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ABSTRACT

Details are given of a system which automatically
generates evaluation functions for state-space problems and
which has created a function that solves the fifteen puzzle
with (locally) optimal parameters, Problem instances are
presented in order of (roughly) increasing difficulty; ini-
tially, at least one problem instance must be solvable
breadth-first. Also at the outset, the system must be
presented with an ordered set of features (functions mapping
states into integers) as input. This ordered set of fea-
tures defines a feature space.

The system is an lterative one, and each iteration
consists of three steps: a solving step, a region (cluster)
handling step, and a regression step. After a graph
traverser attempts a set of problem instances (solving
step), the system procedes to cluster probability estimates
in the feature space, via an effective splitting algorithm
(region handling step). From the clusters, parameters for a
(not necessarily) linear evaluation function are computed.
(regression step). In post-initial iterations, the system's
graph traverser utilizes an evaluation function generated by
the preceding iteration, and, in these later stages, the re-
gion handling step refines established clusters both by
revising previous probability estimates, and also by further
splitting, to effect successively better evéluation func-

tions,



PREFACE

This report presents the formal details of a system
which has created an evaluation function that solves the
fifteen puzzle, The evaluation function was found to have
parameters which are locally optimal. These results are
given in [Rendell].

Other experimental results will appear in the writer's
PhD thesis. Also included in that paper will be a further
examination of the properties of the system, and of the

motivation for its design.

The basic ideas behind the system presented in this
paper are intuitively simple, but considerable detail is
necessary to formalize the inethods. The introduction s
therefore designed to give the reader a first impression of
the approach. For those less familiar with the state space
/ feature space paradigm (or even mechanized problem
solving), Appendix A should provide some illumination,

This paper contains an index of definitions.



1. INTRODUCTION

An overview of the iterative system is given below.
Some simplifications are made, and there are omissions; the
purpose at this point is just to familiarize the reader with
the overall approach. (Appendix A provides a background for
essential state-space terminology, and a very brief
introduction to the system from a slightly different point

of view,)

1.1. SOLVING STEP

The first step (presently) incorporates a one-way graph
traverser and attempts to solve an input set of problem
instances. Initially, this is done breadth-first, but after
the first iteration, solution attempts proceed according to
an evaluation function which has been created by the
previous iteration. An attempt is halted if a preselected
max imum number of states is generated; but whether or not a
solution is found, a '"final state graph" of states results,
which 1is just a record of the solution attempt. Nodes
(states) are linked by immediate ancestor/offspring arcs.
As will soon become apparent, there must be a successful
solution to at least one of the input problem instances, if
the iteration is to be useful,

Ignoring arcs, each node of every final state graph is

mapped into a point in the feature space. Although the
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total number of possible points in the space might be very
large, the density of points which comprise a current set
may not be high; obviously there can be no more points than
nodes in all the state graphs, Each point inrn the current
set has a pair of integers associated with it. The "total
count" (for a point) is the number of developed nodes in all
the final state graphs that map into that point. The other
integer is the "good count", which is like the total count,
except that it is further restricted to include only those
nodes which appeared on a solution path (if any).

Now, the ratio good count /‘total count is th=
probability that a corresponding state was used in a solu-
tion of some problem instance. Unless both the extent and
the dimensionality of the feature space are very small, the
points will tend to have low counts, but let us ignore this
fact for the moment. Basically, we shall assume that this
probability, good count / total count, is a measure of the
"goodness'" of a feature space point for other problem
instances, and we shall call it the "elementary usefulness"
(of a point, for a particular problem instance set and
evaluation function). The assumption of general
applicability is presumptuous, since we shall in fact be
generalizing from simpler to harder problem instances; but
constant feedback and revision tend to correct biases.

In the section which follows, we shall elaborate on

this elementary usefulness, as we outline how to cluster



points and their counts according to their feature space
proximity, similarity of wusefulness, and a reliability

estimate,

1.2. REGION HANDLING STEP

This second step of an iteration uses the feature space
points and their associated counts of the solving step
either for clustering (first Iiteration), or for revising
previously established clusters (succeeding iterations), In
either case, the definitions of the good and total counts
are generalized to refer to all points 1lying within a
particular feature space area, rather than just to a single
point. Thus the elementary usefulness of a cluster (for a
particular problem instance set and evaluation function) is
its good count divided by its total count. And so, within
its boundaries, a cluster represents a constant usefulness;
it indicates the probability estimate of a corresponding
state's being '"good for a solution'". (Because of this, the
variation of usefulness with a feature should perhaps not be
too erratic in practice),

In addition to the wusefulness itself, it will be
desirable to know how reliable the value is. 0One source of
error is a random element which relates to the magnitudes of
the counts. For example, a wusefulness of 0.1 might be

calculated from a count ratio of 1/10 or 10/100 but the



latter is more dependable, As well as an error term derived
from this source, there are others which will be given
later. For our present purposes it is enough to know that
we can estimate a combined (usefulness) error (for a
cluster). Generally, the combined cummulalative errors can
be quite large, sometimes several times the usefulness
itself. The error§ are expressed as factors of the useful-
ness,

Clusters are restricted to be rectangular, with edges
parallel to the axes, so little information is required for
their specification (just the extreme corner points). The
actual algorithm used for the <clustering is a splitting
algorithm, It inputs some set of points with their
associated counts, as well as a rectangle which is aligned
with the axes and surrounds all the points. Next, the
algorithm tentatively splits the whole cluster into two
rectangles, in every possible way (using every division in
each feature space dimension), and picks out the 'best" of
these splits. The best split is the one whose rectangular
clusters have the greatest distance from each other; this
distance 1is non-metric and defined in terms of the ratio of
their usefulness, taking into account the usefulness error:

ui/eq

I

distance(r_,r )
2 uz.e
where r] U rzis the whole rectangle, u; is the usefulness of

ri, e_i is the error for u; (i=1,2), and ujzup . Thus, the



best tentative split is the one such that the two rectangles
are "most assuredly dissimilar" with regard to usefulness.

If this. largest distance is less than unity, the two
rectangles are recombined. If, however, the distance is
greater than one, the tentative split becomes permanent, and
the whole process is repeated for each of the two new
clusters, in turn, The splitting continues until no further
discrimination occurs.

The output from this clustering algorithm is a set of
clusters whose rectangles constitute a partition of the
input rectangle, and whose counts define both an elementarv
usefulness and an error estimate for their rectangle.

Notice that the counts play a multiple role. They
define the usefulness, partially determine the error, and
thus govern the extent of splitting. The final number of
clusters is largely determined by the counts (data), not by
the algorithm alone,

Generally, to the extent that a feature s 'useful",
there will be splitting in that dimension.

Chapter three discusses count functions, usefulness
probabilities and errors, and chapter five details the

clustering process.

Now that we have examined the splitting algorithm, let
us see how it is used.
From iteration to iteration, we shall find it

appropriate to keep track of the usefulness of a cluster,



rather than to retain the counts. So we define a "region"
to be a rectangle (aligned with the axes), together with a
pair of real numbers, the usefulness and the (usefulness)
error. A set of regions (from past iterations), together
with the set of feature space points and associated counts
(from the solution step of the current iteration) constitute
the input for the region handling step. For the very first
iteration, there is only one input region =-- that whose
rectangle minimally encloses the points. For all Tlater
iterations, the input region set is that from the preceeding
iteration,

For an initial iteration, the clustering algorithm |is
called just once, with the point enclosing rectangle as
input. The solution searches from which the point/count set
is generated are breadth-first for a first iteration, so the
elementary usefulness values from the output clusters of the
splitting algorithm become absolute usefulness values for a
corresponding region set (and similarily for the error
values).

For post-initial iterations, the clustering algorithm
is called once for each established region. Suppose that a
region input is R=(r,u,e) where r is its rectangle, u its
usefulness, and e its error. And suppose that the algorithm
splits r into m rectangles F1sF2s esee T whose counts are
(gl’tl)'(gZ'tZ)' ce e ,(gm,tm). Then each new region R,

(ism) spawned from R will have a usefulness (g;/t;).k whare



k = u/(zg;/zt;). (Generally, k<<1,)

The region handling step, for iterations after the
first, not only refines estéblished regions by further
splitting, it also updates the usefulness estimate for each
region. To revise established regions 1Is not perfectly
simple, as the following discussion attests.

Suppose that two regions oF the input set are R1 =
(r],ul,e]) and R, = (rydxzez). Suppose, also, that for the
most recent solving step the counts for feature space points
lying within ry and r, are (g;,t;) and (g,,t,). Generally
gi/t; > wujy or else the heuristic is not working properly;

for the u supposedly represent absolute probabilities

i
whereas the counts reflect probabilities which are
conditional on the particular search used. If gi/t; were
equal to or less than wu;, then the number of states
developed in order to find one used in a solution would be
equal to or greater than the number if a breadth-first
search had been used; thus harder problems could not be
solved.

So, to revise uj, we cannot (say) take the average of
uj and g /tj, but we can use the information indirectly.
If, for example, uj=ujy but gy/ty > g/t o then u] should be
adjusted wupwards and/or up downwards. The exact manner in
which the system accomplishes this revision will be seen

later, The new value of usefulness becomes a sum (weighted

according to errors) of the old value and a corrected



current elementary usefulness value, Usefulness becomes a
product of experience over all the iterations, This revi-
sion has an effect of decreasing errors and, of course,
allows some readjustment of earlier usefulness estimates.
Chapter four defines regions; chapter five shows how
the clustering algorithm is used In the first iteration; and
chapter six describes the complex process of region revision

in later iterations.,

1.3. REGRESSION STEP AND EVALUATION FUNCTION

After the number of regions increases sufficiently, a
third, regression step becomes part of each iteration. For
this, the center point of each region provides the values
for the n independent variables (feature values), while the
associated usefulness 1is the dependent variable. These
variable sets are weighted according to the accompanying
usefulness error. (Recall that a rectangle, plus the  use-
fulness and its estimated error constitute a region). A
stepwise regression algorithm is used, and the models have
(to date) been restricted to be linear, so the resulting
number of non-zero terms or parameters can be from one
(constant) to n+l.

The evaluation function for iteration I+1 uses both the
regions from iteration I, and the regression model from

iteration I, If a state maps to a feature space point x,



(e

then the wvaluation is a weighted combination of u and m(x)
where R = (r,u,e) is the region enclosing x, and m is the
regression model, The weighting depends on the estimated
errors. For the final evaluation function, m(x), alone, has
been used,

Chapter four introduces the regression step and evalua-

tion function.

Considering the system as a whole, it is a "bootstrap"
operation which uses the evaluation function to increase
efficiency of solution, and the solution results to improve

the heuristic.

1.k, DESIGN PHILOSOPHY AND PREAMBLE

The main goal in this research was to develop a system
which could operate at a relatively high abstract level
(forming generalizations in a feature space) without severe
quantitative restrictions, one that could be sophisticated
but possibly "fuzzy" in detail. This is reflected, for
example, in the definitions of error components; just order
of magnitude values are required. And contributing error
terms are summed directly (rather than adding variances as
would be more strictly cofrect). There are many areas where
alternative details could be substituted; the reader may

perhaps tiaink of possible improvements.



10

The reader may find the appendices useful. Appendix A,
to which we have already referred, contains a summary of
background material and a short introduction to this system
for those less familiar with the state-space/feature space
approach to problem solving. Appendix B describes estima-
tion of a non-randomness error; and Appendix C discusses a
standard notation for usefulness and its error., Definitions

can be located in the text by use of the index.

Chapter two begins a detailed formal description.



2., PRELIMINARY DISCUSSION AND DEFINITIJNS

The definitions of state-space problem, operator, graph
traverser, search strategy, evaluation function, etc. are
standard and can be found in [Nilsson] and elsewhere.
Appendix A summarizes and (illustrates some of these
background concepts. #

We shall now begin to 1lay the ground work for the
formalization of the system by examining three distinct

spaces which will be involved and by viewing some of the

relationships among some elements in those spaces.

2.1. SPACES

In addition to a space of states, we shall be concerned
with two other spaces. One is the ranking space which s
just the one dimensional interval of real numbers: [e,1].
Our evaluation functions will map members of a state space
into numbers 1in the ranking space, for the purpose of
ordering states according to 'usefulness" 1in a possible
solution and thus for selection for development. We shall
think of the real numbers in [0, 1] as representing
probabilities. -

The other space 1is a feature space. Features, or
attributes of states have frequently been used to abstract
some measurable quality thought to relate to the 'useful-

ness'" of a state. Often an evaluation function has been

11
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specified as a linear combination of features [Slagle &
Farrel, Doran & Michie].] More generally, we can think of a
feature space as being defined by an ordered set of fea-
tures., We then have the problem of meanfully mapping points
or areas in the feature space into points in the ranking
space. Our evaluation function need not necessarily be
linear nor continuous [Michie & Ross]. In fact the evalua-
tion functions we shall meet here relate to regions of fea-
ture spaces; we shall be clustering points in the feature
space to form local groups of reasonably wuniform 'useful-
ness'.,

Throughout this paper, we shall deal with feature
spaces, all of which will be integer; i.e. features will
be restricted to have integer values only.

To summarize this overview in terms of spaces, then,
states can be mapped to feature spaces, and feature space
points or areas to probability estimates in a ranking space,
so that a given state can be evaluated according to its fea-
ture space correspondence and resulting ranking space

probability value --- the '"usefulness",

2.2, SOME DEFINITIONS AND EXPLICIT RELATIJNSHIPS

Suppose we have a problem instance, P, which consists

of a starting state, goal state, and set of operators.

Features have also been commonly used in pattern recogni-
tion.
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Suppose, also that we have a graph traverser which is
designed to cease working on a problem after a given number
of states has been generated, An explicit graph,
corresponding to P, with states as nodes, operators as arcs,
which has been built up at any point in the operation of the
graph traverser, we can call simply a state graph.
Eventually, -either the graph traverser finds a solution or
else it gives up. We shall <call the state graph which

results in either of these two situations, a final state

graph.

Suppose that G is a final state graph, and that ™ is &
node in G. Let an ordered set of features be represented by
F = {f1,f2, cee ,ﬁﬁ . This set defines a feature space,
Fo A point in F corresponding to T is given by
(f](G,W),fz(G,ﬂ), e ,fn(G,ﬂ)) = f(G,T) in vector notation.
(Generally, we shall use f to denote the vector function
(Fr,fo0 eoe ,f)0) The feature space point is a function
of G |if the feature depends on the history of LI
Throughout this paper, only featureé which are independent
of the structure of a state graph will be used, and we shall
simply write f(7T ) to refer to the feature space map of T,
or the point 1g‘£ corresponding to T, We can also say that
some feature space point or area in F has corresponding
nodes (or states) in G. There may be zero, one, or a larger
number of states in G corresponding to a point or area of F.

Suppose that 9 is an evaluation function which maps a
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set of states Into [0,1] (state-space to ranking space).

Let P be a problem instance. Then the final state graph, G

(for P and ©6) is the final state graph created by a graph
traverser using © as its guide in attempting to solve P,
We can write G = G( 8,P) and abbreviate to G if the argu-
ments are understood. We shall often refer to sets of
problem instances, P = {P1,F@, cee ,Pk} and corresponding
sets of final state graphs, G = {G],Gz, .o ,Gn} , with G j
= G;(@,P), or G= G(O,P), If G= & 6,P), we can say
that G is the final state graph set (for P and ©), that

8, and P are

P and © determine 6, and that G,

associated.

2.3. A FIRST VIEW OF THE ITERATIVE SYSTEM

Each iteration takes place in three steps. The first
is the solving step, the second is the region handling step,
and the third is the regression step. The second and third
steps will be detailed 1later on, but the first can be
described now. The solving step always begins with a given
evaluation function and problem instance set, and determines
the associated final state graph set,

We frequently shall wuse the subscript I to refer to
iteration I. The problem instance set Py, which determines
the final state graph set, GI . 1is called the training

(problem) set (for iteration L).> The evaluation function
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which is always associated with P1 and G, is 64, loe.
the one from the preceding Iiteration, Thus G, =

is the final state graph set of (for)

G ( Ry P ). Gy
iteration I. G represents the determination of GI from
its two arguments. 6 is a constantj

As we shall see later, and as the reader might suspect,
no information is gained unless the solver has some success.
So PI must include at least one problem instance which is
solvable according to 6;_ ;. (Thus the first iteration must
use a training set, one member of which is solvable breadth-
first.)

The determination of G; from 6;_; and P; is cailed
the first step of iteration I or solving step of .iteration
s Later on, we shall encounter the second step, which
forms or revises regions in a feature space, and the third

step, which computes an evaluation function, 91 , from these

regions.

2.4, THE STANDARD ILLUSTRATIVE EXAMPLE

In order to «clarify definitions, examples appear
throughout this paper. Every example chosen was from an
actual single iterative series, an experiment with the
fifteen puzzle. The feature set for this particular experi-

ment contained four features, which were:

In experiments to date. But not necessarily.
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f] - distance score {sum of distances of each tile from
llhomell)
f2 - order wrong score (Examine each 1line, i.e. row or

column and count one for each
occurrence of two tiles being in
their proper 1line, but out of

order,)
f3 - line wrong score (Examine each line and count one if
all the tiles of the line are the

ones that should be in that line,
but they are not 1in the correct
order.)

blocked score (Examine each line and count one for
each occurrence of two tiles being
in their correct place, but with an
allen tile intervening.)

-
[}

Typically, with average problem instances, fy ranged
from 0 to 60, % from 0 to &4, f3 from § to 2, f4 from 0§ to
6, so the total number of relevant points in the feature
space was about 4000. Generally, the training problem sets,
PI , had a dozen or fewer members; the associated final
state graphs, GI ,» had a few thousand nodes, but the feature
state maps of GI never included more than a few hundred

points.



3., CLUSTERS AND PROBABILITY ESTIMATES

As stated in the previous chapter, we would like to map
states into points in a feature space, and there form
clusters. The cluster boundaries should be chosen so that
all points within a cluster correspond to states which have
roughly the same '"probability of being useful in a solution"
(being on ‘a 'good" solution path). Thus a single
"probability" can be assigned to a cluster. In later
chapters we shall see just how these clusters, each with its
accohpanying "usefulness probabilty", can actually be

formed, but in this chapter we shall concentrate on the

clusters themselves,

3.1. RECTANGULAR CLUSTERS

In order to keep the required information for their
specification to a minimum, we can restrict the clusters to
be rectangular. Suppose that we have an n-dimensional
(integer) feature space, F. Consider a rectangle, r, in F

which is aligned with the axes. r may be completely defined

by just two (extreme) corner points, 1plr)y =
(al,az, --- ,an) and up(r) = (b],bz, -—- ,q]), where
I1p(r) is the lower, and up(r) the upper, so aigbi , i<n., A
point, X = (x,,x., === ,x ) is contained in r Iiff

1" 2 n
a%\xisbi , il<n, We can abbreviate this: x er.
We define: A feature space 1Is an integer feature

17
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space. A rectangle is the usual entity, but always in some
feature space and aligned with the feature space axes. 1p
and up refer to the n dimensional lower and upper corner
point vectors, respectively. If r is a rectangle, 1p(r) and
up(r) are its extreme corner points.

If a finite portion of F is partitioned into m such
rectangles, { FqeFp, === ,rm} , then the whole set of m
clusters can be entirely specified by just 2mn integers, via
m corner point pairs, (lg(rj),gg(ﬁj)) (j<m).

Latef on, we shall see how the actual clusters can be
created; their boundaries and number being determined by the
data. At this time we introduce an important pair of
"count'" functions., These functions have a dual purpose;
they not only will be wused to construct and modify the
emerging evaluation function, but also they will participate
centrally in the process of clustering., Both of these roles

5

will gradually become clearer,

3.2. COUNT FUNCTIONS

Suppose we have the following:

(1) A state-space representation of a problem, and a set of
k final state graphs, G = fG],GZ, --- ,Gk} = G(g,P),
where © 1is an associated evaluation function and P an
associated set of k problem instances (with at least one

success),
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(2) A feature space, F, defined by the ordered set of n fea-
tures, F = {f],fz, --- ,fn} .

(3) A rectangle, r, in F.

We define the two count functions, g, and t: The total
(state) count of r (for F and G ), .

t( F,G,r) TeT the total number of developed nodes, T

’

in every final state graph, G € G, such

that f(m) er,

And the good (state) count of r (for F and G),

’

gC F,G,r) TF the number of developed nodes, T, in all
Ge G, such that:
(1) f( ™) €r, and
(2) ™ participates in the solution (if

any).

If a '"particular feature space Is understood, we can

abbreviate the counts to g(G ,r) and t(G,r).

Now let us define a probability estimate based on the

ratio of the two counts.
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3.3. PROBABILTIY ESTIMATES OR USEFULNESS VALUES

The elementary usefulness of a rectangle, r, (for a

set, G, of final state graphs, and feature set, F),

=

g(F ,G,r)/tCF,G,r) , if g(F, G,r)#0
u(fF , G,r) —
def ]
zval/t(F ,G,r) |, if g(F , G,r)=0.

If we are given a state, 7T, randomly selected from any
graph G of the set G (me G e G), whose feature space map
falls within a vrectangle, r (f(m ) er), then the value,
u(G ,r), is precisely the probability that T lay on one of
the solution paths of G. This elementary usefulness is
simply the ratio of the number of "good" states to the total
number of states (in G), so that if u( G,r) is close to
unity then r Is a '"good" rectangle, indicating a high
likelihood of a corresponding state's being "useful" in a
solution (in G).

What we shall do is to generalize these statistics from
G to estimate the ''goodness'" of states which arise in other
problem solutién attempts., The elementary wusefulness
u( G,r) will be used to evaluate states corresponding to r,
not only for different problem instances, but even for

varied search strategies. (Recall that 6= & o6,P).) The

Zval is a system parameter which has a value between zero
and one., It is used to differentiate between, for
example, U/10 and (/100. A typical value of zval is (.5.
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section following this contains further comment about the
ramifications of our generalization. And in the next
chapter we shall see exactly how our generalization is
effected. Stil later, we shall wuse a more sophisticated
usefulness, In which more than just the elementary useful-

ness will play a part, although the count functions will

remain central,

Example 3.3

Consider our standard example which has a feature space
of four dimensions (see the preceding chapter). The
particular results which we shall view now resulted from the
breadth-first search of four easy puzzles, each nine moves
away from the goal. Three <clusters were formed], whose
corner points, count function and usefulness values are

given in table 3.3,

Table 3.3 Cluster Statistics

corner points counts elementary

1p up g t usefulness
(1,0,0,8) (5,0,0,3) 20 79 0.25
(6,0,0,0) (6,0,0,4) ] 31 0.0162
(7,0,¢,0) (17,2,0,3) 0 2641 0.00022

! The mechanism for <cluster creation is given in chapter

five,

Z Zval = 0,5,
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Wwe now have estimates of the (elementary) usefuiness of
a cluster but we would also like a measurement of the
reliability of this value, because we shall want (in chapter
five) to know whether the usefulness of one rectangle s
significantly different from that of a rectangle adjacent to
it in the feature space, If the two wusefulness figures
differ greatly, the <clusters should be disjoint; 1if not,
they should merge. (There are also other reasons why we
shall need to have an error estimate; these will be
discovered in a later chapter.)

Suppose we have some final state graph, G , and
rectangle r, with its count functions g(G,r) and t(G,r).
(We assume some feature space, whose vector function is f,)
Let us abbreviate g(G ,r) and t( G,r) by y and 1, respec-
tively. If we generalize to other problem instances and
search strategies, there are two sources of error in the
usefulness, u(G ,r) = Y/T . One relates to the magnitudes
of Y and T, For example, 1/20 1is 1less vreliable than
10/200.

The other error source 1is one about which we know
lTittle: We have assumed that wusefulness values for one
final graph set, G = G(08 , P), reflect precisely those for
other problem instances and search strategies. But in fact
we shall apply usefulness estimates to lincreasingly more

difficult problem instances, and it seems likely that, in
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general, these values might differ for harder samples. We
are not generalizing from one random set of problem
instances to another, but rather from easier problems to
harder ones., Furthermore, the fact that the search strategy
(evaluation function) 1is dynamic additionally complicates
the situation, This severe error source, we should expect
to vary, too, both in size and quality, depending on the
particular state-space problem,

The predicament is perhaps not as serious as it appears
at this stage, however, for the system is designed so that
feedback tends to correct earlier errors. This will become
apparent later on in our development. For now, let us
formalize an error estimate based on the first mentioned
source, that which relates to the magnitude of the count
values., Because of the system design, and especially in
view of the existence of the second kind of error, we shall
need only an approximation,

We have Y = g(G,r) and T=t(G,r). Consider the
entire set, S, of all possible states reachable from all
possible starting states of a given problem schema =--- the
whole state-space. Let us assume that the nodes which
contributed to the count, T , were chosen randomly from S,
rather than Dby the selection mechanism, 6 , for the
particular problem solution attempt. Then, for the total
count, T , we have essentially a binomial distribution,

whose standafd deviation estimate is
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‘\/;(r) L 1 - ==X , where N(r) is the number of
N(r) N(r)

states, 7T, of S so that f(w)e r. If N(r) is large

compared with T, the expression becomes approximately T,
A similar argument gives an estimate of the standard devia-
tion of the good count, 7Y, as /7_.

Thus, if the good count and total count are altered by
one standard deviation in the expression for the elementary
usefulness, to give a higher value, and if this is divided
by the original elementary usefulness, Y/T , we obtain an
“"error factor" of

1

4 4 — - T
o X R . if v#0, oL,

V-

Generally we shall record errors in this way, i.e. as
"high side'" estimates expressed as fractions of the
corresponding random variable, We shafl call these error
factors simply ‘'deviations" or "errors'" (depending on
whether a '"confidence factor" is included or not). So we
define: The count deviation (of the pair (Y, T)),

1T+ 1/~
def 1 - 15

where y'=vy if y# 0 and y' = zval if y =0,

deve(y , T)

This is actually the deviation on the "high" side, A
similar expression would give the '"lower'" deviation.,

Nevertheless, we shall call the upper deviation just the
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deviation.

If we had alternately assumed a binomial distribution
for the probability estimate, u(G ,r), itself, then we would
have obtained an expression for the standard deviation,

expressed as a fraction of the elementary usefulness, of:

. A=y < fry .1, 1
AT AT v e

-1 = devc(y,t) - 1.

k-

i

Jur deviation is a slight overestimate compared with
1+ Y1y - 1/ (especially for «cases in which «y s

close to 1).

Let us consider the distribution of the total error, of
which the count deviation is only a part. Udften, when the
variance s relatively small, the error is known or assumed
to be normally distributed, Although it is not apparent at
this stage, our total error estimates will regularly be very
large; the error term we have just analized 1is only a

beginning. In addition to this count deviation, there is
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not only the non-randomness error which we have briefly
mentioned, but there will also sometimes be accumulating
errors as a result of the ongoing iterative process. Errors
of a factor of ten will be typical, Thus the error
distribution will generally be positivly skewed; an expres-
sfon such as v + 10v does not make sense for the 1lower of
the two extremes, This is the reason why the count devia-
tion is, and all other deviations and errors will be,
expressed as factors rather than as additive terms.

We shall therefore assume a log~normal distribution for
both the wusefulness and 1its error, This distribution is
positively skewed, and the lower limit (zero) 1Is correct,
both for the wusefulness and for its error, if we express

log(usefulness) = log(v) + c.log(e) where v is the wuseful-

ness estimate, e the deviation and c¢ the confidence factor
(number of standard deviations). So the upper "likely
l1imit" of the wusefulness is v.e® (or unity, whichever is
lesser) and the lower limit is v/eC®,

If we were to ignore other error sources, we would
simply substitute the count deviation for e, but generally
we shall sum logarithms of various contributing errors to
obtain a rough estimate of the total.

We shall use a standard notation for deviations. Al1l
(with one exception) will have the prefix 'dev'" with a
suffix indicating the source of the error. We shall further

prefix a deviation, with "In", to denote the 1logarithm cf
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that deviation (the log-deviation). This allows us to write
the logarithmic forms of expressions more simply. Another
fixed notational device to be found throughout is the use of
the letter sequence "err" in place of "dev", particularly
for the logarithmic forms, in which the log-error equals the
log-deviation multiplied by the confidence factor.

For example, Inerrc = c.lndevc. The wuser-defined

error, erru is meant to be added to errc as an estimate of

the non-random error due to generalization of statistics
from easier problem instances to harder ones, and from one
search strategy to another. (This error term is again
encountered in a later chapter, and is discussed in Appendix
B.) According to our convention, Inerru = log(erru) and

lnerru = c.lndevu.



4., REGIONS, THE HEURISTIC, AND THE ITERATIVE SYSTEM

In this chapter, we define the evaluation function, and
in order to do so, we first (introduce a convenience, the
"region", which groups together information about a feature
space recfang]e and its usefulness., The concept of the re-
gion also facilitates an outline of the entire iterative

process, given toward the end of this chapter,

4.1. REGIONS

We shall find it wuseful to express regions in tw:

forms, "reduced" and "unreduced".

4,1.1. UNREDUCED REGIONS

Suppose we are given some feature space, F, Define an
unreduced region, R (in F), to be a five-tuple,
(r(R), y(R), Tt (R), «(R), ¢ (R)), where r(R) is the rectangle
of R (in EF), ~+(R) is the good count of R, <(R) the total

count of R, «k(R) the multiplier of R, and  (R) the

multiplier error of R.

In use, the second and third elements of a region, R,
vy (R), and t1(R), are always g( G,r(R)) and t( G,r(R)) (the
two count functions of the preceding chapter) for some final
state graph set, G. The meanings of the last two elements,

k (R) and ¢ (R) will not really be clear until chapter six,

28
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but we can say now that they relate to the past history of a
region. K(R) is a multiplier for Y(R)/ T(R), and will be
used in a way so as to cause the product Y(R)/ T (R). K (R)
to indicate "true" usefulness, later on in an iterative
series, when the elementary usefulness values no longer
directly reflect absolute probabilities. We define a func-

tion over the set of unreduced regions in a feature space:
If R is an unreduced region, then the usefulness of R,

Y(R)/ T(R)).K (R) , if Y(R) £ ¢
val(R)  qef

zval/ T(R). K(R) , if Y(R) = 10,

And another function, the total error of R,

err(R) Tef exp [c.(Indevc( y(R), T (R)) + Indevu(R))
+ 1Ine(R)] ,

where devc is the count deviation of chapter three, 1ne (R) =
log( «(R)), and 'devu is the deviation component supplied by
the user of the system, (See Appendix B.) The <constant ¢

is the confidence factor.

In keeping with the standard notation for deviations
and errors, Inerr(R) 1Is just the expression inside the

square brackets above, 1ndev(R) is lnerr(R)/c, etc.
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k.1.2. REDUCED REGIONS

If R is an unreduced region, then the reduced region

( R) is the triple,

of
ed(R) == (r(R),val(R),err(R)).
def

red

The usefulness of a reduced region is its second element and

the total error of a reduced region is the third element.

We shall refer to red(R) simply as R when the distinc-
tion is unimportant. For example the usefulness and total
error mean the same thing for reduced regions as they do for
unreduced regions, and the ambiguous use of val and err as
functions over unreduced regions and as reduced region ele-

ment references will present no problem,

Example 4.1

Example 3.3 showed three different rectangles and their
count functions. In region formulation with wunity mul-

tipliers and unity multiplier errors, these are:

R._= ,20,79,1,1); R = ,0,31,1,1); R = ,0,2641,1,1),
1 (ﬁ 0,79, ) ) (r2 ’ ) 3 (r3 0 41,1,1)

Their usefulness and total error (if devu = 1 and c¢c=1) are:

val (Ry) = 0.25 err(RpP = 1.38
val(Rz) = 0,016 err(RZ) = 2,94
val(RS) = 0,.0002 err(R3) = 2,46
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(r

So the regions, reduced, are: red(Rl) 0.25, 1.38);

'll
0.016, 2.94); red(% ) = (r3, 0.0002, 2.46).

red(RZ) = (rz,
If devu(R) is defined as 1 + 1//50val (R) (Appen-
dix B) then the regions are: (rq, 8.25, 1.77);

(r2, 0.016, 6.2); (r3, 0.0002, 25.).

4.2, THE EVALUATION FUNCTION

As we shall see later in this chapter, there is a cer-
tain set of regions, which will be termed "cummulative'" re-
gions, that is modified at the second step of each itera-
tion, These special regions contain the entirety of
heuristic information about the state-space problem and fea-
ture space to which they refer, and it is by these regions
that we form our evaluation function, We shall now proceed
to define the evaluation function, and later on discuss ex-
actly how the cummulative regions are created and revised.

Since cummulative regions are altered once for each
complete iteration, the evaluation function is dynamic too,
and is recreated at the third step of an iteration. This
function, the '"valuation function", 1is composed of two
parts; one is defined simply and directly from the regions
("region valuation function"), and the other is also a
product of the cummulative regions, but Indirectly through a
regression ("regression valuation function"),

First the direct component:
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4.2.1. REGION VALUATION FUNCTION

Suppose we have some state-space droblem, a state T of

a state graph, a feature set F = { f],fz, eese ,f 1}, and a

n
set of regions, R = | RisRoy oen ,Rm} in the feature

@space) F, defined by F, We define the region-usefulness of

7 (for R)

-

val(R) , if f( ™) r(R), ReR

|

v{R, m

o
o
—

max(val(Q)), if f(m )¢ r(R), VReR,
QeQ _

where Q= {NeR |YReR |[[£(m-r(m]] < || £(m-r(R)] .

If R is understood, we can abbreviate to Vv(m )., Vv is the

regcion valuation function.

We also define the error of the the region valuation

(for ™ and R) in the obvious way:

errv(R , m) j§$ err(R) , where R is the region into which

f(m ) falls or, failing enclosure, the region which satis-
fies the above expression, for which val(R) is a maximum of
the 'closest" regions, Q. Errw (R, T) can be referenced

just as errV(T), if R is understood.

1
| Ilrepresents Euclidean distance (from the feature
space point to the closest point of the rectangle).
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4,2.2. REGRESSION VALUATION FUNCTION

The other component of the evaluation function is ob-
tained by regressing the natural logarithm of the usefulness
of regions on their center points., The logarithm of the
usefulness, rather than the usefulness itself, was selected
because the relationship between the usefulness and a fea-
ture often seems to be close to logarithmic, and a uniform
treatment was desired for features In general., Also, with a
logarithmic formulation, there can be no problem with nega-
tive predicted values.

One purpose of the system is to discover which features
are relevant, and of those which are more important;
generally this information is not known a priori. Thus, an
algorithm which discriminates among and selects variables is
appropriate; so a forward stepwise (with a backward glance)
selection procedure was chosen. This algorithm is described
in [Draper & Smith] and implemented under the International
Mathematical and Statistical (Fortran) Library (IMSL) name
of RLSTEP.

One of the parameters of RLSTEP 1is the confidence
level, o . So this now becomes one of the system
parameters,

We can now formalize the details of the regression, We
have previously defined the vector functions 1p and up to
refer to the extreme corner points of a rectangle, At this

time we need to access the center points, so we define an
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appropriate vector function. If r is a rectangle, then the
center point of r,

cplr) = [1pCr) + up(r)l/ 2.

Suppose again that we have a state-space problem, a

feature set, F = { f],fz, oo ,fn} and space F, and a set
of regions, R = ({ R]'R2' eee 'Rm 3. Let Sﬁ = gg(r(Rj)
and yj = log(val(Rj)). Let z = (x],xz, ...,xn) be a vec-
tor in F, Form the augmented vector of z, x = h{(z) =
(l,x],xz, cos WX o X s ees ,xq) where X s the feature
space coordinate in dimension i, for i<n, and x; = xE for

i>n, where k<n and p>1. This will allow higher degree
regression for which h is the augmenting func;ionj

Using the Q,j as m observed value sets for the q in-
dependent variables, in the augmented vector h(gj), and with
the Yy as the corresponding dependent variables, we obtain:

]Xg = JX'V'Jl where X is the mx(q+1l) matrix composed

JX'V
of the m augmented vectors plus a column of 1's; y s the
vector comprised by the m yj values; a is the parameter
vector (with g+1 elements); V is the mxm variance matrix
which weights the observations; and J is the gqxq selection
matrix returned by RLSTEP (with 1's and 0's on the main

diagonal and 0's e]sewhere).2

The only element in this equation which has not been

For all experiments to date, gq=n, i.e., the models were
all linear.

2 See [Draper & Smith], chapter two.
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specified 1is the variance matrix, V. If we assume that the
observations are independent, then only the main diagonal of
V is non-zero. We estimate these variances by the squares
of the ]nerr(Rj), which are proportional to estimates of the
standard deviations (see subsection 4,1,1), In other words,
each region counts an amount which is weighted by the in-
verse of the logarithm of its estimated error.

If y is a predicted value of the logarithm of the use-
fulness, then we have ¥y = a.x = a.h(z). So if T is a

state, the predicted usefulness of ™ (for the regzion set R

and confidence level a),

p(R,a ,m) JoF  ©XP [a . h(j('"))]

=expla . (1,f(m) 1, if the model is linear.
If o and R are understood, we can write just o( T),
p is the regression valuation function.
Note that a = a(R , o),
We shall later Have reason to refer to a related func-
tion, over a set of regions., If R is a region, then the

predicted usefulness of R (for R and 9),

pval(g &, R) 57 explaCR, a) . heptr(r))] .

=1 =12
The variance of vy is given by X(JX V X) o X , and

2
o

is estimated by the regression residual sum of squares,

S . So we define the log-regression error (for ™, R and

OL)’

See also subsection 6.1.4.
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Inerrp {( R, o, M 7 cX(dX'V’1X)']szx.

(Recall that c is the confidence factor.,) According to our
convention for errors, deviations, and their Jlogarithms,

errp{w ) = exp [lnerre (7)] , etc.

4.,2.3. THE AVERAGE VALUATION FUNCTION

Finally, we combine the region valuation function with

the regression one to form the (average) wusefulness of a

state mw (for R and a ),

lTog( v (m)) Tog( p(m))

+
(lnerr\)(Tr))2 (lnerr;(ﬂ))2

exp
1 1

+
(1nerr,dn)F

(]nerr\)(ﬂ'))2

-

if R has more than

|| J|] members 1,
8 (R,a , ) Tof

v(m) , 1if R has between one and

H J]I members ],

t.5 , Iif R=29¢,

1 . .
[|J|]gives the number of non-zero elements on the main
diagonal.
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& is the (average) valuation function. R determines
9. We can abbreviate 8(R, a, w) to 6 (w ).

Define 6val analogously to oal,

The error of the (average) valuation (for w, R and

a ),

1
exp
1 1
2" 2
(Inerrv(m)) "~ (lnerrp(m))
err (R , a0, m) Tef
if R has more than
| J|| members,
errv(mT) |, if R has between one

and || J|| members,

oo' ifR=¢o

Subsection 6.1.4 will derive a similar combination of wuse-
fulness values, and there it will be shown why the error

should be as above,.
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4,3, ITERATIVE REVISION

In section 2.3 we began a description of the iterative
system, detailing the first, or solving step. It was stated
that the evaluation function from the pravious iteration,
together with the training problem set for a current (itera-
tion, determine the final state graph set for the current

iteration; i.e. G, = G(OI__1 ,PI). Although we cannot yet

I
formally describe the details of the creation and alteration
of regions, we can define some basic terms and relation~-

ships. The second step of an iteration accepts a special

set of regions, called the cummulative (region) set, along
with the final state graph set, and computes a new cummula-
tive set. More specifically, the cummulative region set
from fiteration I-1, C;, , together with the final state
graph set, GI of iteration I determine the cummulative re-
gion set, CI , of .iteration I. CI = C(CI—l’GI ).
(C0 =¢ .) This constitutes the second step of Jiteration 1

or the region handling step of iteration I. The complex

mechanism for the region handling step 1Is the subject of
chapters five and six, although an overview is presented
shortly.

The third step of iteration I, or regression step of

iteration I is the calulation of the valuation function from
the cummulative region set for iteration I; so if 7T is a
state, and ¢ a confidence level, the valuation function gof

iteration I is
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eI(Ol.; ) T G(CI s OsaT Jo

The abbreviation 6; = e(CI ) expresses the relationship in
which we usually are interested when considering the itera-

tive processes, We can say that GI and CI are associated.

Thus for an entire iteration, we have:
(1) GI = G ( 61_1, PI ), (2) CI = C (CI_1 ,GI ), and
(3) eI = 6( CI).

The following fills in some sketchy details of the re-
gion handling step in the context of the entire Iterative
process., Suppose that a feature set, F is given (and spacs
"F). Let us examine the first 1iteration of a czerijes.
"CLUSTER" (chapter five) generates the first non-empty set
of cummulative regions, C;. It does this by beginning with
the single region R = (r, g(F, G;,r), tCF, G ,r), 1, D),
where r is the smallest rectangle which will surround all
the points in F corresponding to states in Gy = G (8j,Pp).
CLUSTER tentatively splits the rectangle r into two smaller
rectangles. Many such tentative splits of r are examined;
and the splits occur in each of the feature space dimen-
sions. The ‘"best" of these is selected, and this "best"
split is made permanent if the two subregions are 'dis-
simitar" enough. The criterion for dissimilarity is based
on the counts of the subrectangles for 0; and on the count
errors., If the two subregions become disjoint, the process

is repeated with each subregion as the inspected region, and
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the splitting continues wuntil no further "discrimination"
can occur, If the feature set is "useful", then there s
eventually more than one element in the resulting region set
¢y .

C1 becomes the cummulative region set for the regres-
sion step of iteration one. The new valuation function, 8,
becomes something other than the constant 0.5: either Vv; or
else an average of vy and o , if the number of regions in
C] is large -enough to warrant the regression, as we
discussed in the last section,

This completes the first iteration 1in the forma-
tion/modification of the wvaluation function, Succeeding
steps are a little different. Instead of CLUSTER, directly,
another algorithm, "REVISE" is used, Suppose R e CI . To
improve the accuracy of the wusefulness estimate, KEVISE
modifies val(R) (and err(R)) according to the elementary
usefulness for GI' not just of r(R), but of all rectangles
in CI' The elementary usefulness of the other regions must
be taken into account because the non-trivial search.
strategy has altered the true meaning of the count func-
tions, in such a way that their ratio no longer reflects an
absolute probability, but rather a conditional usefulness.

REVISE then proceeds to refine each updated region,
using CLUSTER for splitting in a way similar to that in the
first 1Iteration, so that, generally, the number of regions

gradually increases over a series of iterations.
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The situation, however, |is more complex during later
iterations when ©8; is not a constant., In addition to the
inherent difficulty surrounding the conditionality of new
elementary usefulness values, there is a systematic bias In
the elementary wusefulness, which should be taken into ac-
count when two subregions are split.] REVISE is the subject

of discussion in chapter six.

1
We  could write Ci = ¢ (c

s 0. -0 GI) instead of

I-1 I-1

C (CIJ ,G. ) but ¢ is determined by C

I I-1 I-1°



5. JHE CLUSTERING PROCESS

‘In this chapter, we come to the heart of the system,
the clustering algorithm. This algorithm decides whether,
and how, a region, R, should be split, using the counts of
subrectangles of R, The clustering algorithm which is wused
is in some ways similar to some well known algorithms;
splitting is incorporated [Hartigan]. In other respects,
however, "CLUSTER" 1is more unusual. The distance is non-
metric, and it is a property of the '"experience'" of the
system; specifically, through the count functions. Another
significant feature of our algorithm is that the finai
number of clusters 1is not known a priori, but rather is
determined by the data. The precise meaning of these asser=
tions will become clearer in what follows.

We begin with the distance function, which will
determine .whether two regions are "similar" or not, and if

not, how "dissimilar'" they are.

5.1. DISTANCE
Suppose we are given two unreduced regions, R] =
(r],Y'l' T], K], 61), and R2= (rz,Yz,T Z'K 2, 62), and

suppose that val(R]) b val(Fi?. We define the distance

between B] and 32 to be

42
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4

dist(R{,R ) o7 log[val(R;)/val(R,)] + bias

- []nerr(R]) + Tnerr(Ry) + biaserr ]

\ otherwise.

Bias and biaserr are two terms which will not be fully
defined until chapter six., For iteration one, however, and
in fact whenever the valuation function, GI does not
include a regression component, bias and biaserr are botr
exactly zero.

If dist(R ,Rp) < 0, Qe say that Ry and R, are similar.
If Ry, Ro Ry Ry are regions, and if dist(R],Rz) > 0,
dist(R3,R4) > U, and dist(Rl,Rz) > dist(R3,R4) then R] is
"farther" from Ry than Rj is from Rgq, or the first pair is

more dissimilar than the second. OUbviously, the larger the

combined deviations of Ry; and Ry, and the larger the
confidence factor (the product of these forms the error
terms), the greater the ratio val(Ry)/val(R2) must be in
order to cause Ry and Rp to be dissimilar.

We can make a comparison here with confidence
intervals. Let x7=log(val(Ry) and xz=log(val(R2)), and
estimate the standard deviation of x1 by sy=Indev(R1), that
of x2 by 3 =Indev(Ry). Using the Student t distribution, we

obtain the confidence intervals:
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1 Sy
"z'ta/zﬁz— <u<x2+toc/2-‘/%_§:-'
where u is the true mean of both X 4 and X0 assuming they
were selected from the same population, and ta/z has the
usual meaning. So if x]>x P

sS4 Sy
q " tan e C Xttty el or

(xq=%5) = ta/z(s1//5{ *s,/ /1, ) < 0.

Now, we can make a rough estimation of ta/2 as a constant,
And we replace 3 and T, by unity, since the selection of
states which composed Rf and R2 was not random, so a large
total count does not cause a corresponding reduction in the
error. The inequality then becomes (x]-xz) - c(ﬁ +32) < 0.
The left side is now the distance dist(ﬁ ,Rz) (without the
bias terms), with ¢ the confidence factor.

If we were to consider a number of pairs of regions,
and if the assumptions made above affect the estimates for
each region fairly uniformly, then we would chose the most
dissimilar pair (if one exixts) to be the pair most likely
to represent two distinct populations. We shall wuse this

reasoning in the clustering algorithm, which we are now

equipped to define,
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2.2. HE CLUSTERING ALGORITHM

Suppose we are given a feature space F defined by the
set, F = {f1,f2, e ,fm} ; a set G , of final state
graphs; and a region, RO’ called the parent region. In the
algorithm below, v, represents the ith basis vector (for
feature fi)’ and maxspansteps is a parameter which is a
positive integer. As the algorithm implicitly shows,
maxspansteps influences the Eucl idean feature space
distances between successive tentatively inserted

boundaries.

CLUSTER( F, G, Rg)

R:‘_' {RO};
loop: select some R €R which has not been marked;
comment find best boundary;

a := 1p(r(R)); b := up(r(R));

bestdist := - ©;
for i:=1 until n do;
begin
length := (b-a) . vj;
span := entier(length/maxspansteps) + 1;

for k:=1 step span until length-span do;

begin

lp(r) := a; up(rp) := a + k*span*yi;

lp(ry) 2 + (k+1l)*span*yi; uplra :=bhb;



L6

R] = (r], gl G,r1), t( G,r]), 1, 1);
R2 1= (r2, g G,rz), t( G,rz), 1, 1);
distance := dist(R, ,R,.);

1 2
if distance > bestdist then r ' := r]
end
end;

comment positive distance means regions dissimilar so
split permanently;

if bestdist>0 then do;

begin

R = R= { R}

R] = (r', g(G,r), t(g,r), 1, 1);

R 5 iF (r(R)-r', g(G ,r(R)-r", t(G ,r(R)-r"H, 1, 1);
R =R U { RI'RZ}

end;

else mark R;

if 3 some unmarked ReR then go to start;

We call the partitioned set, CLUSTER(F ,G,R g the

output set of CLUSTER (for parent region R , feature set F

and final state graph set G). If the output set has more
than one member, we can say that the feature set F is
useful (within BO for G). Similarly the particular fea-
tures of F in whose dimensions splitting occurred, are

useful. Useful features discriminate (among states)
(according to G). If a feature space is understood, we can

abbreviate CLUSTER( F,G ,R to CLUSTER( G ,Ry).
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ample 5.2

Let wus again consider the standard fifteen puzzle
example. The same computer results as presented in section
4,1 are listed again below, but this time in the light of
the clustering algorithm.

The final state graph set, G] resulted from a breadth-

first search, and the parent region for CLUSTER was RO =

[}

(rg.20,2721,1,1), with 1p(ry) = (1,0,0,0) and wup(ry)
(17,2,0,4). The  output  set had three ‘regions

(maxspansteps=«), which are given in table 5,2,

Table 5.2 CLUSTER Output

1 (ﬁ ,20,49,1,1) (1,0,0,0) (5,2,0,4)
2 (r,,0,31,1,1) (6,0,0,0) (6,2,0,4)
3 (r3,0,26h1,1,1) (7,6,0,0) (17,2,0,4)

5.3. COMBINATORIAL PROPERTIES OF THE ALGORITHM

Note that the procedure always halts, because the
training problem set and thus the counts are finite.
Suppose that a feature set F defines a space F, that

G is a final state graph set, and that R is a parent re-
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gion, these constituting input for CLUSTER. There are three
factors affecting the speed of CLUSTER., One is the number
of distinct points of F contained in R, which correspond to
states in G, The computer implementation of the count
fungtions actually maps states in G to point regions only
once and thereafter the system ascertains whether these
point regions are enclosed by subregions of the parent re-
gion, R. Thus, only points in F need to be tallied, rather
than states in G ; the latter is generally larger. This
advantage is lessened, however, as the number of features
and their vrange are increased. 1In any case, the time for
calculation of the count pair for each split increases no
faster than 1(G ,R). If R becomes permanently split, into
R

and R then the counts for subregions of R1 and R2 are

1 2’
still smaller, since T(G ’Ri) < t(G,R) (i=1,2)., So, as
regions split permanently, the time decreases for counting
in an individual region, |
The second factor affecting the speed 1is the total

number of possible tentative boundaries that can be inserted
in a rectangle, Let us consider the case for which
maxspansteps= », In dimension i, the number of boundaries
is up; (r(R)) - lpi(r(R)), so the total number for all
dimensions is

n

1'51 [upi(r(R))_-lpi(r(R))] = [up(r(R))-1p(r(R))] .x ,

where v=(1,1, ... ,1).
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The third factor governing speed is the eventual number
of permanent splits, k. In practice this number has
generally been small, never more than a few,

Thus the total time that CLUSTER requires is 1less than
k[ 7¢(G ,R)] [ up(r(R))=-1p(r(R))] .v¥. The most important fact
is that the number of features can easily be increased; if
each feature has roughly the same range of values, the time
increases only linearly. (If the feature ranges are huge,
maxspansteps can limit the number of boundaries in

appropriate dimensions, with little practical consequence,)

5.4, SHRINKING REGIONS

Suppose that F ={ f,,f,, ... ,f } s the relevant
feature set, and R is an output set of regions computed by
CLUSTER, for F and the input graph set, G. We define an
algorithm, SHRINK, which reduces the sizes of rectangles of
regions to enclose minimally the feature space points
corresponding to G, as long as the shrinking does not leave

gaps between rectangles. (Just the peripheral boundaries

are affected.)



for j=1 un

points

begin

s :={ £
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SHRINK(G , R)

til m do;
comment find rectangle, r, which minimally encloses all
in R ;
('ﬂ')éRJ- I'TFEG €G} = {2]/22’ cee ,Rq};

1p(r) :=
for k:=1
begin
1p(r)
up(r)
end;
comment
for i:=1
ip(r')
for k:

= uplr) = - _=;

until q do;

1= min(lg(r),gK);]
1

max(up(r),p )

reduce Rj to r in dimension | iff no gaps result;

until n do;

= 1p(r(R4)) = v4; up(r') := up(riRy));

=1 until j-1, j+1 until m do;

if rn r(R) ¥ ¢ then go to L;

lpi(Rj) 2= 1p;(r);

L: (similar statements for upper boundary points)

end
end;

comment {

The result

R1,Rop oo JR b 1s output region set;

ing set, SHRINK( G, R) is the output set of SHRIN

(for 6 and R ).

1 min and
and max

max are vector functions which select the minimum
imum corresponding elements.
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5.5. THE FIRST ITERATION OF A SERIES

We are now in a position to define exactly what the
evaluation is after the end of the first iteration. In
chapter four we stated that the initial valuation func-

tion, © is always a constant, 0.5, Let P] be the

OI
training problem set for (step one of) the first iteration.

We determine the final state graph for the first iteration,

Gy, =G (60, P]). Suppose that the relevant feature set is
F = {f],fz, cee ,fn 1. Let w1 vrepresent a state in
G € G]. Find the vrectangle, r, which minimally surrounds
atll fCnm), for all m ¢ G e Gy Set R 1=

(r, g(F » Gy ), tOF, G],r), 1, 1); R becomes the parent

region for the clustering algorithm, as we calculate:

R 1= CLUSTER( Gy ,R);
R := SHRINK(G], R);
C; := {red(R) [ R e R};

The set C] is the (reduced) cummulative region set of
iteration one. We can denote this C] = C (eb ,G1 ) where

C represents the above algorithm (for a first iteration
only; post-initial iterations require the complex procedure
detailed in chapter six).

Finally, we have the valuation function of the first

iteration, 6;i= 6(C; ) (see section 4.2).
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Example 5.5

The parent region, R0 = (r0,20,2721,1,1) of example 5.2
was the smallest rectangle which could enclose all feature
space points for the first iteration., (The total number of
states developed was 2721,) The output set of CLUSTER was
the set of three regions listed in table 5.2, Table 5.5

shows the effect of SHRINK.

Table 5.5 SHRINK Output

i R lp(r y up(r;)

1 (r],z{),ug,l'l) (1’0'0,0) (5,0’0'3)
2 (r‘20,31,1,1) (6,0,0,0) (6,0,0,4)
3 (r'30,26h1,1,1) (7,0,0,0) (17,2,18,3)

In this case, the valuation function, 9] is identical
to the region valuation function, V1, because the number of
cummuliative regions 1is not yet great enough to warrant a

regression.



6. REVISING PROBABILITY ESTIMATES AND REFINING REGIJNS

Once a non-trivial valuation function has been used in
a solution step (i.e, after iteration one), the situation
becomes more complex. For example the corresponding count
ratios (elementary usefulness values) no longer reflect
absolute brobabilities, and so cannot be used directly to
improve usefulness estimates for cummulative regions. It is
possible to revise the values indirectly, however,

In addition to the updating of established regions,
this chapter describes how these old regions can be further
subdivided using CLUSTER and the new data.

Also, sometimes the established region set does not
accommodate all of the feature space maps of the recent
final state graphs, so the old regions are extended to
surround ali new feature space points. After this, another
round of possible splitting takes place.

This chapter is therefore divided into three sections
(plus one which sums up the entire process), each of which
formalizes the particular substep of the post~initial region
handling step: (1) usefulness revision of esta?lished re-
gions, (2) subdivision, and (3) extension, and subdivi-
sion of extensions,

First let us consfder how we might revise probability

estimates of old regions.,

53
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6.1. REVISING USEFULNESS OF ESTABLISHED REGIONS

b5.1.1. OVERVIEW OF THE SITUATION AND RELATIONSHIPS

Consider what happens during the solving step of a
second iteration, when for the first time a non-trivial
valuation function guides the search.

Suppose that a cummulative region set, C; has been
used to construct a valuation function, e] and that 61 has
determined a final state graph set, GZ' (For simplicity,
assume that the regession component of 61 is nitl.) One
might suspect that a possibility exists of utilizing th=
information in 62 to update C] and thus improve 6y . The
situation 1is not simple, however, because the non-trivial
search strategy governed by 6] implies a very non-random
state collection in GZ‘ More specifically, consider the
following.

Assume that R and Q are two regions in C] , with
val (Q)>val(R), and imagine the process of explicit state
formation in a solution attempt. Suppose that some state,
™, is being developed, and that f(m ) er(R)., Suppose also
that it occurs that one of the immediate offspring of T,

™ , falls into a "better'" area of the feature space, e.g.

that f(7') € r(Q). Then the strategy will "grab" 7' for
development, and perhaps thereafter most or all of the
explicitly created states succeeding 7' will have a useful-

ness of val(0) or greater, so that R may seldom or never
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again participate. This can mean that, of all the states
which eventually map into R, a relatively high proportion
lie on a solution path. This in turn implies that the
elementary usefulness of r(R) for 62 is considerably
greater than the established usefulness, 1.e. that
u( Gz,r(R)) = g(62 +r(R))/t( Gz,r(R)) >> val(R),

This is also reasonable from another, slightlya
different point of view. Val(R) supposedly represents an
absolute probability whereas u(G2 ,r(R)) reflects a
probability which is conditional on the search strategy for

G If u(G2 ,r(R)) were equal to or less than val(R), the

o e
number of states developed in order to find one wused in a
solution would be equal to or greater than the number if a
breadth-first search had been in effect; and if this
happened generally harder problem instances could not be
solved, and the heuristic would be useless, On the other
hand, the closer the conditional (elementary) usefulness
values are to unity, the better the strategy 1Is working,
~since there are then few states developed that are wasted.
So we have a situation in whiéh we can calulate counts
for GZ' and thus find values for elementary usefulness, but
we know that generally, they do not indicate absolute
probabilities. Thus we cannot improve the estimates carfied
by the established cummulative regions simply by averaging

those estimates with the corresponding elementary values for

G2 .
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In addition to this phenomenon of bias or
conditionality, there is a further complication. Suppose,
for example, that val(R)=0.01 and val(Q)=0.2. Then
u(G, ,r(R)) might well be considerably greater than 0.01,
but u(® ,r(Q)) cannot possibly be Tlarger than 0.2 by a
factor of more than five, There is not a simple
proportional relationship between the absolute and
conditional probabilities,

On the other hand, if val(R) = val(Q) = ¢.01, with
u( Gg,r(R)) = 0,2 and u(G2 Lr(Q)) = 0,05, then we would
suspect that val(R) 1is too 1low and/or val(Q) too high,
There does exist wuseful information in the current
elementary usefulness estimates, and we can develop a way to
extract this information. We shall use all the elementary
values to support and smooth each other (with established
absolute values as a basis), and to estimate an appropriate
multiplier for each which will convert the conditional value
to an estimated absolute probability.

Let R -~ be a cummulative region set, and G the
appropriate final state graph set. Suppose that Re R and
R' is a new, corresponding "immediate" region with the same
rectangle as R, but with k(R "=1 (tentatively) and
Y (R =g(G,r(R)) and WR')=t( G,r(R)). We essentially
shall postulate that the modified multiplier of R' «k(R') =

Y [val(R)/u( G,r(R))] , where ReR and ¥ is a function

whose form is fixed for all cases, and use a regression. We
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shall choose  in such a way as to make use of all of the
established cummulative regions and also all the elementary
usefulness values of their rectangles for G. Then we shall
be able to improve the estimate val(R) by averaging with

val(R"Y = «(R'").u( G, r(R)).

6.1.2. FEORMALLY RELATING IMMEDIATE TO CUMMULATIVE REGIONS

Suppose we have a cummulative region set, R over a
feature set, F, and a resulting valuation function, ¢ for
R, which has in turn determined a final state graph set,
G. Define the (unmodified) immediate region set (for r )
(over G),

I(R,G) = {(r(R),g(G,r(R)),t(G,r(R)),1,1) | ReR}.
def

If Re R, R'" eI, and r(R)=r(R"), we wish to find a

good estimate of the true usefulness, val(R'), i.e. to alter

K(R') so that val(R') = g( G,r(R))/t( G,r(R)). «x(R'). Let

R = {Ry,R, oo ,Rm} be a cummulative region set, o a
valuation function, G the appropriate final state graph
set, and I = I(R,G ) the immediate region set over G for

R . Let us hypothesize that

log(val(R"')) = b.log(6val(R)) 6.1.2

where R €¢R, R'e€I, and b is a constant. (This has the
property that 6val(R)=1 implies val(R =1 and has a general

rough agreement with the observed relationship.)
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We can abbreviate log(eval(Ri)) to X and log(val(R%))
to yi, and we have a regression curve y=bx. Now, the
reliability of each datum varies, so we shall weight the

values. Let the variance-covariance matrix be given by

Vo .

b -

where Ss is a (logarithmic) standard deviation estimate for

R% which we  shall detail shortly. Then b =

(l'VIJK)_]X'V—]l, where X and Y are the m-dimensionsa
vectors composed of the X and yi.] This becomes

m X.y.
5 - 21
i=1 S;
b = 2 [ ]
m .
D ﬁ-é
i=1 S;
The variance of b, V(b) = (L'V'JL)JUZ and V(y) =
xZV(b).] So the estimated V(y)
m (Y.I "bX.i )2
z —
2 iz.l S .
= X ! .
m x-2
i
- 2
i=] S.i
Now, x; = log®val(Ry)) and vy, = log(val(R%)) and
not only y; but also x.; has an associated error, The

1
See [ Draper & smithl.
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logarithmic deviation in y; Is lndev(R%) (section 4.2) and
the (logarithmic) deviation in xj; is lndeveval(Ri) (section
L.3). It is equivalent to assume no error in X and to
translate the actual X; error to a component of the Y s
error. Thus we have s; = ]ndev(R%) + b.]ndeveval(Ri).
Since b is not known Initially, the algorithm for its

calulation, given in the next subsection, will be iterative,

6.1.3, SETTING MULTIPLIER VALUES OF IMMEDIATE REGIONS: KMOD

Now we are in a position to define the algorithm, KMGD.
which computes a multiplier K(Ri) for each region Ri“ It
initiates this process by performing the regression just
described. After the value of b is discovered, each K(Ri)
is appropriately modified.

Let 6, R , G be as above, again with 1= I(R,G )
the (immediate region set over G for R, Below is the
algorithm which sets the multipliers of I; it |is further

explained in the text following.

KMOD( 6, R, G)

comment R = {R],Rz, cee ,Rm} & I = {Ri,Ré, .o ,Rr;]} 3
for i:=1 to m do;

begin

b:=1;

1: lastb :

]
[=n
~
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s . := Indev(R!) + b*lndevgval(R ) ;
i m i m i

b := z(x.y./sg)/ : (x2/s);
PR T S - it i
i=] i=1

m m

- - 2 2

bvar : 151[(y1 bxi) /si ] / 15

K(R%) := exp(xi-b*xi);

€ (R%) := exp [c*(/ xz*bvar - b*xi) + lnerru(Ri)1 ;

i f b-lastb > 0.1 then go to 1

(x?/sg);‘
7 10T

end;
The resulting set of regions, M = M(R,TI) =
KMOD(S , R, 1) is called the modified immediate (region)

set (of 1) (for R).2

Notice that b = b(R,7I ). We labe:
b the log-usefulness factor relating I to R.

Suppose Re R, R' eI and R" e M , with r(R) = r(R'") =
r(R") (i.e. R is a cummulative region, R' a corresponding
unmodified immediate region carrying elementary usefulness,
and R" a corresponding modified immediate region).
According to KMOD, the multiplier of R" is k (R") =
exp(x-bx) = exp [log(6val(R)) - b*log(éval(R))] which is

Bval(R) divided by the predicted (elementary) usefulness of

r(R'" ). Thus val(R" ) = k(R" ).ul G,r(R))

val(R).,u(G ,r(R))/predicted elementary usefulness of r(R)
val (R). The accuracy of the approximation is governed by

the correctness of the regression,

Recall that c, the confidence factor converts logarithmic
) deviations to logarithmic errors.

Recall that the cummulative region set determines the

valuation function.,
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b.1.4. COMBINING CUMMULATIVE AND IMMEDIATE REGIONS

Now it 1is a comparitively simple matter to use the
modified immediate regions to wupdate the corresponding
cummulative ones, Since the reliability is different for
each of the two members of a corresponding pair, we shall
weight the usefulness values accordingly.

It can be shown that the variance of a weighted average
of normally distributed variables 1is a minimum if the
weights are the inverses of the original variances. Since
we have assumed a log-normal distribution for the useful-

ness, we have the following.

Let R = {R1'R2' e ,Rk} be a set of regions., The

average usefulness of the regions of =z,

k log(val(Ri))
)3
i=1  lndev(R;)
avgval( R) == exp .
def k 1
z

i=1 1ndev 2(R1. )
. —

Computation gives the variance of 1log(avgval( Rr)) as

k
k / jﬁ [l/lndevz(Ri)] . However, the sets of regions whose
i=1 -

usefulness values will be averaged will be considered to be
samples of a single population, so the law of large numbers
reduces the numerator of this variance expression to unity.

And we have the deviation of the average of R,
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k 1
devav(R ) === exp 1 / Y e— .
def i=1 ]ndevz(Ri)

6.1.5. THE USEFULNESS REVISION SUBSTEP

Finally, we are in a position to sum up precisely how
immediate regions are wused to revise the usefulness
estimates of the cummulative set. Suppose that a cummula-
tive set and its valuation function are R and o , respec-
tively, and 1let G be the final state graph for g. The

usefulness revision algorithm is given below,

*

USFREV(R, 6,6G )

Create I, the unmodified region set for R over G ;

M := KMOD( B6,R, T);
Q := {red(R) | R eM ;
U := {T | r(R) = r(Q), ReR, Qe Q and
T = (r(R), avgval( {R,Q} ), errav({R,Q1}))} ;
The set U = USFREV( R, 6, G) is the usefulness-revised (re-

gion) set of R (for © and G). If R s CI-]' the cummula-
tive set of iteration I-1, 06 s 81_], the valuation func-
tion of iteration I-1, and G s GI , the final state graph
set of iteration I, then USFREV(GI_],CIJ, GI) is the

usefulness~revised (region) set of .iteration 1. A side
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=b( ¢, ., 1,): this

I I-1 I
log-usefulness factor of iteration I will be used later on.

R — SS— O ———————— s it

effect of KMOD is the calculation of b

6.1.6. AN INTERPRETATION OF THE LOG-USEFULNESS FACTOR

From equation 6.1.2 we have b = Tlog(val(R ) /
log( 6 val(R)) , where R is from the cummulative region set,
and R' from the unmodified immediate set, We could think of
this as being roughly -equivalent to b = log(usefulness
probability in strategy) / log(absolute usefulness). So the
lower the value of b, the better the heuristic is working.
We can define the power of a valuation function (for the

relevant training problem set) as 1/b - 1.

Example 6.1

The following is a continuation of our standard fifteen
puzzle example. The cummulative set, C] was
f¢ry, 0.25, 1.8), (rp, 0.016, 6.2), (r,, 0.00819, 25.) }.
The training problem set for the second iteration consisted
of twelve puzzle instances whose depths (moves from goal)
ranged between twelve and fourteen. The unmodified
immediate region set was I, = {(r, 67, 197, 1, 1),
(rp, 19, 106, 1, 1), (rg3 27, 1783, 1, 1)} . Applying KMOD
gave the modified immediate set M, =

T(ry, 67, 197, 0.54, 2.6), (r,, 19, 106, 0.16, 18.),
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(r3, 27, 1783, 0.022, 420)} . The log-usefulness factor, b2

was 0.55. Reducing the modified set, we obtain: Q.2 =

{ (r], 0.18, 3.1), (r 0.028, 25.), (r3, 0.0033, 510)} .

21

And merging 2 with via AVGVAL, we have the

1 ¢
usefulness-revised set, u2 = {(rl, g.24, 1.7),
(ro, 0.019, 4.8), (r3, o.00021, 18,) }. (Notice the
magnitudes of the errors are reduced.)

Since b=0.55, the power is 0.8, The usefulness of the
second revised cummulative region, above, was .19 = 1/53.
We would expect the search strategy of the first iteration
to have made use of exp(0.55*%10g(0.019)) = (.11 of the
states mapping to that region, or about one in 9, as opposed
to one in 53 for a breadth-first search. Comparing this
figure with the corresponding region of the unmodified

immediate set, we find that about one in 6 was actually

used,

6.2. SUBDIVIDING ESTABLISHED REGIONS

After the established cummululative regions are
modified as decribed in the preceding section, each region
of that resulting usefulness-revised set 1is possibly
subdivided in a manner basically similar to the clustering
which occurs during the first iteration of a series. In the
latter, a single all-encompassing vregion s supplied to

CLUSTER (chapter five). 1In our present case, CLUSTER will
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be called once for each region of the established cummula-
tive set, with that region taking the role of the parent re-
gion. The situation is a little more complex now, however,
and we shall need need two of the formalisms developed in

the 1last section, as well as another algorithm to adjust

multipliers.

6.2.1. ALGORITHMS SUBDIV AND KALTER

Suppose a final graph set , G has been determined by
a valuation function ©, and that © 1is associated with a
cummulative region set R, Suppose, also that d =
{ Ry,R2 eee ,Rp} is the resulting usefulness-revised set
of R, b an appropriate log-usefulness factor (see later),
and bvar its estimated variance. The second substep in the
revision of R js a subdivision of the regions of U, and is

defined by the algorithm:

SUBDIV(® , G,b,bvar, U)

Comment u = { R'I y 2 RZ' L LI rd R'n} ;
for i:=1 to m do;

begin

Ty := CLUSTER( G,R;);

KALTER( 6 ,b,bvar,Ri, Ti)

end;

m .
T:= v T ;
i=1
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S:= {S |TeT & S=red(T)} ;

S = SuBDIV( 8, G ,b,bvar, U ) is the subdivided (region) set
of U (for 6, G , b, and bvar).

The algorithm, KALTER, modifies the multiplier values

for each subregion in Ti' It takes into account two

phenomena, both of which basically have already been

discussed in section 6.1, The first is that immediate re-
gions are conditional on their search strategy, and
generally must have their multipliers reduced in order to
reflect absolute usefulness, This is easily accomplished

since the parent region, R; embodies absolute usefulness, so

;
the multiplier value for each of the new subregions, Tj' of
R; is just the usefulness of R; divided by the average

elementary usefulness of the Tj.

The second phenomenon relates to the relationship
between immediate and cummulative regions through the log-
usefulness factor, b, Within the boundaries of a cummula-
tive region, the (regression component of the) valuation
function has caused the search strategy to favour the 'good"
corners of the rectangle, and this has supposedly biased the
poorer elementary usefulness values, upward. In subsection
6.1.3 we made appropriate adjustment for this bias over the
set of cummulative regions; now we must adjust biased
elementary usefulness values, within a cummulative region,

in order to find reasonable absolute wusefulness estimates

for its new subregions,

a
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If Tjyand Ty are two subregions, the difference of the
logarithms of their predicted usefulness is log( 6 val(Ty))
- log( 8val(T ). ] According to equation 6.1.2 this
translates to a predicted difference in logarithmic
elementary usefulness of
b [log( 6val(T;)) - Tog( 6val(T,))] . The remainder of the
absolute difference is hidden in the bias. This remainder
or bias is [1-b] [log( eval(T])).- log( o val(TZ))] .

In the following formalization of KALTER, let be a
valuation function, b a suitable log-usefulness factor and
bvar its estimated variance., Let T = { TieTo oo ,Tk} b«
a set of regions whose rectangles form a partition of the

rectangle of a parent region, R.

KALTER(®6 ,b,bvar,R, T)

comment T = { T1/To oo 'Tk} ;

comment first convert conditional usefulness of immediate
set to absolute usefulness;

for i:=1 until k do;

begin

K(T;) := K(T3) * val(R)/avgval( T) ;
e(Ty) :=  [eTplEerr(R)] [errav(T)]
end;

comment correct for any bias;

Note that the regression component, p, alone, without
vV, could be substituted for ¢, since R and Ry are
within a single region of the former valuation function.
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for i:=1 until k do;
begin
bias := [1-b] [log(o® val(Ti))-log(e val(R))]

biassdv := /bvar * [log(eval(Ti))-]og(eval(R))]2 3
K (Ti) := exp(bias)* K(Ti) ;

e (T;)
1= exp [1ne(T J+Inerroval (T, )+Inerroval (R) +biassdv*c]

end;

6.2.2., THE FULL DEFINITION OF DISTANCE

At the beginning of chapter five, we defined dist, the
distance function for the clustering algorithm. At that
time, it was stated that the two terms, blas and biaserr,
were zero unless the regression component of the valuation
function was non-trivial. This bias 1is exactly what was
introduced in the preceding subsection. So we can now fully
define the distance.

Suppose that Ry and Ry are two regions with val(Ry) 2
val(Rp), and let by be the log-usefulness factor of itera-
tion I. Also, let GI_] be the valuation function of itera-

tion I-1. Then the distance between R and R, for iteration

I is
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- o , if ‘Y(R )=0 or T(R)(ZO (i=1,2)
dist(R],Rz,eI_], 1 i

by,bvary) 57 1 log[val(Rl)/val(RZ)] + biasI
- [lnerr(RI) + lnerr(RZ) + biaserrI]

\ otherwise,

where biasI 7 [l-bI]Dog[eI val(R])/eral(RZ) ] and

biaserrI T c/Bvaﬁ . log [elval(R])/eral(Rz) ].

6.2.3. THE SUBDIVISION SUBSTEP

If UI is the usefulness-revised region set, GI is the
final state graph set, bI and bvarI are the log-usefulness
factor and Iits variance estimate, all of iteration I, and

87,1 s the valuation function of iteration I-~1, then S$; =

SUBDIV( 81 3, G;,by,bvary, U; ) is the subdivided (region) set

of iteration 1.

Examples 6.2

The first example is from the second iteration, for
which the valuation function had no regression component;
so this will illustrate only the first part of KALTER (no
bias within established regions). One of the usefulness-
revised regions of example 6.1 was R = (r, (.24, 1.7), with

Ip(r) = (1,0,0,0), up(r) = (5,0,4,3). This, as a parent
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region for CLUSTER in SUBDIV, spawned two subregions,

R] = (r],zu,Zh,l,I), 12(r1)=(1,0,0,0), gg(r])=(2,0,0,3);
R, = (rz,k3,173,1,1), lg(r2)=(3,0,ﬁ,0), gg(r2)=(5,0,0,3).
In KALTER, avgval({ R]'RZ} Y = {.42, So the multiplier

correction factor was val(R)/0.42 = 0,57, Errav({ R]’RZ} )

was 1.2, and combining this with err(R) gave a final error

estimate of 2.1, The two new subdivided regions became
(l’-l, 2'4' 2“, 0.57' 201) and (rz, '-l3, 173' 0057, 2.1),
which, when reduced are (r 17 0.57, 3.2) and

(ro, 0.14, 2.6).

For an illustration of the second part of KALTER, we
need to consider a case in which the regression component of
the valuation is non-trivial., This occurs, for instance, in
iteration four of our standard example, The region of the
usefulness-revised set which is of concern to us now is R =
(r, 0.001, 5.), 1lp(r) = (7,0,0,2), up(r) = (10,0,2,5).
With this as parent region, CLUSTER output a set whose two

members were:

R'l (f"l,l},gu,l,l), _]_g(r'l)=(7'010’2)' Ha(r'l)=(8,0'2,5);

Rg = (rp,8,175,1,1), 1p(ry)=(9,0,0,2), wup(r,)=(10,0,2,5).
The first part of KALTER changed the multipliers to
val(R)/avgval({ Ry,R,} ) = 0.001/0.094 = 0.011. This value
was further modified by the bias correstion section., We

have:

bias b-b] [10g(Oval(R)) - log(Bval(R))]

1-b] []og(Pval(Ri)) - log(pval(R))]
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[1-b] [g.(l,gg(r(Ri))) - a.(1,ep(r(R))) ]

[1-b] [a . (0, gg(r(Ri))-gg(r(R)))] .
The only relevant parameter of the regression valuation

function was that for the first feature, and it was

a; = -0.51. The value of b was 0.25. Thus, for R, bias

(0.75)(705-805)a] = 0.38. And fOI’ R ’ biaS =
(0.75)(9.5-8.5)a] = =-0,38, Thus the final values for the
multipliers are: K(R1) = 0.011%exp(0.38) = 0,016 and

K (RZ) = 0.011%exp(~-0.38) = 00,0073, The errors will not be

calualated here, but the final usefulness estimates were

val(Ry) = (0.016)(13/94) 0.0022 and va](Rz) =

(0.0073)(8/175) = 0.00036.

6.3. EXTENDING REGION BOUNDARIES AND FURTHER SUBDIVISION

Especially during earlier iterations, when the problem
instances which the system has seen are atypical (easlier),
the cummulative regions do not generally cover all the fea-
ture space points mapped from a new final state graph set.
So some of the outer cummulative regions need to be extended
to engulf the new points, After that, further splitting |is
allowed, similar to that described in the preceeding sec-
tion,

First 1let us examine a means to surround the outlying

points.
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6.3.1. BOUNDARY EXTENSION

Let § = { R],R ees 'Rn# be a set of subdivided re-

o
gions. Let G be a final state graph set of the same itera-
tion, and F the appropriate set of features determining the
vector function f. Define the set of states, T =
{mre GeG|flr)¢R v ReSH , and the set of feature space
points S = { 2 | gi=i(n), T e I} , called the outlying
point set for S and G.

The following algorithm extends the regions.

ENCLOS(G , S)
Form the outlying point set, S, for § and g¢.
comment S = {‘g],gz, cee ,Qk} ; S = { R]'RZ' cae 'Rm} ;
for i:=1 until k do;
comment find rectangle to extend to cover p ;
for j:=1 until m do;
if ]Ir(Rj)-gill > llr(R])-QII (1<lsm) then go to nxtr; '
if r(Rj) nor(R) # ¢ (i<li<m, 1#j) then go to nxtr;
_l_g(r(RJ-)) := min Ug(r(Rj)),Q_i] ;
y_g(r(RJ-)) 1= M[y_g(r(Rj)),g,i]

nxtr: end

end;

IF S is a subdivided cummulative region set, and G is

a final graph set , then the set, S'= ENCLOS( G,S ) is the

' Il || represents Euclidean feature space distance,
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uncorrected extended (subdivided) region set of g (for g ).
(Uncorrected because the counts for the outlying points have

not yet been incorporated into the extensions,)

6.3.2. MODIFYING USEFULNESS VALUES OF EXTENSIONS

When a subdivided region set has been extended, its old
usefulness value may be an Inaccurate estimate for the
extension. We can use KALTER to attempt to correct this
problem.

Let S' be an uncorrected extended set of regions whos:
unextended counterparts were S. Let G be a set of final
state graphs. Form immediate region sets from both § and
S I = {(r(R), g(G,r(R)), t(G,r(R)), 1, 1) |Re S} .
Define 1', similarly, from S'. Let ¢ be the relevant
valuation function, and b and bvar the appropriate log-
usefulness factor and its variance estimate (see later),
The algorithm which adjusts the usefulness estimates

according to these variables is:

COREXT( 6,6 ,b,bvar,S , S' )

comment S = {RVRZ cos ’P\'n} is a subdivided set,

S = { Ri,Ré, cos ,mﬁ is the uncorrected extended
set of £
Form immediate sets, I = {Q1,Q2, o ,Qm} , from S,

and I'= 'fQ{,Qé, ces ,Qé} , from S';
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for i:=1 until m do;
begin
comment correct Q. ;
KALTER( © ,b,bvar,Qi, {Q% } )
comment use the multiplier of Q. to modify R% ;
val(R%) e= val(Ri)*K (Q%);
err(R;) := err(R;)*err(Q.)
end;

comment { Ri,R é cee ,Ré} is the output set;

The set E = COREXT(®6 ,G,b,bvar, S, S8') is the
(corrected) extended (region) set of S' (for S, 6,03,b,

and bvar).

To see why this algorithm provides a suitable
multiplier adjustment, consider the following argument. Let
ReS, RleS', and 0 ¢71, QO ¢ 1' be corresponding regions
(whose rectangles are all identical). We already have a
reasonable estimate for val(R), and we would 1like a good
estimate of val(R'). Val(R" = val(R)[ val(R')/val(R)] =
val(R) [usefulness of Q' adjusted for bias / usefulness of

Q, corrected for bias] , which agrees with the algorithm.

6.3.3. SUBDIVIDING THE EXTENSIONS

Let £ be a corrected extended region set and § the

unextended (subdivided) counterpart of E, G be a final
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state graph set, and 6 Its corresponding valuation func-
tion, with b and bvar having their wusual meanings. Then

extension subdivision proceeds:

EXTDIV( 6 ,G ,b,bvar, S, E)

Define V = {R'eE | R #FRVY R ¢ 8} ;

W = suBDIV(® ,G ,b,bvar, V) u (E - V) ;

W = EXTDIV(®,G ,b,bvar, S,E) is the subdivided

extended (region) set of E (for S,9 ,G,b, and bvar).

6.3.4. IHE EXTENSION SUBSTEP

Suppose © is a valuation function, G is a final state
graph set, b, bvar a log-usefulness factor and Its estimated
variance, S is the subdivided set (of section 6.2). The

full extension algorithm is given below.

EXTEND(® , G ,b,bvar, S)

S!' := ENCLOS(g, 8);
COREXT(so ,G6 ,b,bvar, g, g');

™
[}

EXTDIV(s ,G ,b,bvar, g, E};

>
n

The set X = EXTEND( g, g ,b,bvar, g) is the final (re-

gion) set of s (for 6.6 ,b, and bvar). If eI] is the
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valuation function of iteration I-1, and GI' bI' bvar r and

S represent the usual variables, of iteration I, then ¢

I I
= EXTEND(GI_],GI ,q ,bvarI, SI) is the final or cummulative

(region) set of iteration I.

Example 6.3

The following is from iteration three of our standard
example; it illustrates both extension and extens.ion
subdivision (i.e. the extension substep). The relevant re-
gion from the subdivided set was R = (r, 0.00001, 40.5),
lp(r)=(11,0,0,0), wup(r)=(21,2,1,0) and the corresponding
uncorfected extended region was R' = (r', 0.00001, 40.5),
1pCr )=(11,0,0,0), wup(r N=(58,2,2,0)., Note that extension
occurred in the first and third dimensions.

The corresponding immediate regions were Q =
(r, 86, 378, 1, 1) (from R) and Q' = (r', 129, 2377, 1, 1)
(from R'). So the multiplier for the corrected extension is
given by KALTER(®, ,bs,bvar3,q, {Q'} ), In this, the
multiplier of Q' is altered: K(Q') = val(Q)/avgval({ n'} )
= val(Q)/val(Q') = 0.24. (The errors will not be calculated
here.,) This accounts for the conditional to absolute
probability conversion,

The bias correction proceeds: The parameter vector was
a = (0.73, -0.72, , -2.4, 0, 0), and the Jlog-usefulness

factor was b = 0.34, Thus the



77

[1-b] a . [0, gptr(a'))=¢gp(r(n)) ]
0.66(-0,72, -2.4, 0, 0) . ((16,1,0.5,0)-(34.5,1,1,0))

bias

= -8.8,
And the final value for the multiplier is given by «(Q') =
0.2u*exp(-8.8) = 0,000036, So the the corrected extended
(.000036)(.00001) =

region, R" has a usefulness val(R")
3.6x10 "0,

Subdivision also took place, Two regions resulted;
the immediate subregions were Q] = (r], 129, 457, 1, 1),
1p(r;)=(11,0,0,0), up(rqy)=(30,2,2,0) and Q, =
(rp, 0, 1926, 1, 1), 1p(r,)=(31,0,0,0), up(r,)=(58,2,2,0).
KALTER(ez,b3,bvar3,R",{ Q],Qz} ) gives (intermediateiy, for
i=1,2) X(Q;) = val(R ")/avgval({Qq,Q} ) = 5.6x107'0/0.23

= 1,3x10 -% The bias for Qq is (0.66)(-0.72)(20.5-34.5)

6.6. And the bias for ®» is (0.66)(0.72)(44,5-34,5) = -4,.8,

So the final values are K (Q;) = 1.3x10-9*exp(6.6)
-7 - -

9.6x10 and K(Q) = 1.3x10 9*exp(-l;.8) = 1.1x10 11. And

val(Q1) becomes (129/&57)(9.6x10.J) = 2.7x10“7 while

-1 -1
val(Q2) is (0.5/1920)(1.1x10 ) = 2.8x10 5.

6.4, THE ENTIRE PROCESS OF REVISION

In section 5.5 we saw precisely how the regions are
created in the first iteration of a series. Now we can
summarize the exact process of region revision for (itera-

tions after the first. This amounts just to the sequence of



78

three substeps of the three sections preceding this one. If
C;.y 1s the cummulative region set of iteration I-1, 08

and GI the associated valuation function and final state
graph set, then CI' the cummulative (final) region set of

iteration I is calculated:

Uy = USFREV(®; , Cy1,0p1 ) (6.1.5)
Sy = SUBDIV(®;_y , Oy ,by,bvar,U ); (6.2.3)
C; = EXTEND(®;_y , ©p ,by,bvar;,S; ); (6.3.4)

If we were to focus attention on the region handling
step and regard the entire system as existing for its
purposes, we would notice that over a series of iterations,
some regions become subdivided because of newly perceived
differentiation 1in wusefulness, and some remain intact,
reflecting continuing uniformity of usefulness., The whole
iterative process could be considered as an ongoing resolu-

tion of usefulness in the feature space,



Appendix A THE STATE-SPACE / EEATURE SPACE PARADIGM

Automatic problem solving is a good area in which to
investigate modéls of human thinking and perception, because
there has already been developed a theoretical structure
involving state-space problems [ Nilsson]. The fifteen
puzzle is a common example of such a problem. It is a
square which contains fifteen smaller squares or tiles and a
space into which adjacent tiles can be slid. The goal might

be:

PN TN TN TN PN PN PN PN N PN N N
Nl Nt N Nl o N s S s N

and the starting configuration, or starting state, any of
16!/2 (ten trillion) even permutations of the goal state,.
Any state can be transformed into two, three, or four other
states by means of an operator (i.e. move into the blank
space the tile which is above, below, to the right, to the
left).

State-space problems, then, are problems with a

precisely defined starting state, an explicit goal state,

79
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and other distinct states produced as offspring of the
starting state by means of a set of gperators. The 'space"
in the term '"state-space'" refers to the entire set of
possible states reachable from any starting state by succes-

sive applications of operators. A problem instance is a

particular starting state, together with a goal state and
set of operators.

The fifteen puzzle might seem like just a toy problem,
but it has often been selected as a representative because
it is easily formulated but difficult to solve, Many
important and hard problems can be formulated as state-space
problems, for example theorem proving, and progress wita any
representative problem is likely to be equivalent to general
advancement, as long as our approach is general,

If we consider a starting state as the root of a state
tree, then operators correspond to arcs linking nodes
(states) to their offspring. (Generally, the tree becomes a
graph if each redundant state 1is considered as a single

node,) A graph traverser is a mechanism which (beginning

with the starting state) explicitly generates offspring
nodes by developing a current ncde (applying the set of
operators). A solution corresponds to a path through the
graph which 1inks the starting state to the goal. A graph

traverser is guided by some search strategy, the simplest

being the breadth-first strategy (i.e. nodes developed in

the order of their generation).
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A breadth-first search usually uses prohibitive amounts
of both space and time, even for simple problems. Growth fis
exponential, For example, for the fifteen puzzle, the
number of states developed at level L (depth of the state
tree) is about three to the power L, so practically, a
breadth-first strategy is wuseless for puzzies more than
eight or ten moves from the goal, whereas fifteen puzzles
typically require many tens of moves, (This is a restate-
ment of the fact that the fifteen puzzle has a very large
number of possible configurations.) To be effective, a
search strategy must lead the graph traverser fairly
directly toward the éoal, without generating too many
extraneous nodes.

One formalism that has been used to define a search

strategy is the evaluation function. An evaluation function

maps nodes to numbers, so that states can be ranked
according to probable "usefulness in a solution'" (and the
states selected for development in the appropriate order).
A simple example of such a function for the fifteen puzzle
is the sum, for each tile, of the distance of the tile from
its "home" position (ignoring intervening tiles). This does

not work very well, because configurations such as



( )
( 2 1 3 L )
( )
( )
( 6 5 7 8 )
( )
( )
( x X X x )
( )
( )
( x X X x )
( )
arise, From the point of view of the evaluation function,

this appears to be close to the goal, but in fact it most
definitely is not. So one might use a more sophisticated
function: z distances + ’c.Z reversals [Doran &

Michie]. But then states like

( )
( 2 3 1 L )
( )
( )
( x X X X )
( )
( )
( x X X X )
( )
( )
( x X X x )
( )

occur., The reader may appreciate that, generally, several
elementary terms or features might be useful. However, even
with just two terms, many separate computer runs have to be
made in order to find the best parameter(s), and with more

than two features, the cost 1is prohibitive. (Ordinary
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statistical techniques are not appropriate, because random
problems are generally too difficult to solve at all,)

In any case, with this state-space paradigm as
described to this point in our discussion, there does not
seem to be much intelligence apportioned to the
computer/program,

The following approach is an atteppt to preclude this
dilemma by mechanizing a higher 1level system which deals
with feature spaces., Consider a feature space formed by an
ordered set of features, each of which defines one dimen-
sion., We shall associate an estimated probability of =2
node's being on a good solution path, or its "usefulness"
with an area in the feature space (see also [Michie &
Ross ]). For ease and conciseness of expression, we can
restrict the feature space regions to be rectangular. So if
a node in a state space maps into the interior of a
rectangle, ri s in a feature space, it has usefulness u;
thus the nodes can be ranked for development order. In this
system, the wusefulness 1is 1in fact a combination of two
factors: the just mentioned value for the associated
rectangle, and also a value obtained by regressing the use-
fulness figures against the mid points of their associated
rectangles.

This usefulness is a product of the system's past
experience with problem instances; former results are

generalized to apply to future problem instances (tenta-
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tively at first).

Notice that we have been talking about three separate
spaces. One is the state space of nodes or configurations.
Another is the feature space into which fhe nodes are
mapped, and which s partitioned into rectangles with
associated usefulness values. And the other 1is the one
dimensional ripking space in which the evaluation function
orders nodes.,

Next let us consider how these usefulness figures are
obtained. When the system begins its operation with some
problem such as the fifteen puzzle, it is given an ordere?
set of features (whose ranges are integer), but the
resultant feature space starts as an undifferentiated lump
with an undefined usefulness, The system is also provided
with a set of problem instances to attempt, at least one of
which should be easy enough to solve breadth-first. After
all samples Have been attempted, the entire set of developed
nodes is mapped into the feature space. For each point, a
pair of integers, (g,t)‘is calculated. The "total count", t
is the total number of states which map into the point. The
"good count", g is the total number of nodes which map to
the point, too, but which also lie on a solution path. Thus
the vratio, g/t 1is a measure of the usefulness of the
corresponding state. Since these numbers are generally of
small magnitude, therefore unreliable, the points, together

with their associated integer counts, are <clustered. Thus
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we obtain (g,t) pairs for rectangles (summing the values for
the interior points).

As an example, for the fifteen puzzle, we might define
a two-dimensional feature space wusing the two elementary
terms mentioned earlier, the distance-from-home sum and the
number of reversals. Then, points close to the origin would
be found to have high g/t ratios, and points away from the
origin woulgenerally have low usefulness.

The <clustering algorithm 1is a splitting one; and the
final number of rectangles is governed by the data. Roughly
speaking, the algorithm works this way: A boundary is
tentatively Inserted to divide a rectangle, r, into two, n

and r and the temporary split becomes permanent iff the

0
associated pairs (% ,t]) and Q%,tz) define "dissimilar
enough'" usefulness values g]/t] and gz/tz, and if that
boundary produces the ‘'"best" division of all possible
choices (an error term is also defined, by the count pairs
and otherwise)., The process is repeated for each emerging
smaller rectangle until no further bisection is sustained by
adequately differing (associated) probability estimates.

In our fifteen puzzle, two dimensional feature space
example, we would typically find a final set of
approximately three rectangles: with usefulness values of
about 0.5, 0.02, and 0.001.

For future solution attempts, the system uses this

freshly constructed information in the form of an evaluation
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function to order and select states. Also, after each solu-
tion set attempt, tihe usefulness values are revised, and the
rectangles are further refined (subdivided), using new,
current (g,t) counts. Continued experience Iimproves the

performance of the dynamic evaluation function.



Appendix B NON-RANDOMNESS ERROR ESTIMATION

In section 3.4 we discussed a non-randomness error
which arises because we generalize from .easier to more
difficult problem instances, and from one search strategy to
another. Let us consider just one source of such an error,
in a first iteration, when the search is breadth-first.
Here, the graph traverser wanders around aimlessly in the
feature space, beginning with the starting state. Many of
the nodes developed are in fact worse than the starting
state (i.e., farther from the goal than it is), and they
therefore have no‘chance to lead to a solution, since better
nodes are also created at the same level in the state graph.
These poorer nodes are developed indiscriminately, along
with the good ones, however, and they end up seeming worse
than they really are, in the eyes of the elementary wuseful-~
ness (the good count being zero). If, on the other hand,
the starting state had been farther from the goal, some
nodes similar to these "poor" ones may have participated in
a solution,

In an attempt to quantify thils and other non-randomness
error soures, the user-specified error, erru, was selected
to be erru = erru{(R) = 1/ JEECQT?ET , where R is a region.
So regions whose usefulness corresponds to a state distant

from a solution 1 are considered to have a low reliability.

This is tricky, because a state distant from a solution
is perhaps not necessarily one with a low usefulness,
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Appendix C USEFULNESS, ERRORS, AND NOTATION

In this paper usefulness values and error terms appear
in two forms, Jlogarithmic and non-logarithmic, Because
error estimates arise frequently, a standard abbreviation is
used throughout: errors are logarithmic whenever they afe
prefixed by the letters "In".

In logarithmic form, an upper or lower '"likely" 1limit
of the wusefulness is obtained by adding or subtracting the
appropriate logarithmic error term. In non-logarithmic

form, the error becomes a factor or divisor,

Error names usually have the letter sequence "err' as
prefix (and logarithmic errors, '"lnerr"). Logarithmic
errors are related to logarithmic deviations: Inerr =

c.lndev where ¢ is a confidence factor. (The prefixes

"dev" and "lIndev" distinguish deviations.)

In a couple of instances, e.g. for '"biassdv'", the errors
are encountered in logarithmic form only, and the standard
notation is avoided.

A list of errors and deviations and references to their
first appearance in the text are given in the index of
definitions,

There are several functions mapping states to useful-
ness values, indirectly, through their feature space loca-
tions, Corresponding functions which map (center points of
rectang]es of) regions in the feature space to wusefulness

values in the ranking space have the suffix "val",
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INDEX OF DEFINITIONS

a (confidence level)
associated
graph & problem sets, and valuation function
cummulative region set & valuation function
augmented vector (of feature space point)
augmenting function (h)
avgval (average usefulness of region set)
average usefulness (of a set of regions) (avgval)
average usefulness (of a state)

b (log-usefulness factor)
boundary extension

c (confidence factor)
center point (of rectangle) (gp)
CLUSTER (clustering algorithm)
confidence factor (c)
confidence level (a)
COREXT (counts points wihin extended regions)
corner point (of rectangle) (lp & up)
corrected extended region set
count functions (g and t)
counts :

good =---

total =---
cummulative region set

--- of iteration one

determine(s)
problem set & valuation function === graph
region set --- valuation function
region set & state graph set =--- region set
devav (deviation of average of region set)
devc (count deviation)
deviation (error without confidence factor)
count === (devc)
average --- of region set (devav)
regression --- (deveg)
user-defined --- (devu)
devu (user-defined deviation)
discriminate
dissimilar (regions)
dist (distance function)
distance (between regions)

elementary usefulness (u)

ENCLOS (extends regions to cover new points)
€ (multiplier error of unreduced region)

err (total error of a reduced region)

err (total error of an unreduced region)
errv (error of region valuation)

39
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err g (error of average valuation)
error (see also deviation)
--- of average valuation (errg)
--=- of region valuation (erry)
evaluation function
EXTDIV (subdivides extended regions)
extended region set

feature space (F)
feature space map (of a state) (f)
final region set
final state graph (G)
final state graph set (g)
for iteration I (GI)

g (good count function)
y (good count of unreduced region)
good count

h (augmenting function)

immediate region (set)
modified =-=--
unmodified ---
iteration
first --- of a series

KALTER (adjusts multiplier of subdivided regions)
(multiplier of unreduced region)
KMOD (relates immediate to established regions)

log-usefulness factor (b)

--- of iteration I (b,)
lower point (of a rectakgle) (1p)
1p (lower point)

modified immediate region (set)
v (region valuation function)

outlying point set
output set
--=- of CLUSTER
-==- of SHRINK

parent region (for CLUSTER)

power

predicted usefulness (of a region) (pval)
predicted usefulness (of a state)

problem instance (P)

r (rectangle field of region)
rectangle
center point of --- (cp)

60
57
51
67
28
59
60
63
17
17
60
32
72

46
50

45
63

35
12

28
18
34
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corner point of --- (lp & up)
red (map from unreduced to reduced region)

region
corrected extended =--- (set)
cummulative =--- (set)

--- of iteration I
--- of literation one
extended --- (set)
final --- (set)
immediate --- (set)
modified ---
unmodified ---
modified immediate --- (set)
parent --- (for CLUSTER)
reduced =-=--
rectangle of --- (r)
total error of --- (err)
usefulness of --- (val)
reduced --- of an unreduced --- (red)
subdivided --- set
--- of iteration I
uncorrected extended (subdivided) =--- set
unmodified immediate --- (set)
unreduced ---
good count of =--- (vy)
multiplier of --- (¢)
multiplier error of --- (¢)
rectangle of =--- (r)
total count of -=-- (1)
usefulness-revised =--- set
--- of iteration I
region handling step (second step) of iteration
region-usefulness (of a state)
region valuation function (y)
regression error (err o)
regression step (of iteration) (third step)
regression valuation function ()
o (regression valuation function)

second step (of an iteration) (region handling)
SHRINK (shrinking algorithm)
similar (regions)
state graph
final --- (G)
final --- set (G)
step (of iteration)
first --- (solving step)
first (solving) --- of iteration I
second (region handling) --- of iteration I
third (regression) --- of iteration I
SUBDIV (subdividing algorithm)
subdivided region set
--~- of iteration I
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t (total count function)

t (total count of unreduced region)

6 (average valuation function)

total count

total error (of an unreduced region) (err)
training problem set (P)

u (elementary usefulness)
uncorrected extended subdivided region set
unmodified immediate region (set)
up (upper point)
upper point (of a rectangle) (up)
useful
usefulness
average --- (of region set) (avgval)
average --- (of a state)
elementary --- (u)
predicted --- (of a state)
--- of a reduced region (val)
--- of an unreduced region (val)

total --- error of a reduced region (err)
total --- error of an unreduced region (err)

usefulness-revised region set

val (usefulness of a reduced region)
val (usefulness of an unreduced region)
valuation function

(average) --- (0)

region --- (V)

regression --~ (p)

--- of iteration I
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