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by
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Abstract

Necessary and sufficient conditions are established for Vector Addition
Systems to define regular languages. An-algorithm is designed to decide
whether these conditions are satisfied.b The reachability problem for

such Vector Addition Systems is shown to be decidable.



1. Introduction

Vector Addition Systems with finite reachability sets [1] clearly
define regular languages. However, there also exist Vector Addition Systems
with infinite reachability sets defining regular languages. This paper
investigates-such Vector Addition Systems.

Having established necessary and sufficient conditions for a VAS to
define a regular language (Section 3), an algorithm is designed to decide
whether these conditions are met (Section 4). This algorithm is based on
the Karp=Miller procedure [1] for deciding whether the reachability set is
finite.

A simple corollary of the main result shows that the reachability

problem is decidable for a VAS defining a regular language.



2. Preliminaries

I will denote the set of all integers, N the set of all nonnegative
integers. A vector is usually an element of " or of N' for a fixed
n. a[i] denotes the i-th coordinate of the vector a. For a,b e Z",
atb is defined as usual and a > b = a[i] = b[i] for i =1,2,...5n.

0 is the zero vector, so a ¢ N" = a > 0.

For a set V of vectors, V* denotes the set of all finite strings
of elements of V, including the empty string A. If w= ViVor o ¥y
(Vl’VZ""’Vk e V), then a+w will denote the vector AtV VLAY
Also a+x = a. If w 1is obtained by the concatenation of two strings
x and y from V*, i.e. w=xy, x is said to be a prefix of w.

So the empty string X and w itself are prefixes of w. Clearly,
atxy = atxty.

A Vector Addition System (VAS) is an ordered pair

A= (V,ao)

where V S Z" is a finite set of integer vectors and ag € Nn, i.e. 3,
is a vector of nonnegative integers.

A string we V* is said to be legal in A if for every prefix «x
of w, agtx € N". The set of all legal strings in A 1is the language
of A and will be denoted by L(A).

Example 1: Consider the 3-dimensional VAS A = (V,ao), where
V ={V'l = ({'] ’2,0), VZ = (],-3’2), V3 = (0,03—])}, aO = (4,0,])-

W= V{VaVyV, is a legal string in A.



Indeed: agtvy = (3,2,1), agtvevy = (3,2,0), a0+v]v3v] = (2,4,0),
agtVyVaVyV, = (3,1,2), and all these vectors are = 0.

On the other hand ViV3VoVq is not legal, since a0+v]v3v2 = (4,-1,2) ¢ N3.

The reachability set R(A) of the VAS A 1is the set of all vectors

agtw in N, where w is a legal string in A. The Reachability Problem
for Vector Addition Systems consists of finding a procedure to decide for

every given VAS A and for every given vector b whether b e R(A). It

is not known if this problem is solvable.

Karp and Miller [1] developed a procedure which enables us to decide
if a given VAS A has a finite R(A).

Given a VAS A, they construct a finite rooted tree Tr(A): this is a
connected directed graph with every vertex except one, the root, having
exactly one incoming edge; the root has no incoming edges; the vertices
are labelled by vectors in (Nu{w})", where w is a symbol ("infinity")
such that n'<w and n+w = w, for every n e Z.

If no label of Tr(A) contains an w, then R(A) {is finite. If some
label contains one or more symbols w, then there exist in R(A) elements
with arbitrarily large integers at the corresponding coordinates. R(A) is,
of course, infinite in this case. For every vector b ¢ R(A) there exists
in Tr(A) a label 8 such that b < & (cf. [1]), For later use, denote
by M the set of all maximal labels of Tr(A) with respect to the partial
ordering defined by the relation <. Since Tr(A) is finite M is, of

course, finite too.



3. Vector Addition Systems defining Regular Languages

Let A= (V,a be a VAS and R(A) 1its reachability set. For

0/
b,c ¢ R(A) define bEc iff (Ywe V*) b+tw e R(A) = ctw ¢ R{(A). E is
an equivalence relation. Moreover b E c = [(VYw e V*) btw ¢ R(A)

= (btw) E (c+w)].
Theorem 1: L(A) 1is regular iff R(A)/E is finite.

Proof: Let R(A)/E be finite. Construct a finite, non-deterministic
automaton B as follows. The states of B are the elements of
R(A)/E = {[a]],[az],...,[ak]}. (Notice: [ai] is the equivalence class
containing the vector a; « R(A)).
The input set of B 1is V. The transition function o of B is

defined. as follows.
For [aij e R(A)/JE and v e V:

if 8tV « R(A) then o([ai],v) = [ai+v],

if a;+v ¢ R(A) then c([aij,v) is not défined.
This definition of o does not depend on the particular representative of
the equivalence class. The initial state of B s [ao], and every state
of B 1is a final state. Let w = ViVoe..V, € L(A). Then agtVqVpe ..V, € R(A)
for 0 < s < r. Hence o([a0+v]...vs_]],vs) is defined for every s
T<ss<r, and we L(B). Conversely, let w= ViVoe.oV, € L(B). Since
every state of B is a final state, every prefix ¢f w 1is also in L(B).
It follows that Vi> V{Vos...,Ww are all legal strings in A, i.e. w e L(A).
Thus L(A) = L(B), whence L(A) 1is regular.

Let L(A) now be regular. Define the relation = on L(A) as follows:



x~y iff (Vz e V¥) xz ¢ L(A) = yz ¢ L(A).

It is well known [2] that = 1s an equivalence relation and moreover

L(A)/® s finite. But x= y= agtx E agry. Indeed, aghx e R(A) and

agty € R(A), since x,y ¢ L(A). Now, if for some z e V*, Gtz € R(A),

then xz ¢ L(A); hence yz ¢ L(A), and agtyz e R(A). It follows that

aytx E agty. Consequently, the number of equivalence classes of E 1is

not greater than those of =~ , i.e. R(A)/E is finite. ad
Every VAS with a finite R(A) clearly satisfies the condition of the

above theorem. But there evidently also exist Vector Addition Systems

with infinite R(A) defining regular languages. In a given VAS A = (V,ao)

the i-th coordinate is said to be unbounded if for every p = 0 there

exists a vector b ¢ R(A) such that b[i] >p. This is the case iff there

exists a Tabel me M with m[i] = w.

1]

Lemma 1: Assume that in a VAS A (V,ao) k < n coordinates (say the
first k coordinates) are unbounded. Assume also that there exist k
nonnegative integers h]’hZ”"’hk such that for every b e R(A), every
we V¥, and every i =1,2,...,k, (b+w) ¢ R(A) = (b+w)[i] = b[i] - hi‘

Then R(A)}/E is finite.

Proof: Consider an arbitrary subset J of the set K ={1,...,k}. Let

CJ < R(A) be the set of all vectors ¢ in R(A) such that c[j] = hj for
every j e d, and c[i] < hi for every i ¢ K-J. Let CysCy € CJ and
assume that for every i ¢ {1,2,...,n} - c][i] = cz[i]. Then ¢, E Cye
Indeed, if w e V*, then Citw > 0= Cotw 2 0 (the coordinates in J

cannot become negative in both vectors, since these coordinates in Cq and



c, are greater than the corresponding hj; the other coordinates of Cq and
c, are equal). But there exists only a finite number of possible

(n - |J|)-tuples for the coordinates {1,2,...,n} - J of the vectors in

CJ, since all of them are bounded. Consequently CJ/E is finite. Now
there exists only a finite number of subsets J of K, hence the number

of CJ's is finite. Every b < R(A) belongs to one of these CJ's, hence

R(A)/E is also finite.
Example 2: Consider the VAS A = (V,aﬁ) with V = {v1 = (1,0,0), Vo = (#1,1,-1),
vy = (1,-1,1)}, ay = (1,0,4). The tree Tr(A) is shown below:
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The set of maximal labels M =‘{m] = (0,0,4), m, = (w,1,3), my = (w,2,2),
5 = (w,4,0)}.

The first coordinate of this VAS is unbounded, all others are bounded.

my = (w,3,1), m
It will be shown later, that h] = 4 satisfies the conditdons of Lemma 1.
Thus L(A) is regular in this case.

Conversely to Lemma 1, one has:

Lemma 2: Let A = (V,ao) be a VAS and assume that there exists an unbounded
coordinate j such that for every g > 0 there exists a vector b e R{(A)

and a string w e V¥ such that (b+w) ¢ R(A) and b[j] - (b+w)[i] >g.
Then the set R(A)/E is infinite.

Proof: Let & =min{v[j]} (& is of course negative in this case). Let
veV

g=>0, beR{A), and w = VqVoe ..V be as above. In the chain of vectors

r
of R(A): b, b+vy s b+v]v2,...,b+w there can be not less than TgT- distinct
vectors with decreasing j-th coordinates. No two such vectors can be
E-equivalent. Indeed, let ¢ and Cy be two such vectors, where

Cy = Cptx, X € V¥, and cz[j]’< c][j]. We have:
C1 E Cy i.e. c; E (c]+x) = (c]+x) E (c1+2x) > ..

But for some i, cp t (i+1)x does not belong to R(A), whereas (c]+1x) e R(A).
Hence c]' and c, are not E-equivalent. Since g may be arbitrarily

large R(A)/E 1is infinite.



4. An Algorithm to decide whether a VAS defines a regular lanquage.

In this section an algorithm will be developed to decide whether the
conditions of Lemma 1 are satisfied by a given VAS A. First notice that if
bs<c (b,ceR(A)), then for every w e V¥, btw ¢ R{A) = c+w « R(A).
Hence, if b satisfies the condition of Lemma 2 for a given g, so does
c. |

Let now m e M. A vector c ¢ R(A) is said to be represented by m
iff for every i such that wm[i] = w, c[i] = M[i],

If there exist integers h],...,hk such that the assumptions of Lemma 1
hold with respect to these hi's for all vectors c ¢ R(A) represented by
the wectors in M, then these assumptions will hold for every vector
b ¢ R(A) with respect to the same hi's.

The main tool which enables us to establish the required algorithm is

Lemma 3: Let A = (V,ao). be a VAS, and assume that for some integer
g >0, there exists a vector b e R(A) and a string z ¢ V* such that

b+z ¢ R(A) and for some i,
b[i] - (b+z)[i] = g.

Then there exists a maximal Tabel m e M and a String w e V*
such that for some vector c e R(A), represented by m, c+w e R(A), and for

one of its coordinates, say the j-th
cfil - (c+w)[J] = g,
and, in addition, for every prefix x of w

(c+x)[J] < c[3].



Proof: Let w e V¥ be the shortest (one of the shortest) string among all
strings "decrementing" by not less than g a certain coordinate of a
certain vector in R(A) represented by one of the elements of M. By
assumption of the lemma such astring w must exist. Assume that this
string w decrements by at Teast g the j-th coordinate of the vector

c e R(A), i.e., ct+we R(A), and c[j] - (c+w)[j] > g.

Let now w=xy (x e V¥ -{2A}) and assume that (c+x)[j] >c[j].

The vector c+x ¢ R(A) and there exists a vector d in R(A)
represented by some my € M, such that d > c+x. Now (c+x) + y e R(A),
hence d+y ¢ R(A). Moreover d[j] - (d+y)[j] = (c+x)[3] - (c+x+y)[j]
> clj] - (c+w)[3] = g.

Thus the string y e V¥ which is shorter than w decrements by at
least g a certain coordinate of a certain vector in R(A) represented by
a label of M. This contradicts the choice of w, and the lemma is

proved. a

Algorithm
Step 1. Construct the tree Tr(A) as in [1].

Step 2. Determine the set M.
Step 3. For every me M and every i such that m[i] = w, construct
a VAS A(m,i) as follows.

Let me M be such that {m[j1],m[j2],...,m[jk]} S N and the remaining
n-k coordinates of m are w. For every i such that m[i] = w define
a (k+1)-dimensional VAS A(m,i) = (V(m,i),ao(m,i)). For every v e V
define v(m,i) = (-v[i], v[j]], v[j2],...,v[jk]). Let V(m,i) = {v(m,i)|v ¢V}
and aO(m,i) = (0, m[j]], m[j2],...,m[jk]).
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Step 4. Determine (using the Karp-Miller procedure, or in any other way)

whether all R(A(m,i)) are finite.

Theorem 2: A VAS A satisfies the assumptions of Lemma 1 iff all
reachability sets of the Vector Addition Systems A(m,i) defined in the

above algorithm are finijte.

Proof: If R(A(m,i)) is infinite, then for every g >0 there exists a
w(m,i) € V*¥(m,i) such that (ao(m,i) + w(m,i))[1] = g. Let ¢ be a
vector in R(A) represented by the above m ¢ M, and such that the coordinates
of ¢ coreesponding to the w-coordinates of m are sufficiently large
(cf. Theorem 4.2 of [1]). Let we V* be the string corresponding in
the obvious way to w(m,i). Then c+w e R(A) and c[i] - (c+w)[i] =
(ao(m,i) + w(m,i))[1] = g. Since this will occur for every g the VAS A
cannot satisfy the assumptions of Lemma 1.

Conversely, assume that all R(A(m,i)) are finite. Let h be greater
than every coordinate in all vectors of all R(A(m,i)).

Assume that in the VAS A some coordinate of a certain vector may be
decremented by more than h. Then by Lemma 3, there exists a me M and
a string w e ¥*, such that for some vector c « R(A) represented by m,
ct@ ¢ R(A) and say c[i] - (c+w)[i] >h and for every prefix x of w
(c+x)[1] < c[i]. Consider the VAS A(m,i), and the string w(m,i) ¢ V*(m,i)
corresponding to the above w. Now ao(m,i) + w(m,i) e R(A(m,i)). Indeed,

for every prefix x(m,i) of w(m,i) ~one has

(agm,1) + x(m,i))[1] = - ((c+x)[i] - c[i1) = o,
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and for all other coordinates £ = 2,3,...,k+1 (éo(m,i) + x(m,i))[2] =
Now (ao(m,i) + w(m,i))[1] =-((c+®)[i] - c[i]) > h but this is

impossible, because h was larger than any coordinate in any R{A(m,i)).

This contradiction shows that the VAS A satisfies the assumptions of

Lemma 1, with h1 = h2 = ,,, = hk = h.

Example 2 cont'd.: Apply the algorithm to the VAS A(V,ao) defined in

Example 2.
Step 1 and Step 2 have already been performed.
Step 3. Take one of the Tabels of M with an @-coordinate, say m, = (w,1,3).

The VAS A(m2,1) is as follows:

V(m,,1) = {vy(my,1) = (-1,030), vo(my,1) = (1,1,-1), va(i,,1) = (-1,-1,1)}
ao(mz,l) = (0,1,3).

Similarly one constructs the other A(m,i) for all the other m e M
and their w-coordinates
Step 4. Consider the above A(m2,1). Let w(mz,l) € V*(m2,1) and consider
the vector d = ao(mz,l) + w(mz,l). In order to obtain say d[1] > 10,
the number of occurrences of vz(mz,l) in w(mz,l) must exceed the number
of occurrences of v3(m2,1) at least by 10. But in order
to have d[3] > 0, the number of occurrences of vz(mz,l) in w(m2,1) can
exceed the number of occurrences of v3(m2,1) only by 3, so one shall
never get d[1] = 10. Similarly d[2] and d[3] are clearly bounded say
by 10. €onsequently R(A(mz,l)) is finite.

One may check similarly that all other R(A(m,i)) are also finite for

this A; hence L(A) 1is regular.
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Corollary: The reachability problem for a VAS A with L(A) regular is
decidable.

Proof: Let A(v,ao) be a VAS with L(A) regular. By Theorem 1, R(A)/E

is finite, hence by Lemma 2, the decrements of all coordinates of the vectors
in R(A) are bounded. Let h be the integer determined in the proof of
Theorem 2; then for every unbounded coordinate i the decrements of the i-th
coordinate of every vector in R(A) are bounded by h. Notice that h

can be determined by a finite procedure.

Let now x = (Xl’XZ""’Xn) e N". In order to determine if x < R(A),
construct a labelled rooted tree similar to that in the Karp-Miller procedure,
but rather than introducing w, continue the process. A node in the tree
is an end (i.e. it does not have successors) in the following cases:

(1) The label of the node is d and for every v e V, at least one

coordinate of d+v 1Js negative.

(2) 1Its label equals that of one of its ancestors.

(3) One of the coordinates of its label exceeds the corresponding

coordinate of the vector x by h.

The tree is clearly finite, and x « R(A) iff x 1is a Tabel of one

of the nodes of the constructed tree. O
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