems. Hence e—-GD2I. systems are the most complicated type of
L systems known for which this important problem is decidable., Our
result is somewhat surprising in the view that this problem is undecid-
able for PDlL-systems (Vitanyi, 1974).

In the last section we show that Theorem 1 gannot be-
extended to nondeterministic e~G2L systems. This extension would
mean that e-G2L languages are included in CPOL languages, therefore
also in - EOL -languages (see Rozenberg and Salomaa, 1976.) However,
this is impossible since we will show that each ETOL language can be
expressed as h(L) n R for some homomorphism h ; e-G2L language L

and regular set R.



2. Preliminaries and basic definitions

A 2L system is a triple G = <I,P,w> where ¥ is a non-
empty alphabet, w 1is an element of Z* and P is a finite relation
from VvV = {$} x I x {$} u {8} x 22 U 22 x {$}u Z3 into Z* satisfying
the following completeness condition: For each u € V there exists at
least one v in Z* such that (u,v) € P. An element (u,v) of P
is called a production and usually written u - v; the letter § not
in V is called the environmental symbol. The relation =G (oxr =
in short) on Z* is defined as follows. For words x and y x =Y
holds true if and only if one of the following conditions is satisfied:
(1) xe I and ($8,x,8) »ye P , (ii) x = XXy 5 ¥ =YYy with
X15%, € z, Y1s¥y € Z* , and ($,X1,X2) MR AL (Xl,X2,$) T Yy € P,
(iii) x=x

1 X s

v * .
Yyseeesy, € Iz amnd ($,xl,x2) > ¥y (xl,xz,x3) > y2""’(xh—2’xn—1’xn) > Y10

30 A CRETEN A with n =2 3 , KyseeesX € %,

(xn_l,xn,$) >y, € P . lLet =% be the transitive and reflexive

closure of =. The language generated by G is L(G) = {x | w =% x},

In this paper propagating systems, i.e. systems where
erasing productions are not allowed, are considered. Moreover, in most
cases systems are assumed to be deterministic in the following sense.

A 2L system G = <I,P,w> 1is deterministic (abbreviated a D2L system)

*
if the relation P is a function from V into I . For a D2L system

and X =_.y' imply y =7y' , and hence G

G the conditions x = y c



defines the sequence

s(G) = WyaWpse s

where Wy =W and Vo %6 Vi1 for i =0,1,... . Such sequences are
called D2L sequences. In the deterministic case we will also write
8(a,b,c) = d when (a,b,c) > d.

Let G = <X,P,w> be a 2L system. A production (x,a,y) = o,

with x,y € Z u {$} , is called context-free if

{(z,a,v) > a | z,v e 2 u {$}} < P . So the abbreviation a *> a for
the context-free production (x,a,y) * & can be used. The production

of G , which are not context-free , are called context-sensitive. 1In

the deterministic case we may also talk about context~free and context-
sensitive letters,

For w ¢ Z* , le denotes the length of w , for a set S
|S| denotes the cardinality of S. Now we introduce the basic notions

of this paper.

Definition A 2L system G = <L,P,w> is strictly growing (an

5-GL2 system) iff Ivl 22 foreach u~*v in P , System G 1is

essentially growing 2L system (e-GL2 system) i1iff it is propagating

and Ivl 2 2 for each context-sensitive production u->v in P . We

will be mainly interested in deterministic e-GL2 systems (e-GD2L systems).

Every production of an s~G2L system must be length-"

increasing, while an e-G2L system may have length-preserving pro-
ductions, if they are context-free. Therefore, any propagating context

free productions are allowed in #&-G2L systems and thus the e-GP2L



systems include all PDOL systems., Also the s~-GD2L. systems are a
special case of the e-GD2L systems and we introduce them mainly to
facilitate the explanation of some proof techniques in a simple setting
before a general proof. However, all the results concerning determinis-
tic systems will be proved for the more general case of e-GD2L systems.
Throughout this paper we use the basic notions and results of
formal language theory and L systems, we refer the reader, e.g., to
Salomaa (1973) and Rozenberg and Salomaa (1976). In particular, by a
coding we mean a letter—to-letter homomorphism. Moreover, the maximal
prefix (resp. suffix) of a string x mnot longer than k is denoted by

prefk(x) (resp. suffk(X)).



3. The interactionless simulation of restricted interaction

In this section we consider essentially (strictly) growing
D2L systems. We first observe that s-GD2L systems can be simulated
by CPDOL systems in the sense that any s-GD2L sequence is obtained
as a coding of a PDOL sequence. The result is seen as follows. Let
G = <X,6,w> be a s-GD2L system and let (b,c,d) >~y be one of its
productions. Now, we consider the letter ¢ in the context ...abcde...
for some letters a,b,d and e. We know how to rewrite ¢ in that
context (for this purpose the context ...bcd... is sufficient) but we
also know what are the neighbours of the result (i.e. Yy ) of the
length two. This follows since they are determined by wowds d&(a,b,c)
and &(c,d,e). So the use of guintuples (a,b,c,d,e) makes it possible
to simulate the derivations of G by a PDOL system. We omit the
details since the result is only a special case of the following

stronger theorem.

Theorem 1 For any e-GD2L system G there exist a PDOL system
G' and a coding c¢ such that s(G) = c(s(G')) and hence also

L(G) = c(L(G")).

Proof let G =<I,0,w” and let §(x) be the word derived from
x 1in a fixed context. Moreover, let §(x) (resp. gk(x) or 3;(X))
denote the subword of §(x) which can be obtained independently of the

(resp. left or right) neighbours of x . So the meaning of S(x) is



always clear while the notation J(x) can be used only when the

neighbours of x are fixed for our considerations. Further let

™
]

{ae I | a is context-free}
and

%, ={ae X there exists an infinite sequence a = agsdqsees

1 |

such that a; € % and a,

1 j41] occurs in 6(ai) for all

i=0,1,...}.

*
We also use the following notation. Let x e ¥ ., Then rc(x) is the

shorter of the following two words: (i) prelezi(x), (ii) the shortest

prefix of x ending with a letter from 22. The notation of {£ec(x) is
defined similarly when using sufficies.

*
Now, we claim that for any a e I and x,y € L , with

lxl,ly] 2 2 |Z|, the sequence

v
o

™ (Le(x) a re(y)) , n

is fafinite, i.e., the derivation does not terminate (because of the

lack of information about neighbours). In other words the above means

that the immediate neighbours of all descendants of a are uniquely

determined by the words not longer than 2 |%| (i.e., £e(x) and rc(y)).
Clearly, because of symmetry, it is sufficient to prove the

claim for the sequence obtained from the word a rc(y) with the

further assumption that the left neighbour of a and its descendants

are always known.



First, assume that rc(y) ends with an element from 22.
Then the word rc(8(re(y))) is either of the length 2 1Z| or it ends
with a letter in 22. Hence, the right neighbouring word of d&(a) is
obtained exactly in the form we want, i.e., either ending with a letter
from 22 or having length 2 IZJ-

Secondly, assume that rc(y) does not contain any letters
from 22' There are two subcases. Case A, A symbol from I - Zl
occurs in rc(y) elsewhere than as the last symbol. This case causes
no problems. Namely, writing rc(y) = zc , with ¢ € L, we see that
8(z) is at least of the length 2 |Z|, and so the neighbouring word
for 6(a) in the form we want is determined by rc(y) independently
of its right neighbours.

Case B. All letters (except possibly the last one) of rc(y)
are from Zl. Then the length of the word derived from rc(y) without
knowing its right neighbour may decrease by one (and hence we possibly
do not get the neighbouring word for 6(a) in the form we want). This
may happen again during the next derivation step. However, let us see
what happens when we take ]Zl—l”steﬁs. If a letter from 22 appears
during these steps, then the right neighbouring word for a descendant
of a has been found. If no letters from 22 appear, then each of

the ]Zl first symbols of rc(y) generates during these steps at

least one lefter from I - Zl' Hence

512 (pres, oy (e ))
1z
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is of the length at least 2 IZf and since it is a prefix of g;lzl(rc(y))
we get a "periodic situation" guarantedinmg that the right neighbouring
word for descendants of a are really determined by rc(y) indepen-
dently of its right neighbours (although now the neighbouring words
are not necessarily obtained in the same form as before; they may be
shorter).

Hence the claim is established and we complete the proof of
the theorem.

The PDOL system G' is defined as follows. Its alphabet is

2|z 2|

ve(U cuishh xzx (U @ushl .

i=] i=1

22|, 2z

The axiom is obtained from the word $ by forming first its

all subwords of length 4 |Z| + 1, then writing them as elements of V
and finally catenating letters thus obtained without changing their
order (that is the order of subwewds in $2IZ|W SZIZI). The productions
for G' are defined in the following way. If G contains the

production

b with b b eI,

(a,b,c) ~+ bl"' 0 IERERELN

2|z]-1 .
U,

o1 ;
then G' contains for all x and y in Z the production

i=1
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(xa,b,cy) » (Kc(gk(xa)), bl’ rc(bz...bﬁg¥(cy)))
(Zc(gk(xa)bl), b2, rc(b3...bﬁgg(cy)))...

(Le(Sy(xa)byensb )5 by re(§ (cy))).

This definition contains also the simulation of context-free productions
of G , but does not contain productions for letters containing the en-

vironmental symbol $ . The definition of these productions is similar.
(In fact, the situation is even easier, since § can be used instead of

above 6r and GK)'

* *
Finally, the coding ¢ : V > I  is defined by
c(x,a,y) = a

, 2z .
for all ae X and x,ye U (X U {$})" . Then clearly
i=1

s(8) = c(s(G"))

and the theorem is proved. O

The PDOL system G' above contains many useless letters,
i,e, letters which are never encquntered in the rewriting process., Of
course the reduced system, i.e. the system without useless letters, can
be found simply starting from the axiom of G' and defining the pro-
ductions step by step according to the proof of Theorem 1.

Later on in. (Theoreém 7) it will be shown that the deter-
minism is an essential assumption for Theorem 1 to hold. Also Theorem

1 cannot be generalized for D2L systems with strictly growing context-
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sensitive productions and arbitrary (possibly erasing) context-free
productions. This is seen as follows. Let G be any PD2L system.
We show that it can be simulated, in a sense, by a D2L system with
strictly growing context-sensitive productions and arbitrary context-
free productions. Such a system G' is defined in the following way.

For any length-preserving production (a,b,c) > d in G
G' contains productions

(a,b,c)'+'a-a , d >d and > A

A a

where d denotes the "bared copy" of d . Further for any production
(a,b,c) ~ by...b in G, with n2>2,
G' contains productions

(a,b,c) Ei...gg and -Bi - bi for i=1,...,n .

Then clearly

L(G) = LG N

where I denotes the alphabet of G . Since we may choose L(G) not
to be an EOL language we may also choose L(G') mnot to be an EOL
language. Hence G' cannot be simulated by any DOL system in the

sense of Theorem 1.

Let us denote by i; (resp. S ) the family of

-GD2L e-GD2L

languages (resp. sequences) generated by e-GD2L systems. Then using

Theorem 1 we get
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c . [y
Theorem 2 Lppor F %_gpor * Lppor,
and c ¢
S S T
poor. ¥ Se-ap2r. ¥ Scepor ¢
Proof All inclusions follow from Theorem 1 and the definition of

the e-GD2L system. That the first inclusions are proper follows from
Example in the next section. The strictness of the second inclusions,

*
in turn, are seenby considering some language over a , for example

n
the language {az,a4,a8} U'{a2 | n =2 5} and the corresponding sequence. []
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4. Applications of the simulation result

After establishing Theorem 1 and the position of our language
family ‘<e—GD2L within the hierarchy of L families we now derive some

interesting properties of our systems. We first obserwe

Theorem 3 The length sequence equivalence problem for e-GDZ2L systems

is decidable;

Proof The result fodlows from Theorem 1 and the fact that the

problem is decidable for PDOL systems, see Salomaa and Soittola (1978). 0

One of the consequences of Theorem 1 is that any e-GD2L
growth function is a PDOL growth function, too. However, as is seen
in the next example, the number of letters needed to realize a given
function by an e-GD2L system may be much smaller than that needed

to realize the same function by a PDOL system.

Example Let us define an e-GD2L system (or in fact an s-GD2L) G
as follows. Its alphabet equals {1,...,k} and its axiom is 11. To
define the productions let ¥ be the function which gives‘ the lexi-
cographic order of the set {(i,j) | i,j = 1,...,k , 1 < j}, i.e.
v(1,2) =1, (1,3) = 2,..., y(k-1,k) = %k(k-1). Now the productions

of G are as follows.
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($,1,1) = 12 ,
(1,1,%) =+ 13...1k23,..2k.,. (k-1)k ,
(-,i,3) ~ 1ij , for i <3,

1,,m) > GDY S | for 155,

where ~ denotes that the element there is arbitary.
So the derivation starts as follows

/ ,

12 13...1k 23...2k34...3 ...(k Dk

Ry Swy— a—— —ee————

JAN

1212 131313... 1k...1k... = (k-Dk...(k-1)k

k times %(kz-k+2) times
If we denote by £ the growth function jmst defined we get
2
Bk
f(n) = 2 Z (G+L) , for n=>1 .

3=1

This formula implies that any PDOL (or DOL) system generating the
growth function of G must contain at least %(kz—k) letters. How-
ever, f 1is realized by an e-GD2L system with k lettérs only.
The above example gives the motivation for the following
definition. Let C be a class of deterministic L systems. The

cell number minimization problem for C is the following :
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Given an arbitrary function f realized by a system in C . 1Is there
an algorithm to find a system from C with an alphabet of the minimal

cardinality such that its growth function equals £ ?

Lemma 1 The cell number minimization problem is decidable for any
class C of deterministic L systems satisfying the following two
conditions:
(1) The growth equivalence problem is decidable in C .
(ii) For any G in C one can effectively find a constant

N dependent on the size of the alphabet Z of G

G L]
only, such that for any a ¢ X a occurs in L(G)
if and only if it occurs in the NG first words

generated by the system.

Proof Let H be an arbitrary system from C and let f be its
(effectively given) growth function. We show that the number of
"suitable candidates" to generate f with a smaller alphabet is
finite and that the set of the candidates can be effectively found.
First, the alphabet of a candidate is a subset of the alphabet of G
(since we may always rename the letters). Secondly, the axiom of a
candidate is of length £(0) , and hence the set of possible axioms is
finite. Finally, the right-hand side of any production in a candidate
system is at most of length max(f(O),...,f(NH)). So, by (ii), the
finite set of suitable candidates can be effectively found. Hence the

lemma follows, since by the first condition we may test the equality

of a candidate chosen and H. [J
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Now, we are ready for

Theorem 4 The cell number minimization problem for e-GD2L systems is

decidable.

Proof The conditionsof Lemma 1 are valid for e-GD2L systems.
The first one follows from Theorem 3 and the second one from the proof

of Theorem 1 (see also the discussion after Theorem 1). []

Now, we turn to consider the sequence equivalence problem
for e-GD2L systems. 1In a subcase, i.e. in the case of s-GD2L systems,
the decidability of this problem is a consequence of the simulation of
these systems by PDOL systems and the decidability of the problem for
PDOL systems. Indeed, two s-GD2L sequences s(G) and s(H) are
equivalent if and only if the PDOL sequences s(G') and s(H') ,
where G' and H' are the "quintuple PDOL systems" simulating G
and H , are equivalent.

For e-GD2L systems the situation is more complicated,
mainly due to the fact that the letters of G' in the proof of
Theorem 1 are not of uniform length as words of Z* . Hence, two
e-GD2L systems may be eguivalent although the corresponding simulating
systems of Theorem 1 are not. Moreover, the proof of Theorem 1 indi-
cates that it is probably impossible to find for an arbitrary e-GD2L
system a simulating PDOL system with unfform length of letters, i.e.

with n-tuples for a fixed n . However, through the following sequence
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of arguments, based on Theorem 1, we will show that the sequence
equivalence problem for e-GD2L systems is decidable.

We start with few definitions. Let G = <I,6,w> be an
e-GD2L system. Recalling that Zl denotes the set of context-free

letters of G we define

ZS = {a ¢ Zl I there exists t > 0 such that Gg(a) = a}l,
t
an ={a e Zl | for all t >0 |8 (a)]| = 1}
z =3 - 1
24 ng

Clearly Z < X ., Letters in alphabets I , I and I  are called
s — ng s’ "ng g

stable, nongrowing and growing, respectively. For an a in Zs let

[a] be the set of letters derived from a . Then ZS is a disjoint
unién of some such equivalence classes. A subalphabet A E_ZS of G is
called - unbounded if for each natural number n and each
a € A there exists a subword x € A* of a word in L(G) such that

1

#a(x) 2 n , where #a(x) denotes the number of a's in x. The

maximal unbounded subalphabet is clearly unique and it is denoted by

AG. Clearly also the maximal unbounded subalphabet of G is a finite

union of some equivalence classes of the form [a].

Lemma 2 It is decidable whether an e-GD2L system contains a
nonempty unbounded subalphabet. Moreover, the maximal unbounded sub-

alphabet AG can be effectively found.



19

Proof Let G = <X,8,w> and let T E_ZS. Define the gsm-mapping

(Salomaa, 1973) by the diagram

&r

(a,A),Vael (b,b),Vbel (a,A),Vael

QEE;L (b,b),YbeT g;;;L (b,b),¥beT

*) g (L) = {x ¢ I* | x is a subword of L(G)}

Then, clearly,

By Theorem 1, L(G) 4is an EOL 1language, and so also gF(L(G)) is an
EOL 1language. Now the first sentence of the lemma follows since the
finiteness of EOL languages is decidable and since G has an un-
bounaed subalphabet if and only if some set of the form (%) dis in-
finite.

The wvalidity of the second senﬁence is seen as follows. For
a given I ¢ ¥ we first test whether (%) is infinite. If it is we
search the maximal subset I' of [ such that gh(gF(L(G))) is finite,

* *
where is the homomorphism from T into I such that h(a) = A

®h
for a ¢ I''" and h(a) = a, otherwise. Clearly such a T' can be
effectively found, and so we obtain an unbounded alphabet [ - I''. Now,

the maximal unbounded subalphabet can be found by checking all subsets

' of X . N
s
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Lemma 3 Let G = <I,8,w> be an e-GD2L system. One can effectively
find a constant N such that any subword of a word in L(G) 1longer than
N contains an element from Zg u AG .
Proof As in the proof of Lemma 2 we may effectively find an EOL

system generating the set
*
S = {x ¢ (Z—(Zg U AG)) | x 1is a subword of L(G)}.

We claim that S dis finite. From this the lemma follows since finite
EOL 1language can be effectively found, and hence N 1is obtained as
the maximal length of words in 8.

To prove the claim we fifst observe that
Z-(Zg U AG) = (an—ZS) U (ZS—AG). Now the maximality of AG (as un-
bounded subalphabet) implies the existence of k such that all sub-
words from (ZS_AG)* in L(G) are of length at most k. So to es-
tablish the claim it suffices to show the existence of a constant m
such that for any occurence a ¢ an - ZS in a word y in L(G)
there exists an occurence of b ¢ Zg in y such that between a and b there
are at most m letters. The existence of m is seen by looking at ancestors
of a. Although we have context-sensitive rewriting we may do this by
Theorem 1: We are actually looking for ancestors of a letter appearing
in a certain context of length 2|Zl from both sides. In this way we

find a "recursive letter" c¢ in the following sense. c appears twice

in s(G) din the same context of length 2|Z| and Sn(c) contains c¢
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and Sm(C) contains a for some m,n > 0 (here the meaning of § must be un=
derstood as in the proof of Theorem 1). The letter c ¢ an because

a ¢ an. Hence ¢ 1is a growing letter. Since it is also recursive

in the above sense, it must produce (in the context we consider it) a
growing letter in any string derived from it. So, in y there must be

a growing letter not far from a. Making the above construction for

all letters from Zn - ZS the required m can be found. Hence, the

claim and also the lemma have been proved. [J

Lemma 4 Let A be an unbounded subalphabet of an e-GD2L system
G. Then there exist a constant K and a finite set F such that
%
any subword x € A in L(G) 1longer than K is of the form
n m
x=s8t ru v for some natural n and m and s, t, r, u and v

from F.

Proof Again the result follows from the proof of Theorem 1. Namely,
by this, Lemma 4 is true if and only if it is true for PDOL systems.
That Lemma 4 is valid for PDOL systems is clear. 1Indeed, any stable sub-
string x in a fixed PDOL language L(G) admits the factorization
x=s t" r u" v for some s, t, u and v not longer than n H and
r not longer than m H' where n is the cardinality of the alphabet
of G, H is the maximal length of the right-hand sides of the pro-
ductions and m is the length of the axiom. [
For a word x we denote by Y(x) its Parikh vector. The

order relation 2= on Nk is defined componentwise in the standard way.
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Lemma 5 For any PDOL system G = <I,0,w> there exist constants

t and r such that ¢(6t+n(w)) < ¢(6t+r+n

(w)) for all n = 0. More-
over, there exists an upper bound M for t + p independently of the

axiom w.

Proof The first sentence follows from the Konig Infinity Lemma
(see, e.g., Harrison, 1978). To prove the second sentence let ta and
ré be the constants of the lemma for the system Ga = <%,8,a> where

a € L. Then we may choose M = max{ta | a e 2} + T r_ -
ael

For two e-GD2L systems G and H we introduce the notion

of a common subalphabet. An alphabet A dis called a common subalphabet

of the pair (G,H) if A ¢ ZS,G n Zs,H where Zs,G and ZS,H denotes

the stable subalphabets of G and H respectively. The next lemma is
essential for the proof of our main result.

Lemma 6 Let G and H be e-GD2L systems with s(G) = s(H). Then
the maximal unbounded subalphabet A of G is a common subalphabet of

(G,H).

Proof Let G = <Z,6,WO> and H = <Z,v,wo>. Further let
s(G) = s(H) = WosWysens - The sets of stable, nongrowing and growing

letters with respect to H (resp. G) are denoted by ZS z

,H> “ng,H
. : . ti § and Vv
and Zg,H (resp Zs,G’ an,G and Zg,G) The notations an
are used as in the proof of Theorem 1. Finally, let H' = <Z',V',w6>

be the system of Theorem 1 simulating H. What we should show is that

A< ZS - i.e. that all letters in A are stable (also) with respect
3>
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to H. So let c e A.

We begin the proof with the following observations: (i)
There exist constants Py >0 and P, such that, for anyvsubword x
of L(G) belonging to A*, either #C,(X) > pllxl for some c¢' € [c]
or #c,(x) < P, for all c¢' € [c]. Moreover, the first alternative
holds for infinitely many subwords x € A*. (ii) There exists a constant
q such that, for any subword x in L(G) , ]subA(g(x))| < lsubA(x)| + q
where subA(u) denotes (any of) the longest subword(s) of u belonging
to A*. The fact (i) is an immediate consequence of the definition of
A and Lemma 4. The second condition, in turn, follows from the proof
of Lemma 3. Indeed, similar arguments as used there show that for any
occurence of a letter a din L(G) which satisfies the conditions
ad¢ A, &) ¢ A* (or if a is context-sensitive 5(61,3,32) € A*

where a., and a, are the neighbours of the occurrenceof a), there

1 2

exists "near to a" an occurrenceof a letter b such that §(b) & A*
(or if b 1is context-sensitive 5(bl,b,b2) ¢ A* where b1 and b2
are the neighbours of D).

Now we fix x ¢ A* satisfying the following three conditons:
(a) x dis a subword in L(G) , i.e. W= yxz for some natural n and
words v,z € z*; (b) #C,(x) > pllxl for some c¢' ¢ [c]; (c) there
exist for j =0,...,M , where M is the constant of Lemma 5 to the

v’ = =
PDOL system H' , words X e s s Xy such that v (x_j) X—j+l and

X is a subword of x (cf. the discussion on ancestors in the proof

of Lemma 3).
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Two further assumptions concerning the above choice are made.
First x 1is chosen to be the longest possible in v and satisfying

(b). Secondly, the choice of Xgs oo X _y is made in such a way that

> 4|Z] + 1 and |x| - |x.| < s, for some constant independent

|= ol 1

N

of x. Note that x may be assumed to be arbitrarily long.
‘According to the proof of Theorem 1 any subword v in s(H)
defines a set of subwords in s(H'). Let <vy> denote the maximal such

subword. Clearly, there exists a éonstantj éz iﬁdependent of v such

that Iv'n(<v>)| 2 l;n(v)] }752" for all n < oy, Let now t and T,

with t + r < M, be the constants of Lemma 5 for H'. Then

! t+M-t) , e+ (M-t) (<x._

(<X_M>)) < Py >)). Moreover, we may assume,

M
possibly by choosing a greater M , that exactly the same components are
nonzero on the both sides of the above inequality. So we conclude that
X, (= SM(X_M)) has a subword gb such that |§6| > IXOI - s, and
w(gb) < w(@r(xo)). Further the word Gr(xo) has a subword g; such
that

*

(*) x_ e A and [g;l 2 IQT(XO)’ = S,-

We may also suppose that E} satisfies the first inequality in (i).

This follows since for ¢' in (b)

FoaG) 24, - sy 2P

where s3 = sl + 252 ,
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if only x 1is long enough. So
(*%) #c"(g;) > pllg;i for some c" ¢ [c] .

Now we estimate the length of x  under the assumption
r

c % )} . We first observe that if ¢ itself is not in Zg (i.e.

s,H »H

it is in Z ) it is anyway very near to a letter from I . This
ng,H yay Y g,H
has been shown in the proof of Lemma 3, where the limit m is also

given. From this we conclude that X contains at least (3m)-l(pllx|

growing letters. So, assuming r = IZ[ s

x| = Ixg] - 20 + Gm 7o x| - s
> |x| -8y - 2r + (3m)_l(pl[x| - sl)
= alxl - R

for constants o and R' with o > 1. Hence also
(Fk) |§r| > alx] - B
for some constants o and B with o > 1.

Let now w be any subword of W such that its all sub-

%
words from A  satisfy the second condition in (i). Then any sub-

— *
word of Gr(w) from A contairms at most Py + 2qr  occurrence of any

fixed letter from [c] , which means, by (*) and (**) that ;& is not

—r
a subword in 6 (w) if only =x dis long enough. So x,. in Woar must

be derived according to G from a word w' in v containing a sub-

%
word from A  which satisfies the first inequality in (di). But the

- s.)

1
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* . .
longest subword of A in LA obtained in this way, is not longer
than ]xl + 2rq . This follows from (ii) and from the fact that x 1is

the longest subword in W satisfying the first inequality of (i).

Hence

x| = x| -y

for some constant Y. This is contradictory to (***) when x 1is chosen

long enough. Hence c € ZS H and the lemma has been proved.
’

Now we are ready for the main result of this paper.

Theorem 5 The sequence equivalence problem for e-GD2L systems is

decidable.

Proof Let G = <Z,6,w0> and H = <Z,v,w0> be two e-GD2L systems.

We first determine the constants NG and NH of Lemma 3 and put

N = maX{NG,NH,ZIZI}. Then we find, by Lemma 2, the maximal unbounded
subalphabets AG and AH , respectively. If they do not coincide then
the systems are not sequence equivalent,by Lemma 6. So assume that

AG = AH and let this common subalphabet of (G,H) be denoted by A.

Now, we refer to the proof of Theorem 1. We define, like
there, a system G' (resp. H') simulating G (resp. H). The definition
of G' here differs from that in Theorem 1 only in the respect that 22
is replaced by A and that "the contexts of letters" are now longer.

More specifically, the operation rc 1is defined as follows. For

*
X € L rc(x) 1is the shorter of the words: (i) prefN(x), (ii) the
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shortest prefix of x ending with a symbol in A. Similarly, Zfc is
defined when using sufficies. Otherwise, the definition of G' here
is identical to that in Theorem 1.

If all the letters of the reduced versions of G' and H'

are from

N-1 3 N-1 i N N
o=W U 7z, U )M UEEU{shH, Z, ¢ U{sIH)
=0 i=0

then we have no difficulties. Namely, e-GD2L systems G and H are
sequence equivalent if and only if PDOL systems G' and H' are
sequence equivalent, and this latter condition is decidable by Culik and
Fris (1977).

Unfortunately, we cannot be sure that the letters of G' and
H' are from ©O. However, this difficulty can be overgone by speed-up.
To do this we define, for j= 0,...,!2]—1, a PDOL system Gi as
follows. Its axiom is the (i-1)st word in s(G') and its alphabet is
the minimal one needed to define the productions below. For a symbol
(x,a,y) in ©O which has the property that § does not occur either

in x or in y , the production in Gi is

(x,2,5) > Le®), a;, relay...a 7))
(Kc(g'al), a,5 rc(a3...an'§))...

Le(x a ), a, re(y)),

l...an_l

where ajee.a = Glzl_l(a), x = Eizl_l(x) and §-= Eizl_l(y). (Here
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the notations of the proof of Theorem 1 are employed). Observe that

if x and y above are subwords in s(G) , as can be assumed, then

the letters on the right-hand side are from ©. This follows since, by
the proof of Theorem 1, x (resp. y) is either of the length N or
starts with a symbol from A (resp. is either of the length N or ends
with a symbol from A). The productions for the letters containing en-
vironmental symbols are defined similarly. The systems Hi , for

i= O,...,IZI—l , are defined analogoulsy. Finally, by ¢ we mean a
coding defined in the proof of Theorem 1.

Now the proof of the theorem is easily completed.

Indeed,
s(G) = s(H) , if and only if ,
c(s(G")) = c(s(H")) , if and only if ,
c(s(G%)) = c(s(Hi)) for i =0,...,|Z|-1, if and only if
s(G}) = s(H)) for i=0,...,|2]|-1,

where the last equivalence follows from the fact that the alphabets of

Gi and Hi are subsets of 0. [J

The definition of G' din the proofs of Theorems 1 and 5
differ only slightly. So, one may ask why do we introduce these both
simulating systems. The answer is that to be able to define G' of
Theorem 5 some properties of e-GD2L systems, especially Lemma 6, are
needed and to prove these some kind of PDOL simulation is already

necessary.
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By Theorems 3, 4 and 5 e-GD2L systems have many favourable

properties which general D2L systems do not have.
cision problems in Theorems 3 and 5 are undecidable
see Vitanyi (1974). We also want to point out that
form the most complicated class of deterministic L
have the decidable equivalence problem. For CPDOL

is still open.

Indeed, the de-
for PDI1L systems,
e-GD2L. systems
systems known to

systems the problem
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5. Nondeterministic case

In this final section we show that Theorem 1 cannot be ex-
tended to nondeterministic systems. Thisissomewhat surprising since omne
might expect (after Theorem 1) that the strict growth in connection with
context-sensitive rules essentially "blocks" the interaction here, too.
However, because of the parallelism in the rewriting process, it is
possible to use nondeterministic strictly growing context-sensitive

rules to control the derivation, as it is done in the next proof.

Theorem 6 For any ETOL language 1L there exist an s-G2L system G,

homomorphism h and a regular set R such that
L="h(LG)) NR.

Proof Without loss of generality we may assume that L 1is genera-
ted by a propagating system, see Rogenberg and Salomaa (1976). (We
consider languages modulo the empty string A). Let L = L(H) for a pro-
pagating ETOL system H = <Z,V,{tl,...,tr},w}. Br each i =1,...,r

we define a homomorphism e Z* - (ZU{i})* by
ci(a) = ai , for all a € L.
A s-G2L system G 1is now defined. Its alphabet is
£ =2 UL, 0k} U deys, #,

where S denotes the axiom. The productions of G are as follows



31

S - ci(w) for i=1,...,r
($,a,i) ~» ck(a) for i,k =1,...,r ace i, if a-> o0 € tk’
(i,a,i) ~> ck(a) for i,k = 1, , ¥, a € L, if a > d ¢ tk’
(i,a,k) = ## for j,k=1,...,r, j + k, ae?l,
(i,e,k) ~ ## for j,k =1,...,r, j ¥ k,
(i,e,i) = ek for i,k =1,...,r,

i ek for i,k =1,...,r,

# > ##

b

Let h : Zi + (Z U {s,#)  be a homomorphism defined by

h(e) h({i) = X for i=1,...,r
and

h(a) otherwise.

It
jobd

Then it is easy to see, by induction on the length of the derivation,

that for any derivation

according to H there exists a derivation

according to G such that h(Xi) =W, for i =0,...,0n . Moreover,

contains only one type of letters from

each of the words ' X

XgseeesX 1

{1,...,r}. This follows since if a word containing two different
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numbers, i.e. j and k with j + k , appears to any derivation
according to G , then the derivation is immediately 'blocked" by the
fourth or fifth rule, i.e. no terminal word is obtained later. Hence

we conclude
*
L=nh@G))Nn Vv

and the theorem is proved.
As a consequence we can demonstrate the imposibility of a
simulation similar like in Theorem 1 for the nondeterministic e-G2L

systems.

Theorem 7 There are s-G2L language, and therefore also e~G2L

languages, which are not in <<EOL (= XEOL)'

% . By Theorem 6

Proof Consider any language L in ‘fETOL ~ “ROL

we can write L = h(LO) N R where h 1is a homomorphism, LO an e-G2L

language and R a regular set. Assume that L since ¥

i d
0 -~ “EoL ? EOL

is closed under homomorphisms and intersection with a regular set,

also L € &%OL’ a contradiction.
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