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Abstract

In this paper we study the notion of the height of context-

free languages. A CF 1language L is of height f(n) , if for some

G generating L and some constant ¢ , each word x of L of length

n can be generated by a derivation tree of height < cf(n). We show that
regular languages are of Togarithmic height but that a large class of
(nonregular) CF languages is not of any height f(n) essentially
smaller than linear. We then show that EOL and ETOL sytems allow

to decrease the height of derivation trees in certain instances and

that the apparent "gap" between logarithmic and linear for CF Tlanguages
disappears when considering L systems. The investigations reveal a
surprisingly strong relation between the height of derivation trees and
other well studied (but still partially unresolved) problems of CF

language theory.
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1. Introduction

One of the most natural representations of the derivation
process for many generative mechanisms (such as CF grammars or EOL

systems) is obtained using the notion of a derivation tree.

Derivation trees reflect in a clear manner the derivation
process, properties of the generative mechanism used, and the syntactic
structure of the words generated. It thus seems to be important to
study the influence of properties of derivation trees on the language
generated. One such attempt has been made in [2], in which paper a
seemingly simple restriction of the "levels" within a tree has made it
possible to generate inherently ambiguous languages unambiguously, to
characterize a number of well known classes of Tanguages in an elegant
fashion, etc.

In the current paper we take another approach. We investigate
CF grammars (and other generative devices) with the property that for
every word of length n there exists a derivation tree of height not
exceeding a certain function of n. This study is motivated by the
desire to obtain grammars with as compact and balanced derivation trees
as possible.

We establish that regular languages can be generated by very
compact trees (at the price of introducing ambiguity) but that a large
class of CF Tlanguages cannot be generated by trees Tower than a linear
function of the length of the word generated. Indeed, we conjecture that

this class is the class of all nonregular CF languages. We further show
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that more powerful generative mechanisms allow a decrease in the height
of derivation trees (even without introducing ambiguity) and that for
certain generative mechanisms such as e.g. DOL systems a variety of
different functions arisesas describing the minimal height of deriva-
tion trees.

The remainder of this paper is structured as follows:
Section 2 contains some general definitions, followed by the introduc-
tion of the concept basic to this paper, the notion of height of a
grammar and a language. Section 3 contains four main theorems, the
second of which we consider the most important one. Its proof is given
by a chain of three lemmas. In an extensive discussion after Theorem 2
and its Corollary we try to show how the notion of height of grammars

ties in with a number of (still open) basic problems of language theory.



2.1

2. Preliminaries

In this section we first briefly review some concepts of
language theory, mainly to introduce the notation to be used in what
follows. For any concepts not explained and for further details
consult some book on language theory such as [4] or [7]. In the second
part of this section we present the definitions forming the basis of
this paper, such as the notion of height of a grammar and a language.

A CF_grammar G is a quadruple G = (V,Z,P,S), where V

and I are disjoint alphabets of variables and terminals respectively,

where S e V is a start symbol and P <V x (V u £)* 1is a finite set

of productions. Productions (A,z) are usually written as A » z.

For any words x,y € (V u Z)* and any production A~ z we write

XAy => xzy and define = to be the transitive and reflective

closure of => . For any word x = (V u £)* we define

Lx(G) = {w | x = W, We Z*}., For x =S this set LS(G) is generally

written as L(G) and called the language generated by G.

An EOL sytem G is a quadruple G = (V,I,P,S), where V,I
and S have the same significance as for a CF grammar but where
the finite set of productions P is a subset of (V uZ) x (VuZ)*
such that for each a ¢ V uZ, P contains at least one production
o -+ z. A derivation step x =>y is defined by demanding that
"rewriting takes place in parallel". I.e. x = QqOipe Oy = Z92Z9. 002 = Z

iff a; > Zj is a production of P. Other notions are defined as for

CF grammars.
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An ETOL system posesses a number of sets of productions

P]’PZ""’Pk called "tables" (rather than just one such set as in
the EOL case). For each derivation step all productions used must
be taken from the same table. Otherwise derivations proceed as in
EOL systems. An OL system 1is an EOL system with V = ¢ (the
empty set) which evidently necessitates the use of a start word
(consisting of terminals) instead of a start symbol. A DOL system
is an OL sytem with just one production for each symbol.

For all of the above generative devices we talk about

derivation, length of derivation, derivation tree, unambiguity etc.

in the usual fashion. In particular, the height of a derivation tree
is the length of the longest path from the start symbol (axiom) to a
leaf of the tree.

In all examples of generative systems, capital letters will
denote variables, small letters will denote terminals and S (or in-
dexed, primed or barred version thereof) will be the start symbol.

Languages differing only by €, the empty word, will be
considered equal. Alph (X) denotes the set of all symbols used in
the word, or set of words, X.

A finite automaton A is a 5-tuple, A = (®,Z,6,q0,F)

where @ and I are finite sets of states and input symbols respec-

tively, where &8: @ x £ - ¥ 1is the transition function, qp € @ is

the start state and F c & 1is a set of final states. & 1is extended

to & x.£* by defining &(q,e) = q for all qe & and



2.3

§(q,xy) = 8(8(q,x),y) for all gqe ® and x,y e £*. T(A), the set
of words accepted by A, is defined by T(A) = {x | é(qo,x) e F}. Sets

accepted by finite automata are called regular.

A gsm g 1is a (nondeterministic) version of a finite auto-
maton including outputs, g = (@,Z,A,G,qO,F). 2,Z,qy.F have the
same significance as for a finite automaton, A 1is a finite set of
outputs and §: @ x I - 2% x A* defines for each pair (p,a) e ® x %
a finite set of pairs (pyswy)s (PysWy)s...s(p W) indicating that
in state p with input a, for each i, state Py can be attained,
producing output w;. We write y =yjy, ...y e g(a1a2 . an) with
a; e L iff for some sequence qo,q1,...,qn e F of states
(qi,yi) € 6(qi_],ai) (i =1,2,...,n). A gsm g is called bounded

erasing on a language L if for some constant c, y e g(x) dmplies

|x| < cly|, where |z| denotes the length of the word z.

Card (M) will denote the cardinality of the set M; for a
set M of positive integers Lcm(M) will denote the least common
multiple of all numbers in M,

Let f(n), g(n) be functions of integers =0 into again
such integers. We write f(n) = 0(g(n)) if for some constant c
f(n) < cg(n) for all n. We write f(n) = o(g(n)) and say f(n)

is smaller than g(n) if for each ¢ > 0, f(n) < cg(n) for all

n > ng.
We now introduce the basic notions of this paper. A CF

grammar G is called of height f(n), if for each word x ¢ L(G)
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there exists a derivation tree of height O(f(|x|)). A CF Tlanguage
L is called of height f(n), 1if for some G with L(G) =L, G is
of height f(n).

If a CF grammar G (or a language L) is of height f(n)
where

(a) f(n) = 0(1oga n) (a > 1), then we speak of logarithmic

height,
(b) f(n) 1is smaller than n, then we speak of sublinear

height.

We will apply the notion of height not only to CF grammars
and languages, but quite general to X grammars and languages, where
X ¢ {CF, EOL, ETOL, DOL, unambiguous CF,...}. We will then talk of

X-height to emphasize the class of generative devices we are considering.
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3. Results

One of the main aims of this section is to establish that
each regular language is of logarithmic height but that each of a
large class of nonregular CF Tlanguages cannot be generated by a sub-
linear grammar. The first of these results is obtained directly as
Theorem 1, the other one, Theorem 2, is based on three Lemmas, two of

which are of some interest in themselves.

Theovrem 1

Every regular language is of logarithmic height.

Proof:
Let R c £* be an arbitrary regular language. We will exhibit a CF
grammar G of logarithmic height which generates R.

Let A= (@,Z,S,qO,F) be a finite automaton accepting R,
R = T(A). For each pair of states p,q ¢ @ Tet [p,q] be a new
symbol. Let V be a set of symbols consisting of all such symbols
[p,q] and one additional symbol S.

Define G = (V,Z,P,S) with productions P as follows:

P={S+1[qp.a] [ qeF}u
{[p,ql > [p,r] [r,q] | psqsr € o} u
{[p,q] ~ a | &(p,a) = ql.

Augment G by the production S -+ ¢ 1iff e is in R.
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We first observe that L(G) = T(A). Consider an arbitrary
nonempty word x = 318y ... A with a; €I (1 <i <n). Suppose
x € T(A). Then S(qo,a]) = q1,6(q],a2) =q2,...,8(qn_]pn) =q, with
q, € F. Hence [q5,q:] > a;, [ay,9,] > az,...,[qn_1,qn] >a  and
S - [qo,qn] are productions of P, Observe also that
[ag.a;1 > [ag»a;_¢1 [a;_y»9;1 for 1 =2,3,....n. Hence we have
S~ [aj.9,] 2 [ag-9;] [ay5a,1 ... [a,_7.q,] L8 aja, ... a . Suppose
x € L(6). Then s~ [q5,q.] = [ag-9¢] [ay5a,] ... [a,_¢59,] =
*
=> aja8y ... a, with q < F holds. Hence 6(q0,a]) = dqs
8(d7s35) = @yse..58(a. _152.) =g, i.e. x e T(A).

It remains to establish that any word x can be generated

by a tree of height ~ £g |x|. It clearly suffices to show, by the

first part of the above proof, that any derivation
*
[q'i an] => [q1 ’q'i+]] [q'i'H sqi+2] ‘oo EQJ_] aqj]
requires a derivation tree of height at most ~ &g |j - i|. Since
[qi’qj] > [4;,9; ] [qk,qj] is a production of P for any k we can

choose q, as (roughly) the midpoint of the sequence QjsG54750 205

Repeating the process,a tree of the desired small height is obtained. [

Although it is well known that regular languages can be
generated by unambiguous CF grammars, every CF grammar of sublinear
height generating an infinite language must be ambiguous. This is seen
as follows. Let G be an unambiguous CF grammar generating an in-

finite language. Then there exist terminal words u, v, w, X, y and a
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nonterminal A, such that S S uAy > uvAxy S uvwxy, S the start
symbol of G. By the unambiguity of S, each word uviwxiy has a
(unique) derivation of height exceeding i for all 1 = 0. Hence G
is not sublinear.

Our next goal is to obtain a large class of CF Tlanguages
none of which is of sublinear height.

We proceed in four steps. We first show that the height of
languages does not increase under certain operations. We then estab-
lish a normal form result for a certain class of CF languages. Based
on this we present a class o of languages none of which is of sub-
linear height. We finally show that each language of a large class ¢
can be reduced to a language of the class <o by the operations men-

tioned, hereby proving that no language of ¢y is of sublinear height.

Lemma 1

let L, L' be CF 1languages of height f(n). Then all of the follow-

ing Tanguages are also of height f(n):

(1) Lul'
(2) L
(3) L*

(4) L nRy, R a regular set
(5) g(L), g a gsm which is bounded erasing.
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Proof

(1) and (2) are obvious, and (4) follows from (5). To see (3), let

L(c), &= (V,z,P,S) where G 1is of height f(n). Define
(Vu {5},z,P v {§ ~ 85 | S},5). Evidently, L(B) =L*. It is

L
G
readily seen that & is of height f(n).

To prove (5) we use the "usual triple construction": Let
L =1L(6), G=(V,Z,P,S), G 1is of height f(n). We may assume that
G is in Chomsky Normal Form, since transformation of a grammar into
Chomsky Normal Form increases the height of derivation trees by at
most a constant factor.
Let M= (@,Z,A,é,qO,F) be a gsm, bounded erasing on L.
Let V = {[psA,q] | p»q € @, A ¢ V} v {S}. Define & = (V,z,P,S),
where P consists of the following productions:
{S » [qO,S,q] | g« F}u
P ={[p,A.q] » [p,Bsr] [r,C,q] | A>BC e P, p,rsq e 0} u
A{[p,A.q]l > w | A>a e P, 8(p,q) > (q,w)}.

It is clear that L(G) = g(L). Further, for every word y e g(x),

X e L, y has a derivation tree of height t (with respect to G)
provided that x has a derivation tree of such height (with respect

to G). By assumption of linear-bounded erasing, for some ¢ depending
only on g, |y| > c|x|. Hence g(L) is of height f(n) if this is
true of L. ]

Our next Lemma provides a somewhat techmical normal form result required

later.
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Let L < a*b* be a CF language, L = L(H), H of height f(n).

Then there exists a grammar G = (V,{a,b},P,S5) of height f(n)

generating L and satisfying conditions (1) - (4):

(1) v

(2) p

(3) Pa
Py
Pr
PReg
PStart
PLoop

(4)

Vyu Vv Vyu {sl, (disjoint union).

Pa v Py PT v PReg v PStart v PLoop i

(disjoint union).

» 0 :
Ap + ApAp | a8 | e | Ap € va}

{B_>BB q }s
q qq|b|€|Bq€Vb

consists only of productions of the form

o+ amp" where o e Vy u {S}, m,n = 0;
consists only of productions of the form
S+ 0ab"8 where a e v, v {e},

B ¢ Vb u {e}, myn = 0;

consists only of productions of the form

§ > 0aDb"8 where o e v, v {e},
BeVyudlel, oBfe, m,n = 03
consists only of productions of the form

D - a"Eb" where D1E € VM’ m,n = 0.

D 5 a"pp" for D¢ VM implies

m>0 and n > 0,
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Proof

We will prove the Lemma by systematically transforming H without
changing the language generated and without increasing the height of
derivation trees involved.

We may assume that H does not contain productions of the
form A+¢ and A~ B, A,B ¢ V(H). (Removing such productions can
clearly be done without increasing the height of H.) Also, we may
assume that LA(H) is infinite for each A ¢ V(H). (Or else each

occurrence of A could be replaced by all words of LA(H)-)
Let VgH) = {A e V(H) | LA(H) < a*},

VéH) = {B ¢ V(H) I LB(H) < b*},
(H
VM )

¢ e v alph(L.(H)) = {a,b}.

p(H)

Let p: ¢~ cqc, oan c; eV {a,b} be any production of

n’

Case 1: For some i, cC. e V&H). Then L. (H) < ax ,

i 1 o Ciq

Lc1+] . cn(H) < b* , and both sets are regular. Hence we may
replace p by a finite number of productions of the type c - aamcian
with o eV v iel, BeVy u {e}s m,n = 0, where here and in what
follows Va and Vb are sets of variables of the type AP, B9 re-

spectively, for which productions as specified in point (3) of the

formulation of the Lemma are provided.
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X : (H) (H)
Case 2: For some 1, Ci € Va and Ci+1 € Vb . Then

L. c (H) < a* , L. c (H) < b* and both sets are regular.
'I LI I} -i _i+'l LI n

Hence we may replace p by a finite number of productions of the form

C~ aaman, where o ¢ Va u {e}, B« Vb u {e}. By replacing every

production p by a set of productions as described, and by adding

productions Ap > ApAp | aP | € for each new variable Ap R

and Bq - Bqu | b9 | € for each new variable B_ , we

finally obtain an equivalent grammar E = (V(E)’,{a,b},P(E , S) of

height f(n) as follows:

(E) _ (E) (E) (E) _ (E)  o(E)
) = Va U Vb U VM s S e VM , and P = Pa u Pb U PT u PLOOp

(E)

where Pa’Pb are sets as described earlier, where PT consists of

productions of the form X - a™"  for X e V&E) and m,n 2 0; and

where P consists of productions of the form

Loop

X > aa™¥b"g with X,Y « VISIE), o eV udfel, BeV ulel, mn=0.

We now want to replace the productions of P by productions of

Loop
the form X - a™b". Variables of V, and V. will be produced as
required once and for all in a starting step. This is possible by
noting that once a variable Ap or Bq has been introduced, it is
not necessary that a variable X ¢ V&E) introduces a further Ap

or Bq: such further Ap's or Bq's can be introduced by

A A A B BB , i .
b > oo or q > a%q instead



3.8

For every X ¢ V&E), U S_Va, W g_Vb let [U, X, W] be a

new symbol. Let R(U) be the regular set 11 LA(E); since R(U) < a*
AcU

there exists a finite set P(U) of words a" and amAp such that
each word of R(U) 1is either in P(U) or can be obtained from a
word in P(U) by productions of the form Ap ~ ApAp | aP | €. Add
all symbols Ap not yet in Va to Va’ and add all productions for
such an Ap to Pa' Similarly, 1let R(W) be the regular set

1T LB(E), define P(W) as a finite set of words b" and anq
BelW

analogously, and enlarge Vb and Pb as may be necessary.
We now construct a grammar G = (V,{a,b},P,5) which we

will then slightly modify to obtain a grammar of desired form.

Let V = Va U Vb U VM u {S} where
E

Vy = {[U,X,W] | X ¢ VPSI ), v eV, VeV, and
p = Pa U Pb U PT U PStart U PLoop as follows:

Pa’Pb as described earlier;
Pstart = {S » ofU,S,WIR | [U,S,W] ¢ Vys o ¢ P(U), B € P(W)1;
Py ={§+X|S>Xe P%E)} u

{Lo,X,0] » a™" | X e Vlle), X > a™" e P%E)};
Ploop = (LU-X:H] > a"[U\ {od, VoW - {8316" | x > ca"¥b's

, , (E) (E) :
is production of PLoop’ X.Y € VM , O € Va u {e},

B ¢ Vb u {e}l.
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Note that the grammar G obtained at this point is equivalent to the
original grammar H , has height f(n) and is already of the desired

form except for two points:
(i) Pstart MY contain productions S - 0a"¥b"8  with
afte and BEe,
. *  _mp.Nn . .
(ii1) D=>a Db for D« Vy with either m=0orn=20
is possible.

We will first show that L _ () for o e and B fe is a
oad Yb B

regular set. Hence each production 3 ~ aa™b"s with o + ¢ and
B # ¢ can be replaced by a finite set of productions as described

in condition (3) of the Lemma under PReg‘

For any X € VM let

i, Jy i,
g(x) = {(a',bd) | X => a ?x]b 1., zx2 2 .

i3 o
= 3 kab ko alxpd, k=0, XyXos.vusX

all different}.

k

Define g(V,) = U g(X) and Tt = card(g(V,)). (Observe that g(X)
M XeV M
M

describes all “"elementary loops” on X). Define p = card (VM) and Tet

u=2Lem {pq | S~ ApamYan }.

q ¢ PStart
Consider a derivation tree starting with 5 » ApamYanq for a word
X such that the tree contains more than y-.-1.p productions for

symbols of V. Thus, the tree contains y-t independent (i.e.
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non-overlapping) elementary loops on symbols of VM' Hence one
elementary loop X = alxpd (i.e. (i,3) = g(VM)) has been used (at
least) p times. Consider u such Toops. They have introduced
i*u = 1i°p*qec a's and j'u = jeprq-c b's. We eliminate the q
loops under discussion and generate a' P'9°C and pIPTa°C by

| b9, instead.

using the productions Ap ~AA | aP and B

BB
pp a” "q°q
Repeating this argument a derivation tree for x starting

q
for symbols of VM’ Hence nonregular productions are required just

with S - ApamYan is obtained with at most wu-t-p productions

a finite number of times. Each production S - ApamYanq thus
generates a regular set only. We can therefore removerproductions
of this form from PStart and replace them by a finite set of pro-
ductions PReg as described in the statement of the Lemma.

To complete the proof, it remains to assure condition (4).
It is easy to see that derivations of the form D :> a™b"  with
mn = 0 can be prohibited without changing the Tanguage by allowing

the generation of (am)* and (b")* by means of suitable start

productions. We leave the details to the reader.

Using the above Lemma we are now able to establish that
any CF nonregular subset of a*b* cannot be generated by low

derivation trees.



Lemma 3
Let L < a*b* be a CF Tlanguage which is generated by some grammar

H of sublinear height. Then L 1is regular.

Proof
We may assume L = L(G), where G 1s as described in Lemma 2. Let

A be the product of all p's such that S ~ ApambnAq or § » Apamen

is a production of P,
Consider some production S - ApaiDbj. We will show that

; (G) = (aP)*Y where Y =1L

A a'DbY
p

end, consider an arbitrary word x

Z=1 (G) 1is regular. To this

aiDbj

uv ¢ Z with v ¢ M, where v
contains sufficiently many b's, v = a™". Since it must be possible

to generate v, = atp+mbn for t = 0,1,2,...,%- by means of starting

ki.£

productions S - Ara b BS (or else no generation tree of Vi of sub-

Tinear height would exist) we have:

k. k |
S A ath B 5 PN o ¢ o= 0,1,2,...,—1;—.
t t

Since each e divides T by definition of I we also have

ki k bt Tt
S>A athtg = KFEPTN kS0, t=0,1,2,....0 .
"t St P

Thus, all words atp+mbn (t > 0) can be generated via a starting

production S - ApakaBq. Hence, productions of the form S - Apa1DbJ

are not required except possibly for the generation of words with a
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bounded number of b's. The set of such words is regular. Therefore,
all productions S - Apa1DbJ can be eliminated by increasing the set

P Analogously, all productions S - aiDb‘]Bq can be removed by

Reg °*

increasing PReg’ Productions 5 - a"Db" can be removed without even

changing PRe since any word generated via such production must also

g’
have a derivation with another starting production, if only sublinear
derivation trees are considered.

We have thus transformed G into an equivalent grammar whose

only production are of the type Pa,Pb,PT and P as described in

Reg
condition (3) of Lemma 2. Hence L = L(G) is regular. O

Combining Lemma 1 and Lemma 3 we obtain our main result.

Theorem 2
If L is a CF Tlanguage such that for some gsm g which is bounded
erasing on L, g(L) 1is a nonregular subset of a*b*, then L is

not of sublinear height.

Proof
Suppose L can be generated by some sublinear grammar. Then g(L)
can be generated by some sublinear grammar by Lemma 1. Since g(L)

is a nonregular CF subset of a*b* this contradicts Lemma 3. {1

Theorem 2 has a number of interesting aspects. It could

be that the following statement (A) holds:



(A): For every nonregular CF language L there exists a
bounded erasing gsm g such that g(L) is a non-
regular subset of a*b*,
By Theorem 2, (A) would immediately imply (B):

(B): No nonregular CF language L 1is of sublinear height.
We conjecture that (B) is true. Whether (B) can be established by
proving (A) is somewhat doubtful, since proving (A) would imply (C):

(C): It is undecidable whether a CF grammar G with

L(G) < a*b* generates a regular set.
Statement (C) can be deduced from (A) roughly as follows:

It is known to be undecidable of degree 2 whether a CF grammar
generates a regular set, cf. [7,p.286]. The validity of (A) and an al-
gorithm for deciding the regularity of a CF subset of a*b* would, how-
ever, provide a semi-algorithm for deciding non-regularity of a CF language:
we examine, one by one, all of the enumerable many gsm's 97:90s93s-++ -
For each such 95> (CF Tanguagesare effectively closed under gsm mappings
and the inclusion of a CF language in a regular set is decidable) we check
whether gi(L) < a*b* holds and if so, if gi(L) is nonregular. If L is
indeed nonregular this procedure will terminate after a finite amount of

time.
The general problem of deciding for an arbitrary CF bounded

language L (cf. [3]) whether it is regular is, to our knowledge, still
open. Even the "simple" subcase (C) does not seem to have been solved
yet, despite the fact that already [3] contains a comparatively elegant

representation theorem for CF subsets of a*b*.
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Corollary 1

Let L be a CF language such that for some words u,v,w,x,y with
Ve, Xx§Fe the language L n uv* w x*y 1is nonregular. Then L is

not of sublinear height.

Proof:
Suppose L is of sublinear height. By (4) of Lemma 1 L n uv* w x*y,
is also of sublinear height.

We now construct a gsm g , bounded erasing on uv* w x*y,
such that g(L n uv* w x*y) is a nonregular subset of a*b*. This
contradicts Theorem 2.

The gsm g is simple enough to be described intuitively:
first, the prefix u is read without producing any output, then, g
switches to some new set of states, outputting one a everytime it
finishes reading a word v; next, g switches nondeterministically
into a new set of states, reads w without producing output, switches
to still another set of states in which reading x produces one
symbol b for each x; finally, a last set of states is nondetermin-
istically entered in which y 1is read without output.

We note that for z € L n uv* w x*y we have
g(z) ='{a1.bj I uvi W xjy = z}. Thus, the gsm mapping f producing
the word v for each a (except for producing uv for the first a)
and producing x for each b (except for wx for the first and xy

for the last b) is the (mathematical) inverse of g, 1i.e.,
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It is easy to see that (B) can also be derived by obtaining
a space-bound theorem on pda's: Let us call a pda P sublinear if
for some f(n) = o(n) and for every word X accepted by P there is
a computation accepting X during which the stack never contains
more than f(|X|) symbols. Result (D) (which we conjecture to hold)
would imply (B) as is seen readily.

(D): No nonregular CF 1language is accepted by a sublinear

pda.

Incidently, (B) does not necessarily imply (D).

One intuitive reason why sublinear grammars do not seem to
be able to generate CF nonregular language is the fact that sublinear
derivation trees seem to allow "pumping" in too many places. That this
approach, somewhat surprisingly, cannot be successful is demonstrated

by the following example.

Let L = {x ¢ {a,b}* | #a(x) = #b(x), neither a° nor b3

occur as subword of x}.

Despite the fact that x = xjux, e L and |u| = 3 implies
_ ; . i i .
U = uqUpUg Uy with |u2u4| $ 0 and xquju, Ugly UgX, € L for i 20
(i.e. despite the fact that within every reasonably long subword
pumping is possible), L 1is clearly nonregular CF.
After this lengthy discussion we turn to a special case of

Theorem 2 which we think is interesting in its own right.



f(g(L n uv* w x*y)) =L nuv* w x*y. Since f preserves regularity,
g(L n uv* w x*y) cannot be regular, completing the proof.

Some remarks concerning the above Corollary 1 are in order.
In view of various "pumping lemmas" one might think that statement (E)
holds.

(E): If L 4ds a nonregular CF then there exist words

U,V,W,X,y wWith v § &, x ¥ € such that L n uv* w x*y
is nonregu]ar.
By virtue of Corollary 1, (E) would certainly imply (B). Unfortunately,
proving or disproving (E) does not seem to be easy. Deep results of a
related nature have been obtained e.g. in [1] and [6] but do not
seem to be applicable to resolving (E). We would Tike to point out
that proving (E) would require to use both that L is nonregular and
that L dis CF. Observe that for the simple non CF language
L = {a""" | n =21} and every choice of u,v,w,Xx,y the set
L nuv*w x*y 1is even finite.

We now turn our attention to the height of derivation trees
in L systems. In view of the rather difficult problems arising even
with CF grammars we cannot expect a systematic treatment of all
aspects of the height of derivation trees for L systems. We will
briefly demonstrate, however, a surprising richness of results in-
dicating that a further study is warranted.

By Corollary 1,'{ancbn | n 21} is not of sublinear (CF)-

height. It is, however, of logarithmic EOL height. Thus, the



3.17

transition to more powerful generative mechanisms allows to reduce the
height of derivation trees. We conjecture that a similar phenomenon

occurs in the transition from EOL to ETOL systems.

Theorem 3

L, = a'ed" | n > 1} s of logarithmic EOL height.
L, = {a"b"c" | n > 1} {is of Togarithmic ETOL height.
Proof

(a) Consider the EOL system G with productions: S~ S | ASB | c,
A->AA| a, B+BB|b,a~Nb=>N,c~N, N>N. Evidently,
L(G) g_ancb". To see that every word a"cb" can be obtained by
a tree of height 0(log n) consider the binary presentation.
n = b]bz""’bk' By using as i-th production for S the pro-
duction S > ASB if bi =1 and S~>S if bi = 0, the desired
word is obtained. (Thus, G 1is even unambiguous. Quite contrary
to the CF case, logarithmically high derivation trees can be
obtained by unambiguous EOL systems).

(b) Consider the ETOL system G with productions:
Table 0: A-A,B~+B,C~C, S~S, A~ AA, B~BB, C~CC,

ara,b~+b,c~>c

Table 1: A -~ AR, B ~BB,C~+cC, S+S, A~> AA, B~ BB, C~ CC,

a+a,b~>b,c~>c
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Table 3: S+A8C, A+~a,B~+a, C~a, A~a, B~ a,

C»-c¢ca~>a,b>b,c~>c

let n=b - bk be the binary representation of some positive

172
integer n. Applying first Table 3, then Table b], Table bz,...,
Table bk’ and finally Table 3, a"™"c"  is obtained. Hence
L(G) = Lo, and G is of logarithmic height.

(c) We conjecture that L, is not of sublinear EOL height. The
proof of this fact seems to require a detailed study of the
generation of L2 by an EOL system. It appears to be possible
but rather complicated.

Because of the close relationship of the growth functions of
of DOL systems and the heights of their derivations trees results

on growth functions lead to anologous results on the height of

derivation trees. In particular we have the following:

Theorem 4 1

For each function f(n) of the set U {nk; 1ogk n} there exists a
k=2

language L such that L 1is of DOL height f(n), but of no
smaller DOL height.

Proof
For each DOL system G there exist constants CqsCy such that
the n-longest word of L(G) has a derivation tree of height k

with Cyn < k < con. Hence Theorem 4 follows directly from the well-

known results on the growth functions of DOL system, cf. [5] and [8].
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