PETRI NET LANGUAGES AND THEIR APPLICATIONS
by
M. Yoeli and A. Ginzburg
Department of Computer Science

Technion, Haifa, Israel

Research Report CS-78-45
November 1978

This work was done whilst the authors were visiting the University
of Waterloo. The research work was supported by Natural Sciences and
Engineering Research Council Canada grant A-1617.

PETRI NET LANGUAGES AND THEIR APPLICATIONS

by

M. Yoeli and A. Ginzburg

Abstract

This report provides an easy introduction to Petri nets and
their languages and demonstrates the applicability of Petri net

languages to the study of systems involving concurrency.

1.1

PETRI NET LANGUAGES AND THEIR APPLICATIONS

1. TINTRODUCTION

An extensive literature is presently available demonstrating
the suitability of Petri nets to the modelling of discrete-event systems
involving parallel processing. We refer to [PET 77] as introductory
survey of most of this literature.

On the other hand theoretical studies are available [PET 761,
[HACK], treating Petri nets from the viewpoint of automata and formal
language theory.

In this Report an effort is made to combine these two approaches
to Petri nets; namely, it provides an easy introduction to Petri nets and
their languages and demonstrates the applicability of Petri net languages
to the study of systems involving concurrency.

We assume the reader is familiar with the elementary concepts of

formal language theory.

2.1

2. PETRI NETS AND THEIR LANGUAGES

PETRI GRAPHS AND PETRI NETS

Def. 2.1 A Petri Graph is a 3-tuple

G= (P, T, R)

where P {pl,...,pn} is a finite, nonempty set of places

T

{tl,...,tr} is a finite, nonempty set of transitions
R is a binary relation on PuUT satisfying the condition
R c (PxT) u (TxP)
In the sequel w will denote the set of non—-negative integers.
A Petri Net N is a pair (G,m) where m is a marking of G, i.e. a
function m: P-w.
A Petri net N is conveniently represented in the following
graphical form.
A place Py is represented by a circle labelled by 1] : (:>p,.

1

A transition tj is represented by a bar labelled by tj) tj'

The binary relation R is represented by directed edges from
places to transitions or vice versa, in the usual way.

Finally, the integer k=m(pi) is written inside the circle
representing the place P, Usually, one does not write O inside the
circle and frequently the integer k is replaced by k dots (also called

tokens) .

Example 2.1 Let N, = (P, T, R, m),

1
where P = {pl,...,p6}, T = {tl"°"t4}’

R = {(yst))s (prt))s (gaty)s (0yot3)s (Bsst,)s (Bgrts)s

(t15p)s (£55p,)5 (£55p,)5 (t3,p3)5 (£5:05), (t,,pg)},

and m(pl) = m(p4) = m(p5) =0, m(p,) = m(pg) =1, m(p3) = 5.

2.2

The Petri net Nl is represented by Fig. 2.1.

A A
\@/

AT

Fig. 2.1 The Petri net Nl'

Example 2.2 Let N2 = (P,T,R,m),
where P = {p;}, T = {t;,t,}, R = {(p;,t,), (£;,p))}, and m(p;) = O.

The Petri net N, is shown in Fig. 2.2

2

Fig. 2.2 The Petri net NZ'

Example 2.3 Another Petri net N3, is shown in Fig. 2.3.

Fig. 2.3 The Petri net N

3°

2.3

Petri nets are used to model dynamic systems, changing in time.

In order to simulate such changes, so-called firing rules for Petri nets

will now be defined. Such "firing" will not change the Petri graph G

but may change the marking m into another marking m' which is again a
function m' : P»w. A further "firing" (in accordance with the given
firing rules) may lead to a marking m', etc. Various markings of G
correspond to various states of the dynamic system simulated by G with its
markings.

FIRING RULES

Def. 2.2 The transition tj of the Petri net N = (G,m) is enabled iff

every input place Py of tj’ i.e. piRtj’ satisfies the condition m(pi)>0.
Note that according to this definition, a transition tj which

has no input places. is always enabled. In each of the Petri nets

Nl’ N2, and N3, (see Figs. 2.1, 2.2, 2.3) the transition ty only is

enabled.

Def. 2.3 The firing of an enabled transition tj consists of removing one

token from each input place of tj and adding one token to each output

place of tj (i.e. a place Py such that thpk). More formally, the firing

of tj changes the marking m of G into the marking m' as follows:-

(1) (py €P) piRtj A "'IthPi =n'(p;) =m(p) - 1
(2) (Yp; € P)— piRtj A tiRp; = m'(p) =m(p;) +1

(3) For all other places Py (including those which are both an
input and an output place of tj), m'(pi) = m(pi).
Notice that only enabled transitions may fire. We write

t,
m—bm' to state that the marking m' is obtained from the marking m as a

result of firing the transition tj.

2.4

+ s . , ‘s
Def. 2.4 Letw €T , i.e. w is a finite string of transitions

t. t, ... t, . wis called a firing sequence of the Petri net
11 32 \y)

N = (G,m) iff there exist markings My seeesmy such that

t. t. t,
I1 Iy Iy,
M5, M5 e eI

. , \
In this case we write m~—+m£.

We now bring some examples of firings and firing sequences. It will be
convenient to represent a marking m : P»w by the n-dimensional vector

(m(pl),...,m(pn)). For the Petri net N1 (Fig. 2.1), t1t2tl is a firing

sequence. Indeed,

t t t
(0’135303031)__]4(1’095sOsO’l)_A(Oalsq”lao’l)"—]:—)(l’osz*sl’()’l) .

Note that under the marking (0,1,4,1,0,1) both transitions tl and t3 are

enabled. Hence t,t,.t, is also a firing sequence for N The following

17273

are examples of firing sequences for N2 (see Fig. 2.2).

lo

t t t t t
1 (3)—2(2)—2+(3)

(0)

For N3 of Fig. 2.3 we have, for example,

! ! £2 ‘3
(0,0’4).__..__;(1’0’4)______>(2’0’4)__>(]_’l’3)__.>(2’0’4)

!) Y £y
(030’4)_——'*(130’4)—4(0’193)_—'—*(19133)—_—*(0’2’2)

Notie that in a Petri net N more than one transition may be
enabled simultaneously. We postulate that only one transition may fire

at a time, but no priorities are assigned. Thus, starting with a given

2.5

marking, various firing sequences may occur.
One easily finds examples in which the firing of one enabled
transition converts another enabled transition into a non-enabled

transition. See e.g. Fig. 2.4.

Fig. 2.4

AN TLLUSTRATIVE APPLICATION

Consider two cooperating processes, one called the PRODUCER and
the other the CONSUMER [DIJ]. The PRODUCER may produce any quantity of
a certain item. Each time the PRODUCER produces an item it deposits it
in a store of finite capacity (M items), provided the store is not full.
The CONSUMER may take an item from the store, provided the store is not
empty, and consume it, before it is allowed to access the store again.
The problem is to design a system which will coordinate these two
processes. The Petri net Nl of Fig. 2.1 represents such a system for
M=5. The transitions tl’tz’t3’t4 correspond to the actions of producing,
depositing, taking and consuming, respectively, and will be denoted in
the sequel by p,d,t, and c.

Later on we shall provide a formal proof that any firing

sequence of N, corresponds to a sequence of actions of the PRODUCER-

1
CONSUMER system obeying the above rules, and viceversa: to every such
"legal" sequence of actions corresponds a firing sequence of N -

For example, the following firing sequence of Nl

pdpdpdtctpedpd

2.6

clearly represents a legal sequence of actions. The following observations
may serve as an intuitive justification of our claim.

For any firing sequence of Nl we must have:
(1) The sequence must start with p and between any two occurrences of p
there must be an occurrence of d and vice versa.
(2) In the sequence t must appear before c and between any two occurrences
of t there must be an occurrence of ¢ and vice versa.
(3) The number of t's cannot exceed the number of d's and the first
occurrence of d must be before the first occurrence of t.
(4) The number of d's less the number of t's must not exceed 5.

Note that any prefix of a firing sequence is itself a firing

sequence and thus satisfies the above restrictions.

PETRI NET LANGUAGES

Evidently, not every word w € T+ is a firing sequence of a given
Petri net N. Thus a Petri net can be used to define subsets of T+, i.e.
languages over the alphabet T. Formally, we define
Def. 2.5 The set of all firing sequences of a Petri net N is called the
language of N and will be denoted by L(N).

For the Petri net Na of Fig. 2.5(a) we have

t /t3 tl t3

tz\/ (a) £, / (b)

~

Fig. 2.5 (a) Petri net Na (b) Petri net Nb

2.7

}. For the net of Fig. 2.5(b) we obtain

L(Na) {tl, tss £t

L(N3) = {tl, t3, tltl, tltZ’ tlt3, t3t3, tltltZ’ tltZtl’ tlt2t3, tlt3t2,

byt tys Lyttt tltztltz}.

The Petri net N of Fig. 2.6 describes two sequential processes
A and B, operating concurrently, but independently. Process A consists

of action t followed by action t2' Similarly, process B consists of

l’
action t3, followed by action t4.

t4'

~——

Fig. 2.6
The language of this Petri net, given below, represents all
possible partial and complete action sequences, provided no two actions
occur at the very same moment.

L) = {t), tg, tyty, Tytg, taty, tot,, titoty, titot), titgt,, tat b,

t.t, t

E1tytys Baty .ty

t3tlt4, t3t4tl, tlt2t3t4, t1t3t2t4, tlt3t4t2, t3
t3t4tlt2}
The above three languages are finite and could thus be defined by finite

automata. However, the automata defining the last two languages will

have a comparatively large number of states.

2.8

Consider now the Petri net N of Fig. 2.7.

Fig. 2.7

Its language L(N) can easily be characterized as follows
w € L(N) » w € {tl,t2}+ and for every prefix u of w,
0 < #(tl,u) - #(tz,u) <3

where #(t,w) denotes the number of occurrences of the letter t in the
word w. It is easily seen (see Chapter 4) that the language L(N) is

regular. Indeed, it is defined by the finite automaton shown in Fig. 2.8.

t t. t

S(is the initial state

All states are final.

Fig. 2.8

The above Petri net languages were all regular. However it can
be shown that the language L(N2) (see Fig. 2.2) is not regular. L(Nz) can

be characterized as follows:-

2.9

w € L(Nz) ey € {tl,t2}+ and for every prefix u of w, #(tl,u) > #(tz,u).

This language is context-free. It is generated by the following context-—
free grammar:

S > 88§

S > t. St

S >t S

St

S >t .t

So far we have defined the language L(N) for a given Petri net
N as the set of all firing sequences of N. It is often useful to con-
sider only such firing sequences which lead to a marking in a prescribed
set F of final markings. Formally, we define for a given Petri net
N = (Gym) and a given set F of markings of G:
Def. 2.6 L) = {w ¢ T" | (I’ ¢ F) n-Dm')
E.g., consider the concurrent processes A and B represented in Fig. 2.6.
If one wishes to represent only the complete action sequences, this can
be done by means of the language LF(N), where N is the net of Fig. 2.6,
and F = {(0,0,0,0)}. This language becomes

LF(N) = {tlt2t3t4, Brtatytys EiEgE, Ly, Lot tot,,

t3tlt4t2, t3t4tlt2}.

As another example, consider the Petri net N2 of Fig. 2.2 and
let ¥ = {(0)}. Then L (N,) = {w € L(N,) | #(ty,w) = #(t,y,w)}. This

language (together with the empty string A) is known as l-type parantheses

language or l-type Dyck language and is well known to be context-free,

but not regular [HO - UL]J.

2.10

Its context-free grammar is:

S -+ 8§

S - tlSt2

S » tt,

We now introduce an additional way of associating languages
with Petri nets. Namely, let N = (P,T,R,m) be a Petri net, I a finite
alphabet and n a mapping n: T + £ u {1} where A denotes the empty string.
The mapping n may be interpreted as a labelling of the transitions of N
by letters from X and A. Notice that more than one transition may be

labelled by the same letter. It is customary to omit the label X.

We call the triple [' = (N,Z,n) a labelled Petri net and, define

the languages L([') and LF(P) as follows.

Def. 2.7 L) = n@LM)) = {nw) | w € L(N)}
LF(P) = n(LF(N)).

One may of course consider a Petri net N as a labelled Petri net with

Z =T and n the identity mapping.

3.1

3. VECTOR ADDITION SYSTEMS

In this chapter we introduce the concept of Vector Addition
System [KA - MI] and discuss some of its properties. These systems are

very useful for the study of Petri nets.

Def. 3.1 An n-dimensional Vector Addition System (VAS) is an ordered pair

A= (V,2)
where V is a finite set of n-dimensional integer vectors and z is an
n-dimensional vector of non-negative integers.
Recall that w denotes the set of non-negative integers. For a
. n ' n
given x € w and v € V such that x' = x + v € v we set

V.o
XX .

Similarly to Def. 2.4, we now introduce the concept of a firing sequence
in a VAS.
Def, 3.2 Let w € V+, i.e. w is a finite string of vectors w = VVgeesVy.

w is called a firing sequence of the VAS A = (V,z) iff there exist

. n
vectors zl,...,zz in w such that

v v v

L z 2, z--—&+z
zZ Ll’ l L2,ooo, 2/_1 2/-

W
In this case we write z—~+zg as well as z +w = zg - Clearly, if z—y+z£

then for every k, 1<k<Q, z = z+vl+...+vk =0

Example 3.1 Let Al be the 6~dimensional VAS Al = (V,2)

where vV = {vl = (+1, -1, 0, 0, 0, 0)

(-1, +1, -1, +1, 0, 0)

Vz =
V3 = (09 0, +1, -1, +1, -1)
v, = (0, 0, 0, 0, -1, +1)}

3.2

and z = (0,1,5,0,0,1).
W= ViV is an example of a firing sequence in Al' Indeed

V1 i V1
(03135903031)‘—_~+(13035303091)'_—)(031343190’1)__"'*(130:491,0’1) .

Example 3.2 Let A2 be the 3-dimensional VAS A2 = (V,z)

‘where V = {vl = (-1,2,0), v, = (1,-3,2), vy = (0,0,-1)}

z 4,0,1).
We have

V1 V3 V1 Vo
(4,0,1)—>(3,2,1)—=>(3,2,0)—=(2,4,0)—2+(3,1,2) .

Thus w = ViVaVyV,y 18 a firing sequence of AZ.

Evidently Vi3V, is not a firing sequence of A2.

Def. 3.3 The set of all firing sequencesof a VAS A is called the language
of A and will be denoted by L(A).

Def. 3.4 The reachability set R(A) of a VAS A is the set

R(A) = {x | (Qw ¢ V+) 2%} U {z}, 1i.e. R(A) consists of all vectors in
w™ "reachable" from z by applying to it a firing sequence of A and the
vector z itself.

There exists an obvious relationship between Petri nets and

VAS's. Namely, let N = (P,T,R,m) be a Petri net and let us assume that

N is selfloop-free, i.e. N does not contain a configuration as shown in

Fig. 3.1.

Fig. 3.1

3.3

Note that N is selfloop-free, iff RnR_l = ¢. Let z be the n-dimensional

vector (m(pl),...,m(pn)), and associate with every transition tj the

n-dimensional vector vj = (Vj[l],...,vj[n]), where
-1 if piRtj
v,[i] = +1 if t . Rp,
]] 1

0 otherwise
In view of the above restriction of N, vj[i] = 0 implies that no edge
exists in either direction between 1 and tj. Let V be the set of all
vj's corresponding to transitions tj € T. The pair A = (V,z) is a VAS,
which corresponds to the Petri net N. Evidently, L(A) = L(N), and R(A)
represents in the obvious way the set of all markings m' reachable from
m by applying a firing sequence of N. The VAS Al of example 3.1
corresponds to the Petri net Nl of Example 2.1.

- It is noteworthy that the restriction to selfloop-free Petri
net is essential in order to always have L(A) = L(N). 1Indeed, the
language of the Petri net Nof Fig. 3.1 is the empty set. On the other
hand, in the VAS A corresponding in a ''matural" way to N, the vector v
representing the transition t would be v = (-1+1=0). Thus A would
become A = (V={v=(0)}, 2z=(0)), and its language L(A) becomes L(A) = V+.

Vector Addition Systems have applications beyond the represent-
ation of Petri nets (see [KA-MI]). For our purposes, we are especially
interested in the question whether for a given VAS A, R(A) is finite.
The answer can be given using the following algorithm due to Karp and
Miller [KA-MI]. Given an n-dimensional VAS A = (V,z), we construct a

corresponding rooted tree (A rooted tree is a connected, directed graph,

in which every vertex except one, the root, has exactly one incoming edge.

3.4

The root has no incoming edge), labelled by vectors in W',

(1) The root is labelled by =z.

(2) 1If n is a vertex labelled by the vector 2(n), and there exists an
ancestor & of n (i.e. there exists a directed path in the rooted tree
from the vertex £ to the vertex n), such that 2(n) = ¢(¢), then n is a
leaf of the rooted tree, i.e. has no outgoing edges. Otherwise, the
immediate sucessors of n are in one-to-one correspondence with the non-

negative vectors £(n) + vy (viEV) and are labelled by these vectors.

Theorem 3.1 [KA-MI] (a) The above rooted tree is always finite.
(b) R(A) is infinite iff there exists a leaf n such that 2(n) = 2(&) for
some ancestor £, but 2(n) # 2(&).
Proof (a) Assume the tree is infinite. Since each vertex has a finite
number of immediate successors, Kénig's Infinity Lemma applies. Thus
there exists an infinite, directed path nl,nz,..., in this tree. Now
consider the infinite sequence of vectors Z(nl),l(nz),... . Extract
from this sequence an infinite subsequence nondecreasing in the first
coordinate, extract from this subsequence an infinite subsequence of
vectors, nondecreasing in the second coordinate, etc. till the last co-
ordinate. Thus the above path contains two vertices ni, nj, such that
i<j, i.e. n; is an ancestor of ny» and l(ni) < Q(nj). But this implies that
n, is a leaf. Hence the above infinite path cannot exist. Thus the tree
must be finite.

(b) Assume there exists a leaf n such that 2(n) = 2(£) for some
ancestor & of n, but 2(n) # &(&§). Clearly, in view of the above
construction of the rooted tree £(£) € R(A) for every vertex & of the

- W .
tree. Thus there exists a firing sequence w such that z—2(&). Since

3.5

£ is an ancestor of n, there exists a word x € V+ such that Q(E)—§+£(n).
Since 2(n) = 2(£), x must be applicable to 2(n) as well. Let d = 2(n)-2(&).
Then d=0, and d#0. Clearly, the application of x to %(n) yields the
vector 2(n)+d, to which x is again applicable, etc. Thus ka is a firing
sequence of A for any k = 0,1,2,... and the corresponding vectors z+kd
are elements of R(A), all different. Thus R(A) is infinite. Conversely,
assume no leaf n exists in the tree, satisfying the above condition. It
is obvious from the construction of the tree, that in this case the set
R(A) coincides with the set of labels of the tree, and thus R(A) is
finite. i

It should be emphasized that some vertex n may be a leaf of the
tree due to the fact that no vector vy € V is applicable to %2(n).

Evidently, the above algorithm can be terminated as soon as a
leaf n is reached such that 2(n) = 2(£), and 2(n) # 2(&), for some
ancestor £ of n.

Example 3.3 Let A = (V,z)
{Vl = (_l’l)’ Vz = (ls_l)s V3 = (O’_l)}

where \4

and z = (2,0).

The corresponding rooted tree is shown overleaf. 1In the tree, leaves n
such that 2(n) = (&), for some ancestor &, are indicated by circles.
Leaves to the labels of which no vector is applicable, are indicated by
the rhombs. Since all leaves in the tree are only of these two types,

R(A) for this VAS is finite and we have

R(A) = {20, 11, 02, 10, 01, Q0}.

3.6

20

02

@

Example 3.4 Consider the VAS corresponding to the Petri net N3
(see Fig. 2.3). Here

= (]—90’0), v, = (—l,l,—l), V3 = (l,_l’l)y

V1 2
and z = (0,0,4).
The rooted tree becomes:

004

In this tree, the leaf n with the label 2£(n) = 104 satisfies the

condition 2(n) = 2(8), 2(n) # 2(£), where £ is an ancestor of n.

Such a

3.7

leaf is indicated by a square.
The set R(A) in this example is infinite.

In the last example, the use of the above algorithm was very
efficient. On the other hand, for the VAS A = (V={(-1)}, z =(106)), it
is immediately clear that R(A) is finite, while the rooted tree obtained
by the above algorithm will contain 106+l vertices. Similarly the

application of this algorithm to shw that R(Al) for the VAS A, of Example

1
3.1 is finite, is quite tedious, while the following simple observation

yields this result immediately.

Observation Let A = (V,z) be a VAS.

n
If (Vv € V) I +wv[il<0, then R(A) is finite.
i=1
+
Proof 1Indeed, let z' € R(A), i.e. there exists w = v, vj ceeV, €V
1 2 %
such that z—sz'.
2
Hence z' =z+ % v, and
k=1 Jk
n n n 2
n z'[il = = 2z[i]l+ = r v, [i]
i=1 i=1 i=1 k=1 Jk
n 2 n n
= % z[il+ = ov, [1) < © =z[il].
i=1 k=1 i=1 Jx i=1

Clearly the set of non-negative vectors z' satisfying this inequality

is finite. il
Sometimes the finiteness of the reachability set is easily

recognized, even if the condition of the above observation does not hold

in a straight-forward manner. The following VAS (V,z) describes a

simplified version of a solution of the Mutual Exclusion Problem [DIJ]

for two processes.

3.8

vV = {vl = (-1,1,0,0,-1)
v, = (1,-1,0,0,1)
vy = (0,0,-1,1,-1)
v, = (0,0,1,-1,1)}

z = (1,0,1,0,1).

The condition of the above observation does not hold in view of

v, and Ve Note, however, that the applications of vy and v, must

alternate, with vy applied first. The same holds for Vj and vy But

vy + v, < 0, and Vg + \ < 0. Hence the argument of the above observation

is again applicable and the reachability set of the VAS is finite.

4.1

4. PETRI NET LANGUAGES

In this chapter we give various characterizations of Petri net
languages and study their relationship with regular languages.

We first introduce a notation which is very helpful for the
description of Petri net languages.

Let I be a finite alphabet and w a word over I, i.e. w € L%,
pref(w) denotes the set of all prefixes of w, i.e.

pref(w) A {v € Z+ | (Au € %) vu = wl.

#(o,w) denotes the number of occurrences of the letter ¢ € I in w.

Let A and B be disjoint subsets of Z, and k € w. Then [Z/A-B<k]
dnotes the set of all words w € Z+ such that in every prefix of w the
number of occurrences of letters from A less the number of occurrences of
letters from B is not less than k. 1In symbols,

[Z/A-Bsk] A {w € X' | (¥v € pref(w)) A (A,B,v)<k}

where AAB,v) A I #(o,v) - Iz #(o,v).
O€A o €B

If A = {a} or B = {b}, then the corresponding braces { } are usually
omitted in the above symbols. We shall refer to languages of the above

form as A-languages.

The following examples illustrate the application of the above

notation.

)N L(N) = [{e .t} e, -t <3]

4,2

N L(N) = [{tl,tz}/{tl,tz}sﬂ

The following result is essentially due to M. Hack [HACKJ].
Theorem 4.1 For every selfloop-free Petri net N, L(N) can be described
as an intersection of a finite number of A-languages.

Proof Let N = (P,T,R,m), where P = {pl,...,pn}. With every place piE P
we associate the A-language Li = [T/ R(pi) - Rfl(pi) < m)pi)].
. -1 . .
Notice that R(pi) n R (pi) = ¢, since N is selfloop-free.

L..
i

||}

We claim that L(N) =

i=1

Let w € L(N), and n—~m'. Then for any p, €P
m'(p,) = mp,) + AR (), R(p.), W).
i i i’? i’?
Since m'(pi) > 0, we have
AR(p), R7(p,), w) < m(p,).
i’? i”? i

Now w € L(N) implies v € L(N) for every prefix v of w. Thus the last
inequality holds for every prefix v of w. Hence w € Li’ and consequently
n
L(N) c N L,.
= i
i=1
n
Next, we show that w € [Li implies w € L(N), using induction on the
i=1
length of w.

Thus, let w = t € T, and assume t € Li for every 1 < i < n. We have to

4.3

show that t is enabled by m, i.e., (\7’pi € R_l(t)) m(pi) 2 1. 1Indeed,

1

let t € R(pi). Then t § R (pi). Now t € Li = [T/R(pi) - R_l(pi) < m(pi)]

implies 1 - 0 < m(pi)’ as required.
n +
Let us now assume that w € N Li =>w € L(N) for w € T . We have to show
i=1
n
that for t € T, wt € 0 Li =wt € L(N).
i=1
Indeed wt € Li implies w € Li since Li contains together with a word all
its prefixes. Hence, by our induction hypothesis w € L(N). Thus m—ﬂ+m',
for some marking m' of G = (P,T,R). We have to show that t is enabled by

m', i.e.

(Yo, € R (£)) m'(p,) > 1

Notice first that PiRt implies

z #(o,wt) = I _1 #(o,w),
o€R (pi) o€R (pi)

b #(o,wt) = I #(o,w) + 1,
oER(pi) oER(pi)

and

n'(p,) = m(p,) + AR (p,),R(p,) W)

The assumption wt € Li implies
ARG,), R T(p.), wt) < m(p,).
i’ i’ i

Thus X #o,w) +1 - ¢ -1 #(o,w) < m(pi)
oER(pi) o€R “(p,)

Hence m'(pi) > 1, as required. O

4.4

Example We now apply Theorem 4.1 to the Petri net Nl of Fig. 2 1,
replacing the transition labels tl’t2’t3’t4 by p,d,t,c, respectively. As
discussed earlier (see Chapter 2) this net represents a solution to the
PRODUCER-CONSUMER problem. Let & = {p,d,t,c}. We have

L, =[Z/ d-p < 0]

1
L, = [Z/ p-d < 1]
Ly = [z/ d-t < 5]
L4 = [%/ t-d £ 0]
L5 = [%/ e~-t £ 0]
L6 =[%/ t-c £ 1]
6
and L(N,) = N L,
1 . i
i=1

The above six languages correspond to the following six rules
which jointly define the PRODUCER-CONSUMER problem.
(1) Ll - The number of deposits does not exceed the number of productions.
(2) L, - The number of productions may not exceed the number of

2

deposits by more than 1.

(3 L3 - The number of deposits may not exceed the number of takes by
more than 5.

(4) L4 - The number of takes may not exceed the number of deposits.

(5) L5 — The number of consumptions may not exceed the number of takes.

(6) L6 - The number of takes may not exceed the number of consumptions

by more than 1.
A word is in L(Nl) iff it satisfies these six rules simultaneously.
This example demonstrates the suitability of A-languages to both

the formulation of problems concerning concurrent processes and the

4.5

verification of their solutions.

Frequently it is convenient to describe Petri net languages by
means of the so-called shuffle operation, which we denote by |1.
Def. 4.1 Let I be a finite alphabet, and x € I*, y € L*., The shuffle
x]]y © Z* is defined recursively as follows.
(1) xlIx = {2}
(2) TFor every o€Z, col|x = A]]o = {o}
(3) Let 0€L, tT€X, x€I%, y€r*,
Then ox| |ty = {o} « (x|]zy) U {1} - (ox]]y).
In words, if x = 0102...0n and y = T3 Tge st Ty then x||y is the set of all
strings of length n+k, such that all the oi's and'%'s appear in them
exactly once, with the only restriction that the relative ordering of the
Gi's is the same as in x, and the relative ordering of the Tj's is the
same as in y. For example,

abcl|de = {abcde, abdce, abdec, adbce, adbec,

adebc, dabce, dabec, daebc, deabc}

For subsets Acl®* and BcI* we set

AllB ={xlly | x € AAny € B}
Let Nl = (Pl,Tl,Rl,ml) and N2 = (P2,T2,R2,m2) be two Petri nets such that
Plan = Tln'I‘2 = ¢. Consider the Petri net N = (PluPz,'TluTz, R1UR2’ mlumz).
It is easily seen that

L(N) = [L(Nl) I L(Nz)] u L(Nl) U L(Nz).

For example, consider the Petri net of Fig. 2.6, and let Nl and N2 denote
its two disjoint parts. Then L(Nl) = {tl,tltz} and L(NZ) = {t3,t3t4}.
One easily verifies that the language L(N) for this net (see p. 2.7)

satisfies the above equality.

4.6

It follows immediately from Def. 4.1 that the shuffle operation
is commutative and associative. In order to describe languages LF(N)
(see Def. 2.6), we introduce the following notation:

[Z/ A-B = k] = {w € Z+ | A(A,B,w) = k}.

Let N = (G,m) be a selfloop-free Petri net and let F = {m'}.

We associate with every place 1 of N the language
L, =[1/ R, - R (p,) = m(p,) - m'(p,)]
i i i i i

Then one obtains
n -
L{m,}(N) = 121 (Li n Li)
In general, we have
Theorem 4.2 For every selfloop-free Petri net N = (P,T,R,m) and every
set F of final markings of G = (P,T,R),
Le®) = U Liy 00,

In view of Def. 2.7, the language L(I') of a labelled, selfloop-
free Petri net [= (N,I,n) can be obtained by applying the mapping n to
the intersection of A-languages representing L(N).

Furthermore, we have
Theorem 4.3 Let L be the intersection of a finite number of A-languages
over a given alphabet I. Then there exists a selfloop-free Petri net N
such that L = L(N).

T
Proof Let L = {1 L, where
T i=1 *

L, =[Z/ A_-B, <k, 1.
1 1 1 1

4.7

Let N = (P,I,R,m), where

P = {pl""’pr+l} and for every i, 1 € i < r,

-1

R(p;) = A;, R (p;)

il

Bi’ and m(pi) =k,.

-1 _ -
Also, R (pr+l) =3, R(pr+l) ¢ and m(pr+l) = 0.

By Theorem 4.1 we have
n
L) = N Li n L% =1L.
i=1 0
The Petri nets considered in Theorem 4.1 were assumed to be

selfloop-free. 1Indeed, consider the Petri net N of Fig. 4.1, which

contains a selfloop.

tz Fig. 4.1

Evidently, L(N) = tlT*. However, this language cannot be
obtained as intersection of A-languages. Indeed, a A-language is of the form
[/ A-B < k]. In this case, it is useless to let I contain letters not

in T, since T < I implies [IL/ A-B < k] n T* = [T/ AnT - BnT < kJ.

Hence we have to consider only A-languages of the following forms:

< k], L, = [T/T < k1],

L 3

1 [T/tl <kl, L, = [T/t

2 2

L

4 [T/tl—t <k], L

9 5 = [T/tz—t < k1.

1

Evidently, L(N) cannot be contained in any language of the above forms.

4.8

This example shows that the restriction of Theorem 4.1 to self-
loop-free Petri nets is essential.

On the other hand, the above language L(N) can be obtained by
applying the mapping n = {(tl,tl), (t2,t2), (tB,A)} to the language L(N'),
where N' is the selfloop-free Petri net of Fig. 4.2.

t,

Fig. 4.2 Petri net N'
Indeed, let w € L(N). Replace in w every appearance of t2 by
tytg. The word obtained is clearly a firing sequence w' of N' and
n(w') = w. Conversely w'€ L(N') must begin with tl. Hence

nw') €t {tl,tz}* = L(N).

1
By applying the same argument to every selfloop of an arbitrary
Petri net, we obtain

Theorem 4.4 TFor every Petri net N, L(N) can be described as a homo-

morphic image of an intersection of a finite number of A-languages.

4.9

PETRI NET LANGUAGES AND REGULAR EXPRESSIONS

We have already discussed various examples of Petri nets the
languages of which were regular expressions. Moreover, we have
Theorem 4.5 For every regular language LR there exists a labelled Petri
net ' with a set F of final markings such that LF(P) = LR.
Proof Let A = (Q,Z,S,qo,FA) be the finite automaton recognizing LR.

We defipe [' = (P,T,R,m,%,n) in the following way:

]

P Q; for each transition in A §(q,0) = q' introduce a
transition t € T and set qRt, tRq', and n(t) = 0. Define m by m(qo) =1
and m(q) = 0 for every other q £ P; finally associate with every 9 € FA
a final marking m' € F such that m'(qF) =1 and m'(q) = 0 for every other
q € P. It is evident from this construction that the automaton A is
precisely simulated by [, thus LF(A) = L(A) = LR. D
Consider now a labelled Petri net ' = (N,Z,n), where
N = (P,T,R,m), together with a set of final markings F. Let M(N) be the
set of all markings of (P,T,R) reachable from m; i.e.
M(N) = {m' | (3w € L(N)) m—om'}.
If M(N) is finite, then LF(P) is regular. Indeed, [' may be simulated by
a finite, non-deterministic automaton A, the state set Q of which is M(N).
Whenever m~—£+m and n(t) = ¢ in [, let m, € G(ml,d). Furthermore,

1 2
q, = m, and FA € Q is the set F, = F n M(N). Then L(A) = LF(P).

A
An easy application of the above results is the following.
Theorem 4.6 Let Ll and L2 be regular languages. Then Ll I L2 is regular.
Proof Let Pl and PZ be the labelled Petri nets generating Ll and L2
respectively, and let I = Pl U P2' Then L(I") = L1 11 L2. Now the set of

markings reachable from Pi (i=1,2) is finite. Since Fl and Pz are both

disjoint parts of [', the set of markings reachable from [* is also finite.

4.10

Thus L(I') is regular. O
For a proof of this result without the use of Petri nets, see
[EIL].
The finiteness of M(N) is a sufficient but not necessary

condition for LF(P) to be regular. For example, the Petri net

Y

N
<:> Py

defines the regular language L(N) = {tl}+. However M(N) is evidently
infinite. Fig. 4.1 provides an additional example of this type.

In [GI-YO] necessary and sufficient conditions are established for
Vector Addition Systems to define regular languages, and an algorithm is
designed to decide whether these conditions are satisfied. These

results are, of course, immediately applicable to Petri nets.

REFERENCES

[p1J]

[EIL]

[cI-Y0]

[HACK]

[HO-UL]

[kA-MI]

[PET 76]

[PET 77]

E.W. Dijkstra, Cooperating sequential processes, in:
F. Genuys (ed.), Programming Languages, Academic Press, 1968,
pp. 43-112,

S. Eilenberg, Automata, Languages and Machines, Vol. A,
Academic Press, 1974,

A. Ginzburg and M. Yoeli, Vector additdon systems and
regular languages, Research Report CS-78-43, Dept. of Comp.
Sci., Univ. of Waterloo, October 1978.

M. Hack, Petri net languages, Tech. Report 159, Lab. for
Comp. Sci., Mass. Inst. Tech., March 1976.

J.E. Hopcroft and J.D. Ullman, Formal Languages and their
Relation to Automata, Addison-Wesley, 1969.

R.M. Karp and R.E. Miller, Parallel program schemata,
J. Comp. Syst. Sci, 3, (1969), pp. 147-195.

J.L. Peterson, Computation sequence sets, J. Comp. Syst. Sci.,
13 (1976), pp. 1-24.

J.L. Peterson, Petri nets, Computing Surveys, 9, (Sept. 1977),
pp. 223-250.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

