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Abstract

The theory of regular languages and the theory of finite monoids
are closely related to each other. Many families of regular languages
have been completely characterized by the corresponding family of (finite)
syntactic monoids. 1In this paper we define, by means of congruences, a
family of languages which correspond to finite nilpotent groups; the
congruences are defined by counting subwords modulo some integer. By
taking into account the context in which a subword appears, it is possible
to define recursively a larger family of languages; it is shown that this
other family corresponds to finite solvable groups. The congruences that
we are using are powerful enough to characterize some important structural

properties of the syntactic monoids.
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1. INTRODUCTION

There is a deep relationship between the theory of regular languages
and the theory of finite monoids. In fact, to each regular language we
can associate its syntactic monoid, necessarily finite, and conversely,
looking at a finite monoid as a semiautomaton, we can associate to it the
set of languages, necessarily regular, which it can recognize for some choice

of final states (the initial state being fixed as the unit of the monoid).

The importance of the relationship above can be seen in the fact
that many families of regular languages have been characterized by the
corresponding families of monoids. The most spectacular result of this
kind is certainly the correspondance between the family of star-free

languages and the family of group-free monoids (Schutzenberger [55]).

An approach commonly used is to define some family of congruences
on A%, the free monoid generated by a finite alphabet A, and then investigate
the set of languages which are unions of congruence classes for some
congruence in the family. Among the interesting families of monoids that
have been characterized completely by corresponding families of congruences
are: '"locally testable' monoids (Brzozowski & Simon [72] , McNaughton [74]),
J-trivial monoids (Simon [72]), p~groups (Eilenberg {76]) and recently R~

trivial and L-trivial monoids (Brzozowski & Fich [7@]).

In this paper, we define by congruences the family of modulo
languages and we establish the correspondence of this family with the set
of finite nilpotent groups. Modulo languages can be defined by the sole

operation of counting subwords modulo an integer. This serves as a basis



step in the recursive definition of a family of languages which we call
counting languages; this family is shown to correspond to finite solvable
groups. Furthermore, the congruences we are using are powerful enough to
characterize some important structural properties of the corresponding
groups. Using different techniques, Straubing [7%] was able to give a
language characterization for these families of groups; his main result
was a classification of the languages corresponding to solvable groups
according to the derived length of their syntactic monoids. The results
that we obtain by using congruences include this classification as a
special case; other natural classifications for the same family of
languages are also derived. Moreover, in Thérien [7%], it is shown that
the congruences used here have an analogous counterpart in the aperiodic

(i.e. group-free) case.

First we introduce the definitions and the notation used in this paper.
A monoid is a set M together with an associative binary operation and an
element e of M such that em = me = m for all m € M; this element is called

the unit. M is a group iff for each element m in M there exists an element

m--l of M such that mm_l =m m = e; it is customary to use the symbol 1

for the unit of a group. The operation on M can be extended to subsets of

M and for M,, M, C M we define M

1’ 2 1 1Mp°
M1 = {m} (MZ = {m}) we abbreviate this to mM2 (Mlm). We write Ml1 for

M2 = {m m e Ml’ m, € MZ}; if

Ml"‘ 1° i > 1, and we extend this to the case i = 0 by defining M 0. {e}.

1

i times
Let A be a finite set and A% =f§oAi be the free monoid generated by
A with the empty word ) acting as unit. The length of w € A* is defined by

lw| = 1 iff w e A"; note that the set of all words of length < i is given by



(A LJA)l. A language is a subset of A*. The word x is a segment of the word w iff

W = uxv, for some u, v in A*. The word x = a,...a , a; € A, is a subword of w iff

N

WS Waa Wyee.d W for some WyseoosWy € A*, We use the convention that
ai...aj = X if j < i; we extend this notation to sequences over arbitrary
sets, i.e. the sequence (Xi""’xi) of elements of X is empty whenever
j < i

A binary relation ™~ on A* is a subset of A% X A%; we write x v y
when (x,y) € v. The relation ~ is an equivalence of finite index iff
n partitions A* in a finite number of disjoint classes Exl]m,...,[_x;_\m
such that A* = L)[gé]m where Ix]m = {y: x v y}; we write [g] when v is
understood. The equivalence relation ~ is a right (left) congruence iff
x Vv y implies xu v yu (ux v uy) for all u € A%; it is a congruence iff it
is both a right and a left congruence or equivalently if X ~ Yo % Y,
implies XX, 4y Y1Yq- The set of congruence classes forms a monoid A*/n
with multiplication [x][yj = [xél and unit EX}. We say that ~ is a group
congruence iff A%*/v is a group; in this case we use y-l to denote any
word w € [j]—l. In particular the universal congruence, x vy for all x,
y € A%, is trivially a group congruence since A*/n = {1}. For a given
equivalence Vv, L is a “vlanguage iff it is the union of classes of ~. A

"~y language is regular iff there exists a congruence of finite index
Vo such that Ny © Vs thus L is also a mzlanguage. In particular for any
language L, we define the syntactic congruence ELAby

x 2y iff (uxv € L iff uyv € L for all u,v e A%),.
It is always the case that =9 is a congruence and that L is a ELlanguage.
Denote A*/EL by ML; if L is a nlanguage for some congruence v, then
nC =

L and hence IMLI < |a%*/~| where |X| denotes the cardinality of the



set X. Thus L is regular iff ML if finite.

A semiautomaton is a triple 4 = <SA’ AA’ 6A>; we use the notation
S, A and § when it is clear which semiautomaton is involved. S is the
finite set of states, A is a finite alphabet and §: S X A+ § is the
transition function. We extend § to all pairs (s,x) in S X A* by defining

s if x= A
§(s,x) =

|
™

§(8(s,x"),a) if x = x'a.
By choosing an initial state 8y € S and a set of final states S'C S we
get an automaton 4 = <§, A, §, 84 S'> which accepts the regular language

L = {x e A¥%: G(SO,x) e S'}.

With any semiautomaton 4 = <S8, A, &> we associate a monoid AT = A*/n
where ~ is the congruence of finite index defined by
x vy iff for all s e §, 68(s,x) = 6(s,y).

4" is a group iff there exists an integer n such that x* o A for all x e A%,

Conversely any finite monoid M determines a unique semiautomaton
<M, M, &> where § is the monoid multiplication: we call such a semiautomaton

a monoid (or group) semiautomaton.

Let Ai = <Si’ A,, Gi> for i =1, 2. 4

i is a subsemiautomaton of A2

1
iff slgg SZ’ Al - A2 and 61 is the restriction of 62 to Sl X Al' Al is a
homomorphic image of A2 iff Al = A2 and there exists an epimorphism

¢ 82 - Sl with the property that for all s € SZ’ for all a ¢ A2,
¢(62(s,a)) = 61(¢(s),a). Al is covered by AZ’ Al‘< A2 iff Al is a

homomorphic image of a subsemiautomaton of A2. 1f Ai = <Mi’ M,

§,> is a
i’ Ui

monoid semiautomaton for i = 1, 2, this coincides with the notion of M1



being a homomorphic image of a submonoid of M2. The cross product of
Al, and A2 is defined as
Al X A2 = <S1 X 52’ Alﬂ A2, &>
where 6((31,52),a) = (Gl(sl,a), 62(sz,a)). If A, = 8§, x Al’ we define the
cascade connection of Al and A2 to be

Al o Az = <Sl x SZ’ Al, 8>

where 6((31,52),a) = (Gl(sl,a), 62(52,(s1,a))); if x = 8peeeds this

extends to
8((8758,)5%) = (8,(s;,%), 8,(s,,0(x)))
where w(x) = (tl’al)(tZ’aZ)"'(tm’am)’ t, = Gl(sl,al...ai_l) for i=1,...,m.

For more details on these concepts, see Ginzburg [ﬁé].

Finally we recall some elementary notions of modular arithmetic.

Let N be the set of nonnegative integers; we write m | n for m divides n.
For my n, q e Ny, g > 0, m = n (mod q) iff ¢q | m - n; in particular

m = n (mod 1) for all integers m, n. If K is a finite subset of N, lem K
is the least common multiple of the integers in K; if K = ¢, lem K = 1;
if K'C, K then lem K' I lem K. Alsom = n (mod ql) and m = n (mod q2)
iff m = n (mod 1cm{ql,q2}). If 4, | g4 m = n (mod ql) implies m = n
{mod qz). We will denote by %1 the set of equivalence classes of the

integers mod q.



2. ELEMENTS OF GROUP THEORY

In this section, we state some definitions and results from group
theory for later use. Unless otherwise referenced, the content of this

section and further details can be found in Scott [64].

All groups considered are finite. A group G is abelian iff gh = hg
for all g, h ¢ G. A subset H of G is subgroup iff it forms a group under
the multiplication of G; the right (left) cosets Hg (gH) are either equal

. H is normal in G, H4 G, iff g_lhg ¢ H for

or disjoint and IHI | !G
all g € G, h € H. The set of all right cosets then form a group under

the multiplication (Hgl)(ng) = H(glgz) and we denote this group by G/H.
If G has normal subgroup H such that G/H is isomorphic with K, which we

denote G/H = K, we say that G is an extension of H by K.

A normal series of G is a sequence of nested subgroups of G such

that
G0=GbGll> G2|> cee e
For a given prime integer p, G is a p-group 1iff each element is of order
o

P

pa for some o > 0, 1i.e. g& = 1; if IGI = paq with p, q relatively prime,

G has a subgroup of order pa; any such subgroup is called a Sylow p-subgroup

of G.

The center of a group G is the normal subgroup Z(G) = {h: gh = hg
for all g ¢ G}. A normal series

zo={1}<ﬁzl~<\ e Z =6
is a central series iff Zi/Zi_lgg Z(G/Zi—l) for i =1,...,m. G is said to



be nilpotent if such a series exists; it is said to be of class m, if no shorter

central series exists. If H C Z(G) is a normal subgroup of G and G/H is nilpotent of

class m~1, then G is nilpotent of class € m. Also G is nilpotent iff it is the

direct product of a set of representatives of its Sylow p-subgroups.

1.-1

The commutator of g and h is [g,h] = g— h gh. The derived subgroup

Gl = [G,G] is the normal subgroup of G generated by the set of all commutators;

it is always the case that G/G1 is abelian. Let G, = G and Gi = rGi_l, Gi—£1

|5

0

for 1 > 1; Gi is the ith derived subgroup of G. G is solvable of derived
length n iff

G0l> Glb ves D Gn = {1},
that is if the nth derived subgroup is trivial. Alternatively, G is solvable
of fitting length k iff there exists a normal series

F0 = {1} <4 Fl< <}Fk= G
such that Fi+l/Fi is nilpotent.

Let Gab’ Gp for arbitrary prime p, G__.and Gsol denote respectively

nil
the family of abelian groups, p—groups, nilpotent groups and solvable groups;

the following chains of inclusions hold

G, CG..
- ni

ab 1 = Gsol

Gp < Gnil < Gsol

Also each one of these families is closed under homomorphism, finite direct product
and the operation of taking subgroups, i.e. each one is a variety in

Eilenberg's sense (Eilenberg [7@]).

An important result linking the structure of a group G and the

structure of the group semiautomaton <G, G, 8> is the following.



Lemma 2.1: If HQ G, then <G, G, 6>< <Gy» Gl, 51> 0 <Gy, G,, 8,>

with Gl = G/H and G,

Proof: See Ginzburg [ﬁé} or Eilenberg [76].[

=~ H.

Thus for any normal series
= b -
G Gobclb o2 6 = {1}
we have

<G, G, 6>< <Hj, By, 8>0 ... 0 <H, H, §>

1

where Hy = /Gi' From this follows the fact that any solvable-group semi-

G,
i-1
automaton can be constructed with abelian-group semiautomata (or nilpotent-

group semiautomata) provided cascade product and covering are available.

If Nl is a group congruence, i.e. 1if A, = A*/'i1 is a group, subgroups
1 .
have a particularly simple form.

Lemma 2.2: a) H is a subgroup of A, iff H= {{x]}, : =x v, A} for some
1 1

right congruence such that ~ c vy. We will write H for H above.

1 2,1
b) H2,1fd A&ﬁ-lff mz is a congruence; moreover A,\,.I/Hz’1 = Az;
¢) If n C v, Cn, are congruences then Hz’lq H3,l and H3,1/H2,1 = H3’2.
Proof: a) For any right congruence Vo containing Vs the set H2 1
b

is well-defined and it is obviously a subgroup. Conversely, if H is a subgroup,
define the relation v, on A* by x Vo ¥ iff Hx = Hy; this defines a right

congruence such that Ny € Vg each class being a coset; also H = {[x}& PX v Al.
1

b) H2 1‘1‘Am iff y—lxy v, A for all x "y A and for all y in A*. But y—lxy is
b
1 : . -
well defined mod Nz iff Vo is a congruence. In this case y lxy vy Y ly Vo A since
X . S =
vy € vy. Moreover define ¢: A,\l.l/Hz’l -+ A,\I2 by ¢(H2’l[i}ml, txlmj'

i) ¢ is well defined; if Y12 Yo € H2,l’ Xy %l Xy then Y1¥1 Vo X1 Vo Xy Vy YoX,



ii) ¢ is an epimorphism since, for any x in A%, Ei}m = ¢(H2 l[x 0D
2 ’ 1

iii) ¢ is injective since x %2 y implies xy_l ¢2 A3 hence xy_l € H2 1
’

and Hz’l[klml = H2,1[y]ml'

c¢) The inclusion of the subgroups is clear since x %é A implies x ¢3 A

Also for any y € H, ,, and for x v, A, yTle n, A since y_ly “, A . Moreover
3,1 : 2 2 1

it can be verified easily that the isomorphism defined in b) maps

/

onto H

Hy 1/By 1 3,2°

In practice, we often make no distinction between a group and the
corresponding group semiautomaton; we extend this identification to the case
where a group G is given on a set of generators A, this corresponding

naturally to a semiautomaton <G, A, 6> where 8§ is the group multiplication.
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3. MODULO LANGUAGES AND NILPOTENT GROUPS

In this section, we introduce a family of equivalence relations on
A*, These equivalences are defined by counting the number of times that
subwords appear in words, modulo some integer. It is shown that these
equivalences define a family of regular languages, which we call the
family of modulo languages. A characterization of these languages is
given in terms of their syntactic monoids: L is a modulo language iff

ML is a finite nilpotent group.

The following definition and proposition are borrowed from Eilenberg
[767. Let u = ajee.8 s X € A%
1if u= 2

the number of factorizations of x in the form

...a X otherwise
m m

Lemma 3.1: Let u, x, y € A*, a € A. Then
a) ( xy) Z (x (y
u g) 11)

- 2
u=u;u,
b) (a) 31 if u=AXoru=a

0 otherwise;
c) (A} 31 if u= A
u 0 otherwise.

‘abbab abbab
For example, ( )= 4 and ( )= 2.

ab ba
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+ 4
Let £: A + N', where A" = A%\ {A} and ¥ = ¥ \ {0}. We define
supp f = {u: £(u) ¢ 1}

im £ = {n: f(u) = n for some u ¢ A+};

(supp is for support and im for image). Also f is said to be of class m iff
m is the least integer such that supp f € (A U AM)™{A}. Note that the constant
function f(u) = 1 for all u ¢ A+ is the only function of class 0; we denote

this function by 1.

The relation Ve is defined on A* by

X Ve ¥y iff for all u e A+,(x) = (y) (mod £ (u)).
u u

Thus to each word x is associated a vector (finite or infinite)
( (") (mod £(u)), (x) (mod £(u,)),...)
bt Y
where supp f = {ul,uz,...}; the pair (x?y) is in the relation ¢f iff both

words have the same associated vector.

+
Lemma 3.2: Let f: A -~ N+;

a) Ve is an equivalence relation;

b) if supp f is finite, V¢ Is of finite index.

Proof: a) trivial

b) If supp f = {ul,...,un}, the vector associated with x is an element of
chul)%...xzf(un). Since the vector determines the equivalence class, the

index of the relation is bounded by the cardinality of Zf(ul)X...fo(un).C

For example, let A = {a,b} and
2 if u =a or u = ab
f(u) = 3
1 otherwise;
f is a function of class 2 with supp £ = {a, ab} and im £ = {1, 2}; with

each x is associated a vector ((:) (mod 2), (:b) (mod 2)). There are four

classes corresponding to the four elements of 22 X 22: they are
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2] = 0,0, [a]= 1,0, {a8] = @, 1, [aba) = 0,1

"From now on we restrict ourselves to functions of finite support.

0

Let F, = {f: f is of class at most i}, and let 7 = \.F..
i i=0" 1

Lemma 3.3: Let £ ¢ F

a) Ve is a right congruence iff x Ve Y implies (2,) = (Z,) (mod £f(u)) for
all x, y in A%, all u' in A+ and for all u e u'A%;

b) Ve is a left congruence iff x e ¥ implies (}:,) = (z,) (mod f(u)) for
all x, y in A*, all u' in A% and for all u e A%u'.

Proof: We prove only a) since b) can be obtained by symmetry.

Suppose that f is a function such that x %, y and: (x.) = (Z,) (mod £(u)) for

all u € u'A*. We have (iz) = ‘ ( ) but ( ) ( ) (mod £(u)) since
=u; u Y1
u e ,ulA*. Hence (zz) = (zl‘)( z) (med £(u)) E(zx) {mod f(u). Thus x=z Ve Y2
u=u, U,

and Ve is a right congruence. To prove the converse, suppose the condition

does not hold. There exists x, y, u = u'u" such that x Ve Y but (ﬁ;) 3 (Z')

(mod £(u)); choose u' such that the condition is satisfied for all prefixes

of u of length greater than |u'l|;

D200 -2 QUM

u=u U, 1 2 u=u,u, 1
|u2|<Iu"|
{yun v u", ¢y un
Similarly \ ) = j;‘ ( )( )-+( )( ). Because of the maximality
u ;"11 uNu, u''t "
u=y, 4,
lu, [ <]u|

X Yy
assumption on u', we have( ) ( ) (mod f(u)) when |u2[<|u"|; thus
uy uy
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u u u u'

(XunJ _ (yun) N (x) _(Y) (mod £(u)) ¥ 0 (mod £(u)) and ve is not a right

congruence. O

Lemma 3.4: Let f e F, x, Yy e A%, uce A+; then ¢f is a congruence iff x Ne Y

implies (x ) = (y ) (mod £(u)) for all x, vy in A%, all u' in A+ and for all
u' u'

u € A% u'A*,

Proof: The proof is a replica of the proof of lemma 3.3, except that segment

instead of prefix is used to establish the necessity of the condition.O

For example, observe that any function £ for which f(u) | f(u') for all
prefixes (suffixes, segments) u' of u and for all u e A*, satisfies the

condition of lemma 3.3a) (3.3b), 3.4). Therefore ~, is a right congruence

b
(left congruence, congruence). Moreover we will show that for any (right,
left) congruence %f, we can find a function f#* such that &f = if* and

for which the divisibility relation mentioned above is satisfied. We define
the following terms:

i) f is p-closed iff £(u) | £(u') for all u e u'A*;

ii) f is s-closed iff f(u) | £(u') for all u e A*u';

iii) f is pAs—closed iff it is p-closed and s-closed.

Here p and s are meant to suggest prefix and suffix respectively.

Lemma 3.5: Let f ¢ F; £ is pAs—closed iff f(u) | f(u') for all u & A*u'A*,

Proof: Easily verified.

We say that a function f is full iff (x ey implies (ﬁ) = (Z) (mod k))

iff k | £(u). As an example of a function which is not full consider A = {a} and

£(u) = 4 4if u = a

1l otherwise.
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It is easily seen that the equivalence classes of mf are EX], [é], Eéé], {?a%}

. . . IXy Sty Y .
and one can verify that x %f y implies iaai = (aai (mod 2); but 2 does not

divide f(aa) = 1 and f is not full. We now proceed to show that for any

function f € F, there is a unique full function f* ¢ F such that Ve = ey
Lemma 3.6¢ Let [f] ={g e F: Ve = mg}. Then [ﬁ} is finite.
Proof: Suppose g ¢ [f]; we first show that g is of class at most k for

. gl .
some k depending on f. Let {xi]f""’isn}f be the equivalence classes of

Ve and assume that the xi's are of minimal length; let k = max { [xil; i=1,...,n}

and let |ul > k; then {yt& = gx;]f for some i and thus {ﬁ]g = [%ijk. But

A b. <1
(E) = 1 and (ul) = 0; so we must have g(u) = 1. Finally, let u e supp g ;

if x %f y implies (i) = (Z) then u" cannot be equivalent to o) oif 1 # j and

mf have infinite index. Thus, there exists x, y in A* such that x %f y and

(i} = (Z} + k for some k > 0. Since x %g y , it must be that g(u) | k .

Altogether, this shows that there is only a finite number of possibilities for g .

Lemma 3.7: Let f ¢ F; there exists a unique full function f* such that

Proof: Let [ﬁ] = {fl,...,fn} and let f*(u) = 1cmk{fi(u) i=1,...,n}. We

have f(u) | f%(u) and this clearly implies ~ % Vel also

f
X Nf y:§}<ﬂf y for i = 1,...,n
i

e}f 1= éz)(mod fi(u)) for i = 1,...,n

3 (x) - (z) (mod lem {f (u): i=1,...,0})

and %f<; Ve So f* ¢ [f]. To show it is full, suppose x %f* y implies

XN 2 (Z) (mod k); then (i) E(Z) (mod lem {k,f*(u)l}).
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Define
f*(v) if v % u
f'(v) =
lem{k, £%(u)} if v = u.
It is easily verified that f' ¢ [ﬁ] and so that £'(u) | £%(u); this implies
that k ‘ f*(u) and f* is full. Finally suppose there is another full function

f' e [f]; we must have f£'(u) | £*(u) and f*(u) | f'(u), hence £' = f*. O

The following lemma tells us that for full functions the notions of (right,
left) congruence coincide with the notions of (p-closed, s-closed) pas-closed.
Also inclusion of equivalence relations is reduced to divisibility; we say

that g < £ iff ~ g,mg.

f

Lemma 3.8: Let f ¢ F be full;

i) Ve is a right congruence iff f is p-closed
ii) %f is a left congruence iff f is s—closed
iii) Ve is a congruence iff f is pas-closed
iv) g < £ iff g(u) | £(u) for all u e A'.

Proof: Clear. O

We are now ready to turn our attention to the study of the languages
which are Ve languages for some f € F; these languages are called modulo
languages. We use the term modulo languages of class m for those languages
which are v languages for some f € Fm. The rest of this section is

devoted to the characterization of this family in terms of syntactic monoids.

Lemma 3.9: Modulo languages are regular.
Proof: Let L be a Ve language for some f € F. TFor all u in A*, let

g(u) = lem {f(u'): u' € A%uA*}. Clearly £(u) | g(u) and thus ng; Ve
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Also g is a congruence (of finite index) since it is pAs-closed. Hence

L is regular. O

Lemma 3.10: Modulo languages of class i form a boolean algebra.

Proof: Closure under complementation is obvious. Also suppose L = leJ L2

where Ll is a Ve language, L2 is a mfz language, fl, f2 € Fi‘ Then
L is a Ve language where f(u) = lcm{fl(u), fz(u)} and L is a modulo language

of class i. 0O

From the proof of lemma 3.9, we can conclude that for any modulo
language L there is a pas—closed function f such that P&Jd( A*/&f. When f is

pAs—-closed, A*/mf is a monoid which we call Af.

Lemma 3.11: Af is a finite group for any pAs-closed f ¢ F.
Proof: Af is a finite monoid since Ve is a congruence of finite index.
m

Suppose £ ¢ Fm; we show that Af is a group by proving xk &f A, where

k = lem{f(u): u € supp £f}. We first need the intermediate result that

ki
(ii ) Z 0 (mod k) for all u in A+ and 1 > [u ; we establish this by

induction on lu

Basis |u| =1
ki
We have (X ) - kl(x) = 0 (mod k) since i > 1.
u u
Induction step |u| > 1
i i-1 i-1
By lemma 3.la), = ter )'
u u u
u=ul...uk 1 k

If 1< |ui{<lu| then i-1 z»luil and we can apply the induction hypothesis

to cancel this term. Thus
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0 (mod k).
and the intermediate result is established. From it follows the fact that

km km'
(x )
u
m .

X
0 (mod k) for all u & supp £ and( 3 = 0 (mod £(u)) for all u € supp f
. k
since f(u) I k. Hence x ~,. A.O

u
f

Corollary 3.1: Ifdim £ C {pu: o >0} for some prime p, then Af is a p-group.

Proof: Immediate from the proof of lemma 3.11. QO

Let g £ f be pas—-closed; the set {[x]f: x 'Qg A} is well defined and

we denote it by Hg £ of Hg if £ is understood.
2

f -
Proof: By lemma 2.2b). QT

Lemma 3.12: Hgd A

Lemma 3.13: Af/Hg o Ag‘

Proof: From lemma 2.2b), the isomorphism is given by ¢(chx]f) = Ex]g. a
Lemma 3.14: Let g(u) = lcm{f(uluuz): u U, + A}; then Hg c Z(Af) .

Proof: The function g is pAs-closed and g € £f. By lemma 3.12, Hg is a normal

subgroup of A;. Moreover (zy) = (§)+(Z) + Z (il\(zz),
u=ulll2

ul+k

u2+k
S0 if‘x '\ag X, iz])z 0 (mod g(ul)) and since f(u) [ g(ul), we have(El)E 0 (mod £(u)),
h A. Th xy5x+(y d £(u)).
whenever u, + us (u ) {u) u) (mo (u))
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yx
Similarly ( )

y X
( )"'( ) (mod f(u)) and xy V¢ yx. Hence Hg ¢ Z2(Ag). O
u u

u
Lemma 3.15: If f ¢ Fm’ Af is nilpotent of class < m .
Proof: By induction on m.

Basis m = 0

Ap = {1} is nilpotent of class 0.

Induction step m > 0

By lemma 3.14 Hg < Z(Af) where g ¢ Fm-l;

potent of class < m-1. Using lemma 3.13, we conclude that Af is the exten-

by induction hypothesis Ag is nil-

sion of a nilpotent group of class < m~1 by a group included in its center.

Hence Af is nilpotent of class < m.O

Corollary 3.2: If L is a modulo language of class m, Mi is a nilpotent

group of class < m.
Proof: From the proof of lemma 3.9, Mi-( Af for some f ¢ Fm. Since Af is

nilpotent of class < m , ML must be nilpotent of class < m .

Lemma 3.16 (Eilenberg): If L is a language such that ML is a p-group, then
L is a modulo language. Moreover L is a Ve language for some f with

im f = {1,p}.

Theorem 3.1l: L is a modulo language iff ML is a finite nilpotent group.

Proof: The necessity of the condition has been established in corollary 3.2.
Conversely suppose ML is nilpotent, then ML = GlX...XGn where Gi is a p 4-group.

If L is over the alphabet A = {al,...,ak}, each {?i]EL as an element of ML has

a unique representation (gjl

,...,gjn) € Glx...xgn and Gi is generated by

= . . * * i = .
Ai {gli,...,gki} Let Ml A% > Ai be the homomorphism induced by ﬂi(aj) gji

By lemma 3.16, there exists fi: Ai+ > N+ such that Gi<( Ai*/'\:f :+ that is,
i
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TN T ) \
if for all u' ¢ Ai*, X, ¥ € A%, ( ) = (mod fi(u'))
u' u'
. . . . . + +
then ﬂi(x) is equal to ni(y) in Gi' We define a function fi: A >N,
- + B \
by fi(u) = fi(ni(u)) for all u € A ; also let f(u) = lem{f;(u): 1= 1,...,n}.

If x Ve Y then x NEY for 1 = 1,...510 and-wi(x) ﬁf ﬂi(y) for i =1,...,n

i i
(ﬂi(x)) Z ( x)
since = . Hence -{ A..O
Y1 T, (u)=uy u L £

In corollary 3.2, we were able to prove that to a modulo language of
class m corresponds a nilpotent group of class m. Theorem 3.1 does not give
such a strong converse, i.e. if ML is nilpotent of class m, the theorem does
not say that L is a modulo language of class m. We conjecture that this
stronger converse holds as well and we prove it in the special cases m = 0,

m= 1.

Lemma 3.17: For m< 1, L is a modulo language of class m iff ML is a nilpotent
group of class < m .

Proof: The necessity of the condition was stated in corollary 3.2. Sufficiency
is trivial to establish for m = 0. For m = 1 (i.e. abelian groups), let

f(a) = o(a), the order of a, for each a ¢ A. 1If x ey then x =LY E alai...akék,

0= a, < o(ai) because of commutativity.O

As an example to the notions discussed in this section, consider the
dihedral group D4, which is nilpotent of class 2. One possible set of defining
relations over two generators is a2 = b2 = (ab)4 = 1. This corresponds to
the representation of Fig. la. The group D4 is isomorphic to Af for

£(u) = 2 4if u= a, b or ab

1 otherwise.
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The center of A, is given by {[x]f: X %g A} for
2 if u=a, b
g(u) =
¢]1 otherwise
and this corresponds to elements 0 and 4. The resulting quotient group can
be verified to be the abelian group Z2 x Z2 of Fig. 1b where we have identified

the cosets by enumerating their elements.

D, also has the defining relations a2 = b4 = (ab)2 = 1, and this has

4
the representation of Fig. 2. The group D4 is a homomorphic image of Af with
2 u=a, b, aa, ba

f(u) = g

1 otherwise

where to each x is associated the vector

((X) (mod 2), (:) (mod 2), (x>+ (:‘) (mod 2))
a aa a

The center is {0, 2} and again it is Hg for

2 ifu=a, b
g(u) = g

1 otherwise.
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Fig. 2
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4. COUNTING LANGUAGES AND SOLVABLE GROUPS

In the previous sections, we have considered factorizations of x
in the form x = Xga Kyeeod X without taking the xi's into account.
Introducing the notion of counting in context, we are able to define a
hierarchy of families of congruences, indexed by sequences of functions
in F; this is essentially done by taking into consideration the intermediate
segments XgsXpsee s X in the factorization above. The corresponding
languages are called counting languages, and modulo languages will be seen
to occur as the first nontrivial level of this hierarchy. The name counting
languages is motivated by the fact that this family also corresponds to the
closure of cyclic counters under the operation of cascade connection. The
main result of this section asserts that L is a counting language iff Mi

is a solvable group; the structure of ML is also related to the hierarchy.

We say that u = aj...a  appears in context X = (xo,...,xm) in x

iff x = x ...a X . For any equivalence relation v on A*, we can define

0%1%1 mm

a corresponding equivalence on contexts: we say that V ~ V' iff

V= (vo,...me V' = (vof,...,vm') and v, vi', i=20,...,m. The
equivalence class containing V is denoted by Ky]m and we can identify tx]m
with ([vd]%,...,[vﬁ]m). We also define the following symbol

ythe number of factorizations of x in the form

(b
ll)BiLb lx = xoalxl...amxm with X A V

Observe that this notion is defined only in the case where V is a vector of

length |u| + 1; in what follows, we always assume that the lengths of u
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and V are correctly related. Note the special case u = A; A always appears

in context X = (x) in x and (?) is 1 iff x v v, where V = (v), and it is 0 other-

-
AN

X X
wise. Finally it is clear that when ~ is the universal congruence(u)[ ] =( ). As
' V /

N

usual we write EV] for [ny/when it is understood which felation n is intended. In
an equation involving many [V]m, we will usually specify the context only
once and use the simplified notation for the others.
As an example of the notions introduced above, let n be the congruence
on {a,b}* defined by
x vy iff |x| = |y| (mod 2).
Clearly any context V is equivalent to some (VO’f"’Vm) where v; =aor

vy =X for 1 = 0,...,m. The reader may verify that, taking x = babaaa, we

have(z)(a,x) - (:)(A,a) o Gb) @n,a) -

Finally for any pair of contexts Vl = (v01,...,vml), V2 = (v02""vn2)’ we

define their product V1V2 to be V = (vo,...,vm+n) where v, = vil,for

i=0,...,m-1, Vo = , and vj = v, for j=m+1,...,m + n. When

Vm1'02 j-m2

~ is a congruence, this multiplication of contexts can be extended to

equivalence classes of contexts by defining [Vi]mtyé]m = KYlV;]m‘

Lemma 4.1l: Let ~ be a congruence on A*, V a context, u, x, ¥y € A%, a € A;

then

1) (;{y)[ﬂ% i ugu (zl)[Vﬂ (z)ﬁ;;

12

)=(v,v,)

u

ii) (a =;1 if (u=aand Vo (A1) or (u= A and V ~ (a))
)[V] 0 otherwise;
Y
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X Sl if u=Xxand Vn Q)
iidi) ( ) =

u [ij ) lO otherwise.

Proof: Clear.

Let f ¢ F and v be a congruence on A*. We define the following
relation

X Ve y iff for all u in A+ and for all contexts V

3
(xi = (Yg (mod £(u)).
u \ufro.
vl, vl.
If v is the universal congruence, this notation is consistent with the

notation of section 3.

Lemma 4.2: Let f, ~ be as above;

a) Ve is an equivalence;

b) 1if ~ is of finite index, Ve is of finite index;

¢) 1if f is pas-closed, Ve is a congruence.

Proof: a) and b) are easily verified. To prove c), we show that X Ve vy

and X, wf Yy implies XX, Ve ylyz. Indeed we have

( :1X2) 2. ( :)[vl] Cj[vzl

-
[VJ% u=u,u

172
{?]=[V1Vé]

z ’\Zj)m(jjw

172

v] =[Vlv2-_\

#

( Y192}
Y]

11

because f(u) | f(ul) and f(u) ] f(uz) .0
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Let F € F* be a vector of functions which we denote by () if F
is empty and by (fl,...,fn) otherwise; F is of length n iff F ¢ . If

F = (fl,...,fn) £ E&, we define F' = (fl,...,f 1)+ F is said to be

n-1

pAs—-closed if fi is pAs-closed for i = 1,...,n. For any congruence ~

on A%, we construct by recursion the relation Vs

X vp ¥y iff i) F () and x v vy or
ii) F = (fl"°"fn)’ X Vg1 Y, and for all

+
ue A, for all contexts V

(X) (y) (mod fn(u)).
vl il
! F'

It is an easy matter to show inductively that if ~ is of finite index then

p is of finite index, and that Vp is a congruence when F is pAs-closed.

For the rest of this section, we investigate the languages corresponding

to this new family of congruences when v is the universal congruence. If

we restrict ourselves to elements of (Fl)*, i.e. to vectors of functions
of class at most 1, the construction of the congruence %F uses the same

idea as the operation on languages that appeared in Straubing [73].

Let C; = {L: L is a ~p language, F ¢ F'}. 1t is clear that
Co = {¢,A*} and that Cl is the family of modulo languages since we can

identify m<f) and Ve Moreover, the reader may verify that x m(fl""fn

e ¢ S
¢ = {;bci and we call C the family of counting languages.

)Y

£,1) y and thus C&_g Ci+1 for i = 0,1,... . We denote by
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We extend the notation of the last section to the following cases:
we use AF for A*/'\:F when F is pAs—-closed. We say that G = (gl,...,gr) <
F = (fl,...,fn) iff r < n and there exists 1 < il < ... < ir < n such that
gj < fi. for j = 1,...,r: clearly we then have x &F y implies x ¢G y.
If 6 < F, we write H

{Ixlp: % vg AL

(or H, if F is understood) for the set
G,F G

We now proceed to give a characterization of counting languages in

terms of their syntactic monoids.

Lemma 4.3: Let F = (fl,...,fn) and let G = (gl"'”’gs) be the vector
obtained from F by removing occurences of 1. Then AG = AF'

Proof: Clear . O

Lemma 4.4: Let F = (fl,...,fn) € F be pas-closed; then AF is a finite group.
Proof: By lemma 4.3, we may assume that F e (F\{1})*. AF is a finite monoid
since v, is a congruence of finite index. If n =0, Ay = {1} and the

lemma holds. Otherwise let q = lcm {fi(u): u £ supp fi’ i=1,...,n} and

&
let r = jél m%, where f_i is of class m, - We establish our result by proving
r
x 1 NF A for all x in A*. This happens as a consequence of the fact that
ql n-1
X A
( E( ) (mod q) for all i > [ul + :E: mj; this last
u u i=1
V]F' [V]F'

statement is proved by induction on n.

Basis n=1

This reduces to lemma 3.11.
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Induction step n > 1

This we prove by induction on |u| .

Basis lul] =0
q* 1
(x) = 1 iff x7 v, v;
F
A r,oo
L(v)_éF'
i
but xq %F, A by the induction hypothesis; hence
<9 2
j =1 iff | | = 1 and both values are 0 otherwise.
Y ) 2T
Vg RUNS L
Induction step lu] >0
i i-1 i-1
{xq x4 x1
'\ - X | ;
U u, /r u
Vg ~ 1 7V q ,Vq,
u=u,...u
. Loa
V=V, ... V]
wvl Qe
i-1 o
by induction hypothesis,‘fxq N\ [
K ) EK ! whenever }ujl < |uf
/ | ol
uj ’[V; \\uj "ﬂ;..vj |

n-1 i-1L
since i-1 z |u,]| 3 m Also(xq ) =1 iff
k=1 A o™
A
i-1
%3 Vpr V Vo )\ because of the induction hypothesis. Altogether
- -1
fqu ”qu 3
] ) = q - i and this is 0 (mod q); hence
iu Ty ] tu £
(v SR
1 %
we have shown that /x7° / A

: ]
e LV_MF' uE;‘F'
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Corollary 4.1: Let F = (fl,...fn): if there exists a prime p such that

im (fi) g:{pa: a >0} for i =1,...,n, then AF is a p=-group.

Proof: Clear .

From now on, we assume that F and G are pps-closed elements of F* and

that G < F,

Lemma 4.5: HG'Q AF;

Proof: By lemma 2.2b).0O

Lemma 4.6: AF/HG = AG

Proof: Following lemma 2.2b), the isomorphism is given by

$ 2 AF/HG - AG
Boxlp P xlg . O

Lemma 4.7: Let G £ K < F be pas-closed. Then H .4 and H, _/H H

wF " Ho g c,r g, 7 © Hg k.

Proof: It follows from lemma 2.2c) . QO

Lemma 4.8: HF' F is nilpotent of class m if fn is of class m.
b

Proof: By induction on m.

Basis m=0, m=1

Clearly, if m = 0, Vg = and HF',F = {1}.

For m = 1, we see that

/ xy\ (x) +(y>
3 =
&a Wl wgupy™] e (e tvgovy)]

'y

(:)BVO’Vl)] S EVO’Vlﬂ

]
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since y NF' X v A

F'

Induction step m > 1

Let G = (fl,...,fn_l,g) where g(u) = lcm {fn(vuw): W + A}. G is pAs-closed

and F' < G < F; by lemma 4.6, Hp, F/HG ! which is nilpotent of class
Ed H

m-1 by induction hypothesis. By the usual technique, one can show that

F' ’G,

H - Z(HF' F) and thus that H is nilpotent of class m. O
H

G,F F',F

Theorem 4.1: L is a counting language iff Mi is a solvable group.

Proof: If L is a counting language then by extending inductively the
argument used in lemma 3.9, we can see that ML<< AF for some pas—closed F;
furthermore, by lemma 4.3, we know that F can be chosen in (F\{1})*. If
F= () then Ap = {1} is solvable. If F = (£) then Ap is nilpotent hence
solvable. Assume that the result holds for all F of length less than n
and suppose that F = (fl,...,fn). By lemma 4.4 and lemma 4‘5"AF‘('AF' o HF"
AF' is solvable by induction hypothesis and HF' is nilpotent by

lemma 4.7. This shows that AF is covered by a solvable group since the
extension of a solvable group by a nilpotent group is solvable. Hence AF
is solvable, and ML<( AF is solvable. Conversely let L be a language such
that M is a solvable group. Let H, = M®H ... > H = {1} be the
fitting series of M. If n = O then M = {1} and L is a () language.

If n =1 then ML is nilpotent and L is a %f language. Assume the theorem
holds for group of fitting length less than n. Let Mi'( Gl'O G2 where Gl
is solvable of fitting length n-1 and G2 is nilpotent. By induction

I . =
hypothesis Gl< AF' for some F (f fn—l) and G2 ( (Gl X A)f. Let

120"

F= (f f l,f) and suppose X “p ¥; then x Vpr Y and Gl(k,x) = él(A,y)

l’.oo, n-
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since Gld( A Also each factorization of x as x = XK@y Xq e @ X corresponds

F'®

. , = : *
to a factorization of w(x) as w(x) wo(gl,al)gl...(gm?am)wm, w, € (GlXA)

where 81 “pr X and gy “pr Xg@ Xpeeedy 3% 4 and similarly for y; since

(X) Y (mod f(u)) it follows that (w(X5\E (w(Y))(mod f(u)) where
u u ! u'

W]F' ’[VlFl

u
u' = (gl,al)...(gm,am) and thus GZ(A,w(x)) = 62(A,w(y)) since G2-< (GlXA)f.

Altogether, it implies that ML‘( AF or that L is a &F language. O

Corollary 4.2: L ¢ Cn iff ML is a solvable group of fitting length < n.

Proof: Clear from the proof of the theorem. O

This last result shows a close connection between the operation of
counting subwords in recursively-defined contexts and the operation of
"dividing" a solvable group by a nilpotent subgroup; this extends the
results of section 3 which said that counting subwords without context is
closely related to nilpotent groups. Moreover if we count only words of
length one in recursively-defined contexts, this corresponds to "dividing"

G by an abelian subgroup just like counting subwords of length 1 was observed
in section 3 to correspond to abelian groups. Let Di ={L: L is a “p

1 i . . = .
language for some F in (Fl) }; then DO - leg eeed let D %goDl.

Theorem 4.2: L € Dn iff Mi is a solvable group of derived length & n.

Proof: Again we can restrict ourselves to ML = AF otherwise ML<( AF and
derived length cannot be increased by covering. If n = 0, A; = {1} and

the theorem is true. If n > 0, AF<< AF' ) HF' where AF' is solvable of
derived length < n-1 by induction hypothesis and HF' is nilpotent of class 1,
i.e, abelian by lemma 4.8. Hence if L ¢ Dn then ML is a solvable group of

length < n. Conversely, if ML is solvable of derived length < n, then
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Mi~< Hl ©... 0 H where the H, are abelian; the result is established

i
by induction on =n .

Basis n=0,n=1

If n = 0, ML = {1} and L is a m() language; 4f n = 1, then Mi is abelian and L is a
%(f) language by lemma 3.17;

Induction step n > 1

Applying the induction hypothesis we know that ML<< G1 o G2 where Gl<( AF'

| - 3 . : . + +
for some F (fl,...fn_l) and G2-< (GlXA)f, the function f: (GlKA) > N
can be transformed into a function f': A+ - N* by putting

f'(al...am) = lcm {f((gl,al)...(gm,am)): g € Gl}. Since f is of class 1,

because G, is abelian, f' is of class 1 as well. Let F = (fl,...fn_l,f');

an argument identical to the one used in the proof of theorem 4.1 establishes
that ML< AF O

This result appeared in a different form in Straubing [75}. He had
also shown the equivalence of ¢ with the family of languages recognized by
cascade connection of cyclic counters. In our terminology, cascade connection
of cyclic counters is an homomorphic image of AF for some F ¢ (Fl)*. The

homomorphism corresponds to selecting sets Si = {(ail, Vil )’..',(aifi’ Viri )}

and integers ki | ged {fi(a i = 1,...,ri} for i = 1,...,n and

ij) N oy
identifying inputs which agree on (x ) (mod ki)' Moreover the
-4 \a_,
71 Vsl )

ki's can be chosen prime.

Clearly, a more general result is at hand; let Eij = {L: L is a

3 =
“p language for some F e (Z,) } and let E; ngEij'
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Lemma 4.9: If L ¢ Eij then ML has a normal series of length j where each
factor is nilpotent of class 1i.

Proof: Clear.Q

Also, by an argument exactly similar to the one used in theorems 4.1
and 4.2, it is seen that if the conjecture stated in section 3 is true,

then the converse of lemma 4.9 holds as well.

As an example consider the groups S3 of all permutations of three
objects. It has two different representations on two generators. The first
one can be pictured as in Fig. 3; it can be checked to be isomorphic to
the cascade connection of Fig. 4 with all the inputs not shown in the tail

machine being identities. Thus for this representation, SS'< A(f

19f2)
where .
2 ifu=aoru=>O
£,(u) = 3
1 otherwuise
3 ifu=©»
£,(u) = 3
) 1 otherwise

The other representation can be pictured as in Fig. 5; this one is
isomorphic to the cascade connection of Fig. 6 again with the inputs not

shown in the tail machine being identities., Thus for this representation,

S, A where
3% A(£,E,)

52 ifu=0>»
£,(u) =

(l otherwise

3 if u=a
£,(u) =

=

otherwise
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Fig. 6
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