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ABSTRACT

The class SSn of stack sortable permutations is known to be in 1-1
correspondence with n-noded binary trees. Expressions are derived for the
average length of several types of monotonic subsequences in members of
SSn. The relations between these subsequences and properties of the
corresponding tree are demonstrated. It is also shown that the permutation

graph of a member of SSn is an interval graph of a special type.



1. Introduction

Given a permutation I = < p],pz,;..,ph> and an empty stack, the
elements of 1 can be passed through the stack using two elementary
operations coded 'S' and 'X'. The operation 'S' denotes 'put the next
element of 1 on top of stack' and 'X' stands for 'transfer the element
on top of stack to the output'. A sequence L  of the above mentioned
operations, is called a valid operation sequence (or simply an operation
sequence) if and only if (1) all elements of 1 are transferred to the
output and (2) the operation 'X' i; never specified when the stack is
empty. Conditions (1) and (2) imply that an operation sequence must consist
of 2n operations, n of each kind, the number of *X' operations may
never exceed the number of 'S' operations when L is scanned from left
to right.

We denote by L(II) the output permutation which results from passing
I through a stack. For example if I = <1,3,2,4> and L = < S5,X,5,X,5,5,X,X>
then L(I) = <1,3,4,2>. A permutation I 1is sortable with a stack if and
only if there exists an operation sequence L such that L[(I) = <1,2,...,n>,
it is realizable with a stack if and only if an operation sequence R
exists such that R{<1,2,...,n>) = I.

Given a permutation I, let L be the sequence of operations
which sorts 1 with a stack. Scanning L from left to right, we call each
sequence of consecutive 'S' operations an S-group and such a sequence of 'X'
operations an X-group. Clearly, the number of X-groups is equal to the number
of S-groups, two S-groups are seperated by an X-group and vice versa.

The S-specification and the X-specification of L are




vectors < S12Sps--+38, > and < X sXoseeesXy > respectively, where for
1 <i<2g S5 denotes the sjze of the ith S-group and X; the size of
the ith X-group.

We denote by SSn the class of permutations of order n which are
sortable with a stack, and by SRn the class of permutations of the same

order which are realizable with a stack. Those two classes are related as

follows,

I eSS, if and only if !

¢ SR . (1)
The class SRn is characterized by Knuth [3, p..239] by the following

theorem,

Theorem 1: The permutation II = < PpsPgse«-sP, > is a member of SRn if
and only if it does not contain a subsequence
< PysPysPy > such that Py > Py > Py (2)
From this theorem and the relation (1) we obtain a characterization of

SSn as follows,

Theorem 1*: I ¢ SSn if and only if it does not contain a subsequence

< P;sPysPy > such that P; > Py > Py (3)

Two binary trees T and T' are similar (T =T') if they have the
same 'shape', formally, they both have the same number of nodes, with the
Teft subtree of T similar to the left subtree of T' and the same holds
true for right subtrees. For a node j 1in T, we denote by LT(j) and

RT(j) the Teft and right subtrees of j respectively.



A permutation can be mapped into a labelled binary tree T using the

following well-known construction.

Construction - T

Given I = < p],pz,...,pn> and an empty tree T, assign P1 to the
root of the tree; for each P> k = 2,3,...,n apply the rule
-- if Py is inserted into a non-empty subtree rooted by Pis it
is insérted into LT(pi) if pk‘< Ps otherwise p, 1is inserted
into RT(pi) --
until an empty subtree is reached and then a root labeled Py is created
to that subtree.
Construction-T establishes a 1-1 correspondence between the set SSn
and the set of n-noded binary trees [3;6.2.2]. Given a labeled tree T,
its corresponding member of SSn can be obtained by reading the Tabels of
T 1in symmetric order (root, left subtree and right subtree).
The class SSn was studied in Knuth [3] and its relation to the classical
ballot problem is shown in [4] and [7]. The correspondence between SSn
and the set of binary trees is used in [8] to generate and rank all

'shapes' of n-noded binary trees. The cardinality of SS, is Cn = (n+1)-1(%P)
(the n'th catalan number).
In this paper we study in detail some of the combinatorial properties
of the class SSn. In sections 2 and 3 expressdons are derived for the
expected length of some types of monotonic subsequences and the average
number of inversions. The set SSn n SRn is characterized and enumerated

in section 4. In the last section the permutation graph associated with 1l ¢ SSn

is shown to be an interval graph of a special type.



2. Monotonic subsequences in SSn and their relation to binary trees.

Let T = <p;,spys...,p.> be a permutation on the set N ={1,2,...,n}.
1°72 n

A descending subsequence of length k in 1 satisfies,

pi] > p1.2 > 0> p1.k and T <y < <y
A descending subseguence is magimal in I if no element of II can be

added to it without violating its monotonicity. A longest descending

subsequence in I (LDS) contains the maximum number of elements among all
descending subsequences in 1. We get the corresponding définitions for
ascending subsequences by replacing '>' with '<' din the above, where LAS
stands for 'longest ascending subsequence'. For j ¢ N, we denote by

Rﬂ(j) the set of elements to the right of j in 1, and by Lﬂ(j) the

set of elements to the left of j 1in 1. Two elements P; and pj

form an inversion in I if (pi-pj)(i—j)'< 0.

A descending run in 1 1is a sequence of successive elements

Pis PigporeoPisk such that

(a) py_q <p;

(B) Pirg < Piaga

() Py >Piug > o> Py
(We assume that Py >Pp, and pn'< Pt
The inversion-table of 1, is a vector < b]’bZ""’bn> such that for

1<is<n bi counts the number of elements in Rﬂ(i) which are smaller

than 1. It is well-known, that an inversion-table

1

uniquely determines its corresponding permutation. We denote by T ' the

-1

inverse permutation of I, if T =1 it is called an involution.



Example:
Let T = <3,6,4,5,2,1>. Then < 3,2,1> %s a maximal descending

subsequence in I, <6,4,2,1> and < 3,4,5> are an LDS and an LAS
respectively in T, Rﬂ(4) = <5,2,1> and Lﬂ(6) =" < 3> . The inversion-table
of I is <0,1,2,2,2,4>. The runs of I are <3>, <6,4> and

"< 5,2,1>. O

Theorem 3: The expected length of an LDS 1in a random permutation in

SSn is asymptotically
W - 1.5 + 2L AT o g(n=3/2y | (4)

24V n
Proof: We show that the length of an LDS in 1T « SS,, 1s equal to the
depth of stack which is needed to traverse TH in symmetric order.
Equation (4) is Knuth's result for the average depth of stack [3,Ex. 2.3,11].
We abserve that the sequence of insertions and removals from stack
made during the symmetric traversal of TH is equivalent to the sequence

of operations required to sort T with a stack.

Let D= «d, ,d, ,...,d., > bean LDS 1in 1. While sorting 1,
1 T2 )
no member of D can leave the stack before di so the stack must have at
2

least £ entries.

Conversely, assume that the stack contains m elements during the
sorting process and m > %. Let B = < bi]’b12’°'°’bim> be the elements in
the stack, then B must be a descending subsequence in I, a contradiction

to the definition of D. 0



Remark: The problem of finding the expected length of an LDS (or an LAS)
in a random permutation is still unsolved analytically. Experimental

results show good agreement with Z\In [2].

We need the following definitions to prove the corresponding result on the

LAS.
A composition of a whole number n into m parts is a vector
m
C =< CqsCpseeesCp> such that c; > 0 for T<i=<m and izlci = n.

A composition C of n can be represented as a zig-zag graph, this graph
contains m rows with C; dots in the i-th row, for i >1 the first dot

in the i-th row is written under the last dot in row i-1. Given a composition
C, we obtain its conjugate composition T =.<cy,Cps...sCoyq o> such that

for 1 < i < ntl-m, E% is equal to the number of dots in the i-th

column (from left) of the zig-zag graph of C. For example let

C = <3,2,4,1> be a composition of the integer 10. The zig-zag graph of

C is

therefore C = <1,1,2,2,1,1,2> .
Let T and Tp- be two members of SS_ (not necessarily distinct)
such that their corresponding trees T1T and T are reflections of each

TRE
other about the vertical axis.



Lemma 1: Let X = < X]’XZ""’Xk> and XRF = < x],xé,...,xé> be the

X-specifications of L and EﬁF respectively. Then the vectors
R .
X" = < X s Xp_p o e %> (the reverse of X) and Xpp are

conjugate compositions of n.

I1Tustration: Consider the permutations o = <6,3,2,1,4,5,8,7> and

HRF = <3,1,2,6,5,4,7,8>. The corresponding binary trees are shown in
Figure 1 (a) and (b) respectively.
The X-specification of L dis X = <3,1,2,2> and XR = <2,2,1,3>.
The zig-zag graph of XR is .. and therefore its conjugate
is YR = <1,2,3,1,1>, we then have T® = xoc.
6
8
Figure 1

(a) (b)

Proof: A bimary tree is traversed in reverse symmetric order if a root and
its two subtrees are visited in the order (1) right subtree (2) root (3)

left subtree. We observe that the operations which are required in order

to traverse T1T in reverse symmetric order are equivalent to those necessary
for traversing TTrRF in symmetric order. Therefore L and EkF specify

the stack operations for traversing T1T in symmetric and reverse symmetric

order respectively. For two consecutive labels i and i-1 we can have



(a) i« Ry (i-1) or (b) i-1 e Ly (i). While traversing T in
symmetric ogder, (a) implies that 1ﬂ must be stacked after i-1 s written
on output and therefore X(i-1) and X(i) are in different X-groups,

(b) implies that i is present in stack when 1i-1 s written, hence X(i)
and X(i-1) are in the same X-group. It is easy to see that in the reverse
symmetric order traversal of T}T we have exactly the converse, i.e. the
labels i and i-1 are writteﬁ on output by the same X-group in EﬁF in
case (a) and by different X-groups in case (b).

We can represent X as a zig-zag graph in which the i-th row contains
the elehents written by the i-th X-group in L. By the above argument, it
follows that the i-th X-group in tﬁF will write out elements of the i-th
column in this graph, where counting starts from the rightmost column. For

example in the above illustration the graph is 123 and the X-group of
4

56
78

EﬁF write out <8>, <7,6>, <5,4,3>, <2>, <1>, where brackets
enclose elements of the same X-group. Therefore XR and XRF are conjugate

compositions and k = n+l-m. a

Lemma 2: The length of the LAS in I ¢ SSn is equal to the number of
components in the S-specification (X-specification) of its sorting

sequence.

Proof: Let L be a sorting sequence for I with S-specification



< S19Spse-+ 95y > - Then clearly I must have exactly 2 descending runs
where the size of the i-th run is S Let an LAS in T be of length k.

Then k < £ since no two elements in an LAS are in the same descending run.

To show that X < k, we construct a sequence D ='<:d].dz.....dl:> where

d1 is the last element in the itbh descending run in M. We show that D
is an ascending subsequence in T by deriving a contradiction. Suppose
that for some i di > d1+], then there must be an element d in the
1'+]St run such that d > di and d > d1.+1 and I must contain a

forbidden subsequence < di'd'di+l> . d

Theorem 4: The expected length of the LAS in a random permutation is
nt+1

SSn is o
Proof: We define a mapping RF:SSn - SSn such that 1T ¢ SSn is mapped
into HRF by RF. Suppose that the Tength of the LAS in 1 1is equal to
k. By Lemma 2 this is also the number of components in the S-specification
and X-specification of the sorting sequence L. From Lemma 1, the Tength
of the LAS in Tpp is ntl-k. Since RF 1is a one-to-one correspondence
our result follows. [J
Another subsequence, which was studied in permutations is the sequence

of left to right maxima which is also called the distinguished subsequence
by Brock & Baer [1]. For example the distinguished subsequenCe in
' <1,3,2,5,4,6> is <1,3,5,6>. It is shown by Knuth [3], [4] and in [1]
that the expected length of this subsequence in a random permutation is

H, (the n-th harmonic number). The next theorem gives the correspsnding
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result for a random permutation in SSn.

Theorem 5: The expected length of the distinguished subsequence in a
6

random permutation of SSn is 3 - e

Proof: Given II = < PysPos-s-sPy> € SS. let "< pil,piz,...,pin> be the
distinguished subsequence in II. We can form k+1 permutations
H]’Hg"'°’nk+] of length nt1 from I by inserting the number n+l in
each of the positions immediately to the left of Py in I for 1< j<k
or placing n+1 as the last element in 1. For example, if I = <1,3,2,4>
then <5,1,3,2,4> <1,5,3,2,4> <,3,2,5,4> and <1,3,2,4,5> are

formed in this way. We now show that for 1 < i < k+] I, e SSn+]. If

not, then for some 2 < j < k Hj must contain a forbidden subsequence of

the form < pi,n+1,p£> and Fi > Py (5)
i'<L
But this implies that I must contain a subsequence
< PyaP; aPy> (6)

J
Now p, is in the distinguished subsequence, and therefore sequence (6)

is of type (%) thus contradicting T < SS . It is easy to see that
inserting ntl1 in any other position of 1 will create a permutation I'
such that TI' ¢ St On the other hand all the members of SS,41 can

be generated from the members of SSn in this way. Let a be the Tength
of the distinguished subsequence in 1. Then

1S 4q] = Copq = £ (a+1). (7)

HeSSn
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Chtp = Za, *C (8)
1 /2n+ 2

ra Gy o e )

o - 1=0 o -1 (9)
ntl ( n )

which gives

Ta_ 6
—" = 3--5 0 (10)

Remark: This result is directly related to & theorem by Munro [5] which

shows that the average length of a random walk on a bimary tree is

6

2"'nT2—.

Corollary: The expected lTength of the first descending run in a random

. . 6
permutation of SSn is 3 - Ty

Proof: Given I e SS . the elements of the LAS in I form the rightmost
path in Tﬂ. By symmetry, the average length of the leftmost path over all
n-noded binary trees is also 3 - ﬁgﬁ-. This path in T1T i§ formed by the
members of the first descending run in 1, Since under €onstruction -T this

path is completed before any other part of the tree is constructed.
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3. The Number of Involutions in SSn

It is well known [4] that a permutation is an involution if and only if
it does not contain a cycle with more than two elements. Using this fact,
we prove in Lemma 3 that the set of involutions in SSn is equal to
SSn n SRn. A simple expression for the cardinality of this set is then

calculated in Theorem 6.

Lemma 3: Let I e SSn, then T s an involution if and only 'if

T e SSn n SRn.

Proof: The 'only if' part follows directly from the definitions. We prove
the 'if' part by showing that a permutation which is a non-involution mast’
contain at least one of the subsequences (2) or (3), therefore it is not
a member of SSn n SRn.

Let T be a non-involution, then T contains a cycle of Tength k = 3.
Let this cycle be [a1,a2,...,ak] where 3 is the smallest element in
this cycle. We can arrange the elements of the cycle according to their
original order in T in the following way. First we sort the cycle into
ascending order, then write under each element its right successor in the
cycle, the second line thus obtained forms a subsequence of M. Por
example, if 1 contains the cycle [1,4,3,6,6] then the above operations

will give 456 and <4,6,3,1,5> is a subsequence of I (a] is
315

"
4

o oOw

considered to be the right éuccessor of ak). We distinguish between two cases:
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Case 1: a2‘< ag. Let k = 3, then after sorting the cycle we get

.
o~

131 3, <]
a 2 %@ U

that k > 3. We sort the cycle by placing a, on the right of a1s then

and < 35585587 > forms a subsequence (3) in 1. Assume

inserting the elements 353y _1s+--s23 One by one into their correct
positions. We write ander each element its right successor when it is
inserted. If a > a, then ay is inserted on the right of 2, and

we get the same result as in the case k = 3, a, playing the role of a,.

Assume that a  <a,. We insert a, _;,a, ,.... into their positions until
an element a, . is found such that a, . >2a,, the existence

of such an element is guaranteed since 83 > 3. The element a, .., fs
smaller than a5, hence after inserting a _; we have the following

configuration
a a (1)
and * <a,,a3,a,_..;> forms a subsequence (3) in .

Case 2: a, >a5 . If k=3 we have the configuration a; a3 a,

42 41 23
after sorting the cycle, and < 35537 533> forms a subsequence (2) in 1.
Assume k >3. If ak'< a, we obtain the same subsequence, we therefore
consider the case Q> a,. We use the same procedure as in Case 1, this

time we search for the first element a,_; such that a ... > a, and
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ap_; <d,. We then have the configuration :
"a, a §
}(‘ -l k_.i a2 R ak__i+-l --o? (]2)
| |
:’12 Ap-i+] A3 weee B 440 v
and < 85,8 547083 is a subsequence (3) in 1. d

Theorem 6: The number of involutions in SSn is equal to 2n-1.

n-1 permutations of

Proof: By Lemma 3, we have to show that there are 2
length n which do not contain subsequences (2) or (3). A permutation
I e SSn n SRn can be characterized by the following property of its maximal
descending subsequences.

Let D= < di],diz,...,dik} be a maximal descending subsequence in a
permutation I of order n, then I ¢ S5 n SR if and only if for
isJs k-1, -

d; = d1 +1 (elements of D appear in reverse natural order). (13)
J j+

Proof: Clearly every permutation which satisfies condition (13) is a member
of SS, n SR, since each of the forbidden subsequences (2) and (3) have
at least one pair of elements which belong to a descending subsequence and
are not in reverse natural order. We now show that if any violations of
condition (13) occur in I then T ¢ SSn n SRn'

Suppose that for some index m, (1 <ms< k-1) d, =d. +1. Let
"m T

di +¥ = 2. Then & cannot appear between d. and d. in 1,
i i
m+1 m mt+1
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since it is not a member of D. Therefore one of the two subsequences

"< ,d. ,d, > or < di ,d:  ,£> must appear in 1I, thus

Tm el m o m+l

contradicting 1 ¢ SSn n SRn.

For each permutation I ¢ SSn n SR_, we can generate two permutations

n

I, and 1, of order nt+l as follows;

1 2

(a) generate I by inserting n+1 one position to the left of n in mH,

(b) generate I, by putting ntl after the rightmost element in 1II.
Clearly, condition (13) is not violated in I, and I, thus generated.

Furthermore, inserting nt1 1in any other position of 1, generates a

maximal descending subsequence (with n+1 as its first element) which does

not satisfy condition (13). Therefore I, and I, belong to SSpep N SR 41

Since all the elements of SSn+1 n SRn+1 are generated in this way, we have

|SSpe1 0 SRoyql = 2]SS, 0 SR . (14)

n+1'
‘0urresult follows from the fact that SS3 n SR3 contains 4 elements,

namely, <1,2,3>, <1,3,2>, <2,1,3>, <3,2,1>. ]



16

4. The Average Number of Inversions in SSn

Lemma 4: Let < bl’bZ""’bn> be the inversion-table of 1 ¢ SSn, then

for node labelled k in T, lLTﬂ(k)l = b,.
Proof: We show that the elements which are counted by bk are exactly
the ones which are inserted into L; (k) by Construction-T. Clearly, onity
an element j such that j <k andTT je Lﬂ(k) can be inserted into
LT (k). If no such element exists in I then bk = 0 and the subtree
LTﬂ(k) is empty. Assume bk >0. Since I e SSn, all elements in Lﬂ(k)
arg either bigger or smaller than both k and j, any other possibility
will create a subsequence (3) in 1. Therefore, application of the rule
of Construction-T will force j to be inserted into the same subtrees as

k, finally j must be compared with k and since j <k it follows

that j e LT (k). 0
T

Theorem 7: The average number of inversions in a random permutation of

SSn is

( %E- - 3n - 1). (15)

1
2 n

Proof: Let () denote the number of inversions in a permutation I
and 1int(T) the internal path length of the tree T. The sum of sizes
of all subtrees in a binary tree (or any other tree) is equal to int(T).

This follows from the fact that in a tree T, the distance of vertex i
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from the root is equal to the number of subtrees in which i participates.
Let < b]’bZ""’bn> be the inversion-table of a permutation
Ie SSn, then by definition

n
% b, = i(n). (16)
=1 ! _
By Temma 4, 1i(I) is the sum of sizes of all left subtrees in T Heénce,
by the symmetry of left and right subtrees

pX 1nt(TW) = 2r i(m). (17)
HeSSn HeSSn

The value of the left member of (17) is given in [3,p. 404] as

L int(T ) = 4" - (3n+1)C,, (18)
HeSSn

from which (15) follows.
It is interesting to note that on the average a random permutation
of SSn contains O(n]'5) inversions, where as the corresponding value

for a random permutation of order n is 0(n2).
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5. Graphs Associated with SSn

We give some definitions and notations from graph theory which are
required in this section.

A graph G(V,E), consists of a vertex set V and an edge set E,
such that each edge in E is associated with two vertices in V called
its end points. We consider here only graphs which have no two edges with
the same two end points (parallel edges), and no edge for which its two
end points are the same (self loop). Two vertices are adjacent if they
are the end points of the same edge, this is denoted by Vs —G—-vj, otherwise
they are non-adjacent denoted by v.——é——v.. The complement of G, denoted

1 J
by GC, has the same vertex set as G, two vertices are adjacent in GC

if and only if they are non-adjacent in G.

A direction can be assigned to the edge ViT G Vj’ this is denoted
by Vs 2 Vj' If all edges of G are assigned a direction, it is called
a digraph (directed graph). A digraph is transitive 1if for ViaVyaVy eV,
the existence of Vi > Vj and Vj >V implies Vi > Ve A graph G is

transitively orientable (TRO), if it is possible to orient all its edges

such that it$ directed image is transitive.
Let G(N) be a graph which has its vertices labeled by the set

N={1,2,...,n}. Then G(N) has a defining permutation with respect to

its Tabeling, if there is a permutation T on N such that;
i j (vertices are called by their labels) if and only if
G(N)
i and j form an jnversion in 1.

A graph G 1is a permutation graph, if at least one of the possible
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labelings of its vertices with N, gives rise to a defining permutation.

Example: A permutation graph G, with two Tabelings and their respective

defining permutations, is shown in Figure 2

4
2 5
3
’ H] = <3,2,4,5,1> I, = ?fz 4,3,5,1
2"‘ 3T 9350,1 >
Figure 2

The next theorem of [6] demonstrates the connection between permutation

graphs and transitive graphs.

A graph G s a permutation graph if and only if both G and

GC are TRO graphs.

A graph G with vertex set V(|V| = n), is an interval graph if there

exists a family of interwals on the 1line I = (11’12""’In) such that

Theorem :
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Vi€ V corresponds to an interval Ii’ and Vs vj if and only if
G

Ii n Ij #z ¢. A nested interval graph is an interval graph which has a

representing family I such that for each pair of intervals Ii and Ij,

if Ii n Ij # ¢ then either Ii c Ij or Ij c Ii holds.

Theorem 8: The following conditions are equivalent:
(1) G 1is a permutation graph, with a defining permutation
I e SSn.

(2) G 1dis a nested interval graph.

Proof: (2) Consider the sorting sequence of II, where a Tine is drawn
from each S operation to its corresponding X operation which removes
from stack the element stacked by S. For example, for I =<3,1,2>
the following sorting sequence and 1ines are drawn S S XS XX Let L,
be the 1ine drawn between the S and X which stack and unstack i in .
For a pair of intervals Ii and Ij assume that Ii has its left end
to the left of I (i « Lﬂ(j)). Then two cases are possible:

(a) i <j, i Teaves the stack before j is stacked and Ii n Ij = ¢
(b) i >j, i Tleaves the stack only after j is unstacked and 113 Ij'
In the permutation graph G Tlabeled with I, vertices labeled i and j
are adjacent only in case (b) where i and j form an inversion in I
hence G is a nested interval graph. Conversely, Tet I be a family of
n intervals which is represented by a nested interval graph G. Then, I
can be mapped into a sequence of S's and X's by reversing the above
procedure. By reading this sequence of S's and X's from left to right

we obtain a sorting sequence of some II e'SSn and T is a defining permutation

for G. 0
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Conclusions

In this paper we studied some of the combinatorial properties of
members of SSn, and the relations of these properties to the corresponding
binary tree. It was observed that members of SSn tend to be more 'ordered'
than ordinary permutations in the sense that on the average they contain
less inversions, longer maximum ascending subsequences and shorter

maximum descending subsequences.
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