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Abstract

In this paper we establish representation results for families
of languages analogous to the Chomsky-Schiitzenberger theorem for CF
languages and analogous to Greibach's theorem on the hardest CF language.
We show that, using intersection with regular sets and certain simple
homomorphisms, the family of RE sets, each principal AFL and (under weaker
assumptions) each countable family of languages can be generated from one
individual language. We then extend Greibach's hardest CF language
theorem to RE sets and to the family of context-sensitive languages, the
latter result also providing a particularly simple proof that this family
of languages is a principal AFL. In contrast to these results we then
establish that no such result is possible for the family of regular

languages.



0. Introduction

One of the most important aims of language theory has been the

establishment of so-called representation theorems for families of

languages L of the following type: There exists a language U , called
generator (and usually U e L) such that each L e L can be written as
L = f(U) , where f is a simple combination of simple language operations.

One example is the Chomsky-Schiitzenberger theorem for the
family of CF languages which asserts that a Dyck language can be chosen
as U and that f can be chosen to be the intersection with a regular
set followed by a particularly simple type of homomorphism. Another
example is Greibach's theorem on the hardest CF language establishing
for the family of CF languages that with a proper choice of U the
mapping f can be taken to be a single inverse homomorphism. Still
another example is the notion of a full principal AFL since for any such
full principal AFL L there exists a U such that every L e L can be
written as L = f(U) , where f 1is a finite (rational) transduction.

A number of other similar results is known in the literature.
In particular, a Chomsky-Schiitzenberger type theorem has recently
been proved for the family of RE sets. We strengthen this result in our
Theorem 1, establish a similar result for every full principal AFL in
Theorem 2 and a weaker result (Theorem 3) for every countable family L
of languages (weaker in as much as U will, in general, not be in L).
We then prove two results for the family of RE sets (Theorems 4 and 5)
analogous to Greibach's theorem on the hardest CF language. Modifying
the proof of Theorem 5 we obtain that every context-sensitive language

can be obtained as inverse homomorphism of a single fixed context



sensitive language (Theorem 6). Not only is this the strongest repre-
sentation theorem for context-sensitive languages known to date, it also
gives a particularly simple proof that the family of context-sensitive
languages is a principal AFL, a result originally obtained in [12], c.f.
also [5, p. 139]. We finally establish that no such theorem can hold for
the family of regular languages (Theorem 7).

Throughout the paper we assume familiarity with basic formal
language theory. For any terminology not explained in this paper [7-10]
may be consulted.

Section 1 contains a summary of only such definitions and
terminology which are of a more specific nature. Section 2 contains the

results, presented in seven theorems.



1. Preliminaries

In this section we summarize some of the definitions and
terminology of this paper. A familiarity with basic formal language
theory is assumed throughout.

A homomorphism h : X* -~ A* s called an erasing if for some
subset T of I we have h{(a) =a iff ae T and h(a) = € , other-
wise. Throughout the paper such an erasing will be denoted by HT .

Let h],h2 be two homomorphisms, h],h2 : Z* > A* . The

minimal equality set of hy; and h,, denoted by e(h1, h2) is defined

by:
e(h], h2) =fwes | h](w) = h2(w) and if w = uv where

ues , Vo€ 5t , then h](u) # hz(u)} .

Throughout this paper, if I is an alphabet, T will denote
an alphabet disjoint from I consisting of "barred" symbols,
T=1{a]aezx}. Foranyword xe I , X denotes the word obtained
from x by barring each symbol.

Let I be an alphabet. The twin-shuffle over I 1is a language

over (X u I)* , denoted by Ly and defined by:

L. = {xe(zuZ)*|m

¥ X) = Hf(x)}

5 {
A transducer t is defined, as is usual, as a 6-tuple

t=(, A, &, M, Ay F) , where I is an alphabet of inputs, A an

alphabet of outputs, ¢ a finiteset of states, g € ® a start state,

Fcd asetof final or accepting states, and where M 1is a finite

subset of & x £* x ¢ x ¥* , specifying the behaviour of t . A quadruple



(p, X, q, y) indicates that t 1in state p with input x may switch

to state q and produce output y . A transducer t as above is called

implies |x] <1 and |y| <1 .

simple if (p, X, 9, y) € M

Finite transducers can be defined by state diagrams in the

obvious way.



2. Generation of Language Families From a Single Language

2.1 Generation Using Intersection With a Regular Set followed by a

Homomorphism

In this subsection we consider the problem of representing each
language L of a family of languages L as the homomorphic image of the
intersection of some (presumably simple) language DL and a regular set.

The historically first and most widely known result of this
type is the well known Chomsky-Schiitzenberger theorem which can be stated

as follows:

P, : For every CF language L there exist a Dyck
language DL , a regular set R and a homomor-

phism h such that L = h(DL nR) .

Indeed, a stronger version, where DL does not depend on L
but only the alphabet of L , and where h 1is an erasing is also known

to hold:

Pi : Let T be an arbitrary alphabet. There exists
N a language LT such that for every CF language
L there exist a regular set R and an erasing
Il D

such that L =1 n R) .

T (0

Similar results have also been established for other language
families. For instance, a result analogous to Pi has been proven in

[1] for both EOL and ETOL languages:



Let T be an arbitrary alphabet. Let X stand
(consistently) for either EOL or ETOL. There

exists a language L%X) such that for every X
language L < T* there exists a regular set R

and an erasing IIp such that L = HT(L$X) n R) .

Rather recently, a similar result has also been obtained for

RE languages in [4]:

P3 : For every RE language L there exist a

twinshuffle DL , a regular set R and an

erasing 1 such that L = I(D, n R) .

L

In what follows we first present an alternate proof of P3
(Lemma 1) based on a result in [2]. A modification thereof shows that
the language DL in P3 can be chosen to depend only on the alphabet
of L (Theorem 1), a strengthening analogous to Pi . We then show that
a result analogous to P] holds for every principal AFL and that even an
erasing instead of a homomorphism suffices (Theorem 2). We finally
observe that a similar result holds for any countable family of languages
(Theorem 3) but that the generator used then will, in general, not be a

language of the family of languages at issue.

Lemma 1

For every RE language L < T* there exist a twinshuffle LF s

a regular set R and an erasing HT such that L = HT(LF n R) .

Proof: By Theorem 1 of [2] we can write L = HT(e(h], h2)) for some

homomorphisms h],h2 :Z* > A* and T cZI . We may assume that



AnZ=¢ . Moreover, it follows from the proof of the theorem that we
may assume that a symbol 3 is element of I and
e(hy, hy) < (2 - {3}1)*{3} .

let 2={a|laez}, A ={b|bea}l, T=xuh,
T=%uA and let w be the word obtained from a word w by barring
each symbol, we (L uA)* . Let F = {ah1(a)h2(a) | a e 2} and let
R=(Fuzx - {3})*{3} .

Clearly, e(h], hz) = I.{(L. n R) . Note in particular that

T
only "minimal solutions"” are in LF n RL , since symbol 3 acts as an
"endmarker".

]
We now strengthen Lemma 1 by showing that for each alphabet T

we can use the twin-shuffle LTu{O 1} asa fixed generator for every

LcT.

Theorem 1
Let L < T* be an RE language and let LTu{O 1} be the twin-
shuffle over the alphabet T u {0, 1} . There exists a regular set

Rc(TuTud{0, 0, 1, 1})* such that for the erasing Iy we have

L= iq(lyyo,13 " R) -

Proof: Let L < T* be an arbitrary RE language. By Lemma 1 there
exist an alphabet T , T cT and a regular set Q ¢ I'* so that
L = HT(LF nQ) . Let T-T= {c], Cos wnes cm} and let

g:(Tul)*>TuTu{0, 1,0, T} be the homomorphism defined by:



g(a) = a for aeTuT
g(c1) = 01"
— _-q } for i =1,2,...,m
g(c;) = 01
Finally, let R = g(Q) . Since g is a one-to-one mapping, since

g(Lp) = LTu{O,]} n (g(r v T))* and since HT(x) = HT(g(x)) for every

x € (I v T)* , we have

L = HT(LT n Q) = HT(g(LP) n g(Q))
= Tpllpygo,ny 7 R
0
We establish that representation theorems such as Theorem

1 are not restricted to a few special language families but hold for a

variety of "natural" families of languages.

Theorem 2

Llet % be an alphabet and L a full principal AFL. There
exists a language LZ e L such that for each L e L , L over some
alphabet T c £ , there exist an erasing Iy and a regular set R

such that L = HT(LZ nR) .

Proof: Since L s a full principal AFL, L is the transducer closure
of some language L0 e L ,c.f. [5]. Thus, every Le L , L over some
alphabet T c I , can be written as L = t(L ) , where t s a finite

transducer and may be assumed to be simple. Equivalently, L can be

written as L = f(Q n g'](LO)) , where Q < ¢* is a regular set, g is a
homomorphism g : &* ~ A* , f dis a homomorphism f : &* > T* , and A

is the alphabet of L0 .
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For our further observations it is of crucial importance that
the alphabet ¢ can be assumed to depend only on T and A . (Applying
the "quadruple-construction", as is often done when proving results on
transducers, would result in ¢ also depending on the number of states of
the transduction involved.) We show that
&= (T u{e}) x (Au {e}) can be assumed by using the following approach.
Let t= (A, T, T, M, Ay F) be a simple finite transducer with states
I , input alphabet A , output alphabet T , q, € I' start state,
Fcrl final states and McT x (A u {e}) x T x (T u {e}) describing
the behaviour of T .

Llet & = {[a, B] | aecAvud{e}l,BeTu{el} and let
A= (o, T, 86, 4> F) be the nondeterministic finite automaton with states
I and input alphabet ¢ whose transition function & 1is defined by
§(p, [a, 8]) = {a | (p» @, g, B) e T} . Let Q be the regular set
defined by A . Defining g : &* > A* by g([a, 8]) = a for
[a, Bl ¢ & and f([a, B]) = B for [a, B] € & it is easy to see
that L = f(Q n g ' (L)) , as desired.

Since |f(a)] <1 for ae ® and |g(a)] <1 for ae @,
since ® depends onlyon T and A, T cZ , and since I and A
are fixed alphabets, every L ¢ L with L c Z* can be written in above
form with f=f, in F and g =g, in G , where

1 J

F = {f1, f ‘s fm} and G = {g], 9o +ens gn} are finite sets of

2, ..
homomorphisms.

Let 6= {g l a e @} s €= {g'la .9—25 cees gn} and

F={ 1 ?é, ces ?h} be sets of new symbols. For each k (1 <k < m)
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define h, (a) = af (a) for all aec @ . Let L.= \J f g,
k k L yckem K ¥ 0
1<8<n

and R = ?%gjhi(Q) .

Then L = fi(931(Lo) n Q) clearly implies L = HT(LZ n R) ,
where HT is an erasing. Since LZ has been obtained from L0 by AFL
operations, LZ e L holds, as desired.

d

We conclude this subsection by observing that a result akin

to Theorem 2 holds for any countable family of languages L , provided

we do not insist that the generator is element of L

Theorem 3

Let I be an alphabet and L a countable family of languages
over (subsets of) X . Then there exists a language U such that for
each L e L there exist an erasing HT and a regular set R such that

L = I.(U n R) .

T

Ly, L

Proof: Let L ={L ...} and let c,d be new symbols. Let

1° 727 73

U=wc'd, . Suppose L =L, el ,LcT*. Define R= cldT* .
i=1

Clearly, L = HT(U n R) .
a

Note that by restricting the choice of T in the erasing HT
we can get a precise characterization, i.e. only languages in [ , even

if U 1is not in L
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2.2 Generation Using Inverse Homomorphism, Possibly Followed by

Homomorphism

Greibach's result on the "hardest" CF language, see [ 6],
asserts that every CF language can be obtained as inverse homomorphic
image of one fixed CF language:

P4 :  There exists a CF language U such that for each

CF language L there exists a homomorphism h
such that L = h™1(U) .

We show that a result akin to P4 holds for RE languages:
every RE language L can be obtained from some fixed "simple" RE Tanguage
U by some inverse homomorphism followed by an erasing (Theorem 4).

Indeed, every RE set L can be generated from some fixed RE set U by
just an inverse homomorphism by using as U an encoding of all possible

RE languages (Theorem 5). We then modify the proof of Theorem 5 and obtain
(Theorem 6) that the family of context-sensitive languages can be obtained
from a single context-sensitive language in the same way. This new
representation theorem also provides an alternative simple proof that the
family of context-sensitive languages is a principal AFL. We conclude

the paper by showing that such purely homomorphic characterizations are

impossible for the class of regular languages (Theorem 6).

Theorem 4
There exists a fixed language U < {0, 1}* such that for every
RE language L there is a homomorphism h and an erasing e such that

L = HT(h'](U)) :
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Proof: Assume L < T* . By Theorem 1 in [2] we can write
L = HT(e(h], h2)) for some homomorphisms h1,h2 :I*>A* and T cI .
Let A = {c], Cos +evs cm} and  g;,9, * A* > {0, 1}* be
homomorphisms defined by g](ci) =01, gz(ci) = 001" , for
i=1,2,...,m . That is, 9 and 9, encode an arbitrary alphabet A
into the binary alphabet {0, 1} . Observe that both 94 and g, are
one-to-one functions.
Let f], f2
in Figure 1. (Shaded circles indicate final states.)

be finite transducers defined by their diagrams

01,01
01,01

001,¢ . 1,e

001,e

Figure 1

Using f] and f2 we now define our generator U . Let

U= {we {0, 1}* | f1(w) = fz(w) #¢ and

f](v) # f2(v) for each proper prefix v of w}
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Note that U 1is defined independently of A . However, for

each A we have:

Un (g,(8) u gy(a))*

(1) - {we (900) v gpan* | 67w} = g3’ (W) and

9{1(v) # gél(v) for each proper prefix v of w} .

Finally, let h : £* - {0, 1}* be the homomorphism defined by
h(a) = g](h](a))gz(hz(a)) for each a e . It follows from (1) that
efhys hy) = h7 (U n (g(8) u gy(8))%) = h™1(U) . Hence L = I (h7'(U))
as desired.
0
By coding all RE languages into one (complicated) RE language
U , every RE language L can be obtained from U by a single inverse

-1

homomorphism h'], h in essence "retrieving" L from U .

Theorem 5
There exists an RE language U < {0, 1}* such that every RE

language L can be written as L = h[](U) for some homomorphism hL

Proof: We assume that each RE language is over some finite subset of an
infinite alphabet I = {a], 55 a3 ...} . RE languages are generated

by type 0 grammars. Consider a fixed encoding of type O grammars (similar
as described for CS grammars in [8, p. 118]) such that a, is encoded as 011
and all other symbols (including nonterminals) are encoded as OO]i for
i=1,2,... . Let G be an effective enumeration of

G,, G

12 72 73>
encodings of all type zero grammars (we will identify a grammar with its
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encoding), Gi e {0, 1}* for i =1,2,... . Let for each i =1,2,...
Ti be the terminal alphabet (subset of =) of Gi and Tet hi be the
homomorphism from T¥ to {0, 1}* defined by hi(aj) = ooeiooo1j for

each aj € Ti . Finally, we define our generator U as

us=u hi(L(Gi)) . Informally, U 1is the union of all the languages
i=1

generated by type 0 grammars G], G2, ... Where in every string from
L(Gi) every symbol is preceeded by the encoding of Gi .

U 1dis an RE set by showing that U can be generated by a type
0 grammar G . Roughly speaking, G works in 4 stages. In stage 1, G
generates an arbitrary word which, if meeting certain format restrictions,
will be interpreted as the encoding of some grammar H . Stage 2 checks
whether the word generated in the first stage is indeed the encoding of
a type O grammar. In stage 3, derivationsof H are simulated. In stage
4, a "signature" O0OHOO of the grammar H is generated and it is

inserted before each terminal symbol.

It is easy to see that for each i = 1,2,... L(Gi) = h;](U) .

The inverse homomorphism hi selects from U exactly the words of
hi(L(Gi)) and decodes them into L(Gi) . Since every RE language is
generated by some Gj we have completed the proof.

We do not know whether fof a much simpler U (such as the U

of Theorem 4) Theorem 5 also holds.
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Theorem 6
There exists a context sensitive language U < {0, 1}* such
that every context sensitive language L can be written as L = h[1(U) )

for some homomorphism hL .

Proof: We construct the generator U as in the proof of Theorem 5
except that we use monotonic grammars rather than type O grammars and we
modify the encodings of grammars so that in the encoding of each
terminal and nonterminal symbol (grammar dependent) we add from the right
side a string 00001k where K's are chosen so that all symbols of a
given grammar have encodings of equal length. We correspondingly modify
the homomorphism hi for each i . This modification assures that a
monotonic grammar can be constructed for the generator U . This grammar
is constructed in the same way as outlined in the prcof of Theorem 5.

i

We conclude this paper by showing that a strictly homomorphic
characterization of regular sets is not possible. An auxiliary result

turns out to be useful.

Lemma 2
Let R be a regular set, R=T(A) , A a finite automaton
with n states. Let h be a homomorphism. Then R' = h_](R) can be

accepted by a finite automaton A' with n states.

Proof: Llet Rcz*, A= (9, I, 6, Gg> F) , & the set of states,

% the input alphabet, & < @ x £ x & the transition function, 9 € ®
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the start state, F c & the set of final states. Let h : Z' > L% .
Define A' = (¢, ', &', 9> F) as follows: 6&'(q, a') = &8(q, h(a')) .
We maintain: R' = T(A') . Let x = aiaé...a& (a% e ' for 1 <1 <m)
be an arbitrary word over I' .

Part 1: (R' < T(A")).
Suppose x € R' . Then h(x) = h(a')h(aé)...h(a&) e R.
Define q; = S(qo, h(ai)...h(a%)) . Then q_ e F . We now show

6'(qo, a]...ai) = s hence 6'(q0, a]...am) e F,i.e. xe T(A") :

6'(q0, ai) = 6(q0, h(a.

i) =ay -

8'(gys ay.--atyq) = 6'(ass az,q) = 8(a;, hlag,y))

6(q,> h(a]).--h(a;+])) = G549

Part 2:  (T(A') < R').

Suppose x e T(A') . Then 6'(qo, ai...a&) e F . Define
§'(q_, a]...a%) =q; . We will show (inductively) that
8{q., h(ai)...h(a!)) =q; - Hence S(qo, h(ai)...h(a&)) e F, i.e.
h(x) ¢ T(A) , i.e. h(x) ¢ R and thus x < R* = h™'(R) . Clearly,

8(q,» h(aj)...h(al,;)) = 8a;, hlag,g)) = 8'(a;s aj,y)

6'(q0, a1...aia1+])

941 -



18

Theorem 7
For every regular set R there exists a regular set R' such

that R' # g(h'1(R)) holds for all homomorphisms ¢ and h .

Proof: Suppose R is accepted by a finite automaton with n states.
Then h'l(R) is also accepted by a finite automaton of n states by
Lemma 2. Hence h'](R) is a regular language of star height <n .
Chose R' to be any regular language of star height >n . (Such R' is
known to exist, c.f. [11].) Since homomorphisms do evidently not increase
the star height, g(h'l(R)) is of star height < n . Hence
R' # g(h™ (R)) .

0

We have shown that both the class of RE languages and of CF
languages can be generated by a single fixed RE language, CF Tanguage
respectively, by just using inverse homomorphisms. The family of regular
languages (as a subclass of the family of CF languages) can certainly be
generated under inverse homomorphisms from a CF language L (by P4) R
but L must be nonregular by Theorem 6.

The question arises whether other language families, for
instance the family of ETOL Tanguages, do have inverse homomorphic
representations. We feel that Greibach's proof of P4 can be carried
over to ETOL languages, if the following normal form theorem holds for

ETOL languages:
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A] : For every ETOL language L there exists an ETOL
system G generating L such that each production
is either of the form:

(i) a + X , where x is a terminal word, or

(ii) o - AaY » Where Aa is a nonterminal whose
only productions are Aa > Aa and Aa + a
(Y 1s arbitrary) or

(iii) a->N, N-> N where a is a terminal, N

is a "blocking" nonterminal.

We do not know whether assertion A1 holds. In view of the
difficulty of proving a somewhat similar normal form result in [3],a proof

of A] does not seem to be easy.
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