AN ©€GANIZATo . BF THE

TITLE: o1e AltinTien MBHCD &€= AUTHOR:

W LT -DiventStensgl. QU APEATVEE A.MAZ 1

Fe GZ fS\L\~\(’>S«ﬂ/\,

f‘()‘(< VeC(or
NAME :

\) \fc; .

~ (UL TTS

IDATE_TAKEN

| ;ﬁLv&Vﬂ7Cl

&

DATE RETURNED

LS ien b
i) /

SIGNATURE

o Eddk rrom U\ VA Ee

Date C} ﬁr":j jq
memO University of Waterloo

Rov ek Reperk .

AN ORGANIZATION OF THE EXTRAPOLATION METHOD
OF MULTI~DIMENSIONAL QUABRATURE FOR
VECTOR PROCESSING

by
R.B. Simpson and A. Yazici

Research Report CS-78-37

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3GI

August 1978

ABSTRACT

A form of algorithm for the extrapolation method of quadrature for
triangulated domains of the plane is presented as being suitable to vector
processing computer architectures. Tests of its performance on a CDC STAR-100

are discussed.

PREFACE

This report was substantially revised and submitted for consider-
ation for publication. In the revisions, the notation for the extrapolation
table of 52 was changed, and §4.3 was extended and made into a separate §5
on conclusions and speculations. Also, some of the detailed data reported
in §4 was reduced in the revision, which references this report for further

details, and for the source Tisting contained in the appendix.

§1 Introduction

Numerical methods for estimating multi-dimensional integrals typically

involve farmulae of the form

=

(1.1) ff...fDN fdv = izl wiF(P.)

where DN is a specific N -dimensional kegion, and W, and Pi are the
weights and nodes of an N-dimensional quadrature formula. The major factor
in the time needed to carry out the computation can be expected to be the
time required to evaluate f at the nodes Pi’ It is well known that this
effect can grow dramatically with the dimension N, since M typically
increases exponentially with N, and the complexity of f can be expected
to increase with N as well.

A traditional objective of the design of multi-dimensional quadrature
formulae has been to reduce the number of function ewaluations needed to
gain an acceptable estimate of the integral through producing rules of as
high order and Tow M as the flexibility in the choice of W and Pi’
and the stability of the computation will allow. Recently, an interesting
study was made of the design and implementation of algorithms for reducing
M by adaptively distributing the nodes of (1.1) by D.K. Kahaner and
M.B. Wells [2]. 1In this study, we take the viewpoint of investigating the
possible reduction in time requirements for (1.1) by reducing the time
required to evaluate f through vector processing. It is a question, then,
of how to organize a numerical method into an algorithm to take advantage of
the potential offered by a vector processor (see [8] for a discussion of

the influence of computer architecture on algorithm organization).

A considerably more specific computation than (1.1) is studied, i.e.
the extrapolation method for triangulated domains of the plane. The basic
rule used for the extrapolation is the simple generalization of the trapezoidal
rule to triangles. An extensive discussion of extrapolation on simplices
for general classes of quadrature rules has been given by J. Lyness in [4].
Our focus here is on organizing this simple case of extrapolation in a manner
suitable to vector processing. The ideas have been tested on a CDC STAR-100
as reported below, however the algorithm specifically avoids machine dependent
features other than vector processing capability. A comprehensive description
of this capability can be found in the survey article on pipeline processors
in general by C.V. Ramamoorthy and H.F. Li, [6]. While the choices of
algorithm and geometry are simple, the ideas are believed to be of more
general interest because, on the one hand they are related to the important
particular case of computing Tocal stiffness matrices for the finite element
method, and on the other hand, no special properties of the plane were used,
so direct extensions to higher dimensions seem plausible.

In the following section a discussion of extrapolation as a numerical
method, and a conventional algorithm for its implementation are given. In
§3, an alternative, buffered, algorithm is discussed, and in 84, results of
testing these algorithms on a CDC STAR-100 (as an example of a vector processor,)
and on a HW 66/60 (as an example of a scalar processor,) are presented. Briefly
summarized, these tests indicate that for multiple triangTe integrations on
the STAR, the buffered algorithm organization reduces the execution time per
triangle by factors af down to 1/20 of the time taken by the conventional
algorithm. In contrast, both organizations of the algorithm run in effectively

the same time on the HW 66/60.

§2 Extrapolation for a Triangular Domain

The phrase 'the m-fold bisection of a triangle' will be used to describe
the subdivision of a triangle determined by introducing 21 equally spaced
nodes on each side and then joining these nodes to the corresponding ones

on other edges by parallel lines as in Figure 2.1.

d|

(X3,%:)

(xlgq)

(x5 ¥,)

Figure 2.1
The vertices of the 4" similar subtriangles introduced by this
subdivision form the nodes of the m-fold copy (or composite form) of the
trapezoidal quadrature rule over the triangle. Let D2 denote the triangle,
and for the m-fold bisection of DZ’ let -
(2.1) v

the set of 3 corner vertices of D2

B

i

the set of nodes interior to the edges of D2

Im = the set of nodes interior to D2

Using A to denote the area of D2, the m-fold copy of the trapezoidal
rule can be written

(2.2) 1OV agz f(p)+3 = F(P)+6.2 F£(P))/(3.4M).
m PeV P<E, Pel

However, all the nodes of the (m-1)- fold bisection of D2 are included
in those of the m-fold bisection; so if the sequence Téo),Tfo),Téo),...
is to be computed, it can be done without duplicating function evaluations
conveniently by the relation

°{/4 FA(5 f(PY+2 oz f(P))4"

(2.3) Té) - Té
PeE - Pel -1,

If f(P) is 2k times continuously differentiable, it follows as a

simple case of [4], that

(2.4) Téo) = /I fdA + c]/22m + cz/é4m
D,
+ Ck/22km7+ 0(2‘"(2k+2)m)

This error behaviour justifies the construction of the well known extrapolation

table
(2.5) Téo)
A0 L)

O~

by

(k']) - T

k-1 k
m+]1 é)) 7 (4-1)

(2.6) rlk) = plkT) (g

h column, Ték) are an approximation of polynomial

order 2k+1 to Js/ffdA. The bulk of the computational effort goes into

and the entries of the kt

evaluating the in%ggrand to obtain the entries of the first column of (2.5)
and we shall concentrate on this first column in the sequel. Specifically,
the following table indicates the rate at which new function values are
required as the level of extrapolation (= the length of the first column

of (2.5)) increases.

Extrapolation new new new attainable
level corner edge interior order
m nodes nodes nodes 2m+1
0 3 - - 1
1 - 3 - 3
2 - 6 3 5
3 - 12 18 7
4 - 24 84 9
5 - 48 360 11
6 - 9 1488 13
7 - 192 6048 15
8 - 384 24384 17
Total 3 765 32385 -

Table 2.1 Increase of quadrature nodes with extrapolation level.

A ‘*conventional' implementation of (2.2) and (2.6) could be patterned

after the following algorithm organization for K Tlevels of extrapolation.

(2.7) A _CONVENTIONAL EXTRAPOLATION SCHEME

1. INITIALIZE Téo) FROM NOBES OF V

2. FOR m=1 T K (m= LEVEL)
(SUM OVER NEW EDGE NODES)
FOR NODES OF E -E
GENERATE NODE P
EVALUATE £(P)
uppaTe T(O)
m
(SUM OVER NEW INTERIOR NODES)

FOR NODES OF I -1

m m-1
GENERATE NODE P
EVALUATE (P)

UPDATE Téo)

3. extrapotATe T(0), 7{0), £{0), . £ (0)

The statement GENERATE NODE P dindicates simply the computation of the
(x-y) coordinates of P, conveniently done, e.g. from the area coordinate
description of the m-fold bisection (See [9] page 116 for a description of

area coordinates). The statements FOR THE NODES OF i and FOR THE

1
NODES OF Im-Im—] denote loops which would be indexed by a parametrization

of the points of Em'Em-1 and I -I respectively. For example, expressed

m m-1

in FORTRAN, the second of these scans would appear as a nested pair of DO

loops with the range of the inner DO 1loop parameter depending on the outer

DO Tloop parameter in order to cover the interior of the triangle (See
§3.1 for more détails). Since the scan occurs inside the loop structure
for the successive levels of extrapolation, the core of the algorithm is
a triple nested DO 1loop.

While this algorithm organization is reasonable for scalar processors,
it does not lend itself naturally to vector processing because of the
fairly complex loop structure and the presence of different 'macro'
operations in the core of the loops. The complexity of the loops is due
to the need to generate nodal coordinates, but the time consuming operation
of the body of the loops is the evaluation of the integrand. This
observation suggesté that an alternative algorithm organization better
suited to vector processing ought to 'desynchronize' node generation from

integrand evaluation.

§3 A Buffered Algorithm Organization

In this alternative approach to an extrapolation algorithm, node
generation, integrand evaluation, and updating of the partial sums for the
first column of the Romberg table (2.5), are considered to be three
separate subprocesses. The node generation process generates a vector,
or buffer, of nodes which it passes to the function evaluation process to
turn into a vector of function values. This latter process then passes the
vector of function values to the updating process which updates the relevant
components of Tgo) i=1toK.

The interprocess communication uses buffers whose Tlength is a parameter
that is independent of the extrapolation algorithm and may be varied to suit
the computer being used. In particular, one of the objectives of the
experimental computations is to examine the effect of buffer length on
performance. A single buffer may contain informatien (nodal coordinates,
or function values) for several levels of extrapolation at lower levels, or
only part of a level at the higher levels of extrapolation. The contents of
each buffer are described in a buffer head containing pointers to level
interfaces within the buffer, if any.

This organization has apparent implications for multi-processor
architectures, but here we are concerned only with vector processors. 1In

this case, the relationship of subprocesses is indicated in Figure 3.1.

MAIN

NODE GENERATION

UPDATING OF PARTIAL SUMS

INTEGRAND EVALUATION

Figure 3.1 Relation of subprocesses of alternative algorithm organization
The algorithm operates basically under the control of the node generation
process. The potential for vector operations in evaluating the integrand is
obvious, and is the primary motivation. However, as indicated below, significant
benefits can also be derived from updating the quadrature partial sd@ms using
vectorized addition, and using vector operations within the node generation
process. A more detailed description of the node generation process is given
in the following subsection, which ends with an algorithmic description of

the alternative organization.

§3.1 Node Generation

The looping structure of the conventional organization (2.7) is retained

in the node generation process

10

(3.1) NODE GENERATION (FOR K LEVELS OF EXTRAPOLATION)

(GENERATE NEW EDGE NODES)
1. FOR m=1 TO K (m= LEVEL)
FOR NODES OF E _-E .
GENERATE NODE p
(GENERATE NEW INTERIOR NODES)
2. FOR m=1 10 K

FOR NODES OF I

Ly Inm-1

GENERATE NODE P
Under this alternative scheme, however, the generated nodal coordinates are
stored in a node buffer. When this buffer is full, the looping process is
interrupted and the full buffer delivered to the function evaluation process.
Upon return from the function evaluation process, the node generation resumes,
filling a new buffer. The process is separated into a loop over the extra-
polation levels generating boundary nodes, and then one generating interior
nodes to simplify the updating of the partial sums for the quadrature rule.
If a buffer contains exclusively boundary nodes, or interior nodes, then
the corresponding function values all contribute to the partial sums with
the same weight.

A further refinement of the node generation process can be made by
generating the nodes in a standard triangle chosen to minimize the amouht of
arithmetic eccurring inside the looping structure 6f (3.1) and then transforming
the standardized nodal co&rdinates to the domain of integration, D2, using

vectorized arithmetic. The standard triangle used is shown in Figure 3.2A,

11

with vertices (0,0), (ZK,O), (O,ZK) in the (u,v) plane, (K = maximum

level of extrapolation.)

(0.2%) yi (Xc.Xc)
(xq,yq)<
\<¢/ X
_?(0,0) (ZK,O) (xb’yb)
(A) STANDARD TRIANGLE (B) DOMAIN OF INTEGRATION

Figure (3.2)
If D2 has vertices (xa,ya), (xb,yb), (xc,yc) as shown in Figure 3.2B,

then the transformation mapping the standard triangle onto D2 is

() ()

where A = (xa-xc)/2K
B = (xb xc)/2K

C = (ya-yc)/zK

) K

D= (‘yb-yc /2

12

If the coordinates of the standardized nodes are denoted (ui,vi), a vector

of n of these can be transformed to nodes (Xi’yi) of D2 by

(3.3) [%] 'u1' ’v]T -ch
) us Vo Xe
) = A + B +
an- I Un- i Vn- _XC_
Yy] [u, | [v, | [y]
1 1 1 c
Y2 “g Vo Ye
= C + D |. | +
yn unJ | Vnd ‘yC

involving 4 vector multiplications and additions.
When generating the nodes of the sets EnEnot (new edge nodes) or

I -1 (new interjor nodes) in the standard triangle, it is efficient to

m m-1
generate three at a time as indieated in Figure 3.3 for the 3-fold bisection

of the triangle.

13

e pnode of E:,’—E2
' 4 ¢ node of I3--I2
2 D—w3
N |
4

Figure 3.3 - Groupings of Nodes

of E,-E,, I

37Eys 13715

14

The 12 nodes of E3-E2 are generated in a 4 pass loop, the first pass
generated the three edge nodes marked "1" and so on. The 18 nodes of 13-12
are generated in a double loop, the outer loop determining the column being
scanned, the inner loop determining the row. The first column eorresponds
to x =1, the second to x = 3, and the third to x = 5. For the rows
corresponding to y =1, 3 or 5 within each column, the cluster of three
nodes indicated in Figure 3.3 is generated. This is a form of the loop
efficiency improvement technique referred to as loop unravelling [3];
however, its generalization to N dimensions is techhica]]y complicated.
These details of the node generation process can be summarized in the
expanded form of (3.1), given below. When a buffer has been filled with
nodal coordinates from the standard triangle, the vectorized transformations
of (3.3) must be applied prior to passing the buffer to the function
evaluation process. However, this transformation is algorithmically simply
some minor vector preprocessing which is similar to the function evaluation
process itself. Hence in this description of node generation, when a buffer
is filled, control is passed to a subprocess which will be referred to as
BUFFER PROCESSING to perform the transformation, call the vectorized
integrand function to obtain integrand values at the quadrature nodes, and

update the partial sums of the first eolumn of the Romberg table.

15

(3.4) NODE GENERATION (FOR K LEVELS OF EXTRAPOLATION)

1. INITIALIZE BUFFER HEADER
(GENERATE NEW EDGE NODES)
2. FOR m=1 TO K (m = LEMEL)
FOR NODES OF Em_Em-]
IF BUFFER IS FULL
THEN

INVOKE BUFFER PROCESSING AND RESET BUFFER HEADER
ELSE
GENERATE NEXT THREE NODES AND STORE IN BUFFER
3. INVOKE BUFFER PROCESSING AND RESET BUFFER HEADER
(GENERATE INTERIOR NODES)
4. FOR m=1 TO K (m = LEVEL)

FOR NODES OF I

Lo In-1
IF BUFFER IS FULL
THEN -
INVOKE BUFFER PROCESSING AND RESET BUFFER HEADER
ELSE
GENERATE NEXT THREE NODES AND STORE IN BUFFER

5. INVOKE BUFFER PROCESSING

The extension of this algorithm to a region made up of a group of
triangles is straightforward, i.e. when a buffer of standard nodes has been
generated, a copy is passed to the BUFFER PROCESSING process for each triangle
in the domain. In this way, the unvectorized part of the node generation
process is done once for all the triangles and we can expect to obtain

an algorithm which, for multiple triangles, runs at essentially vector instruction

speed.

16

§4 Tests on the CDC STAR-100

The buffered algorithm of the preceding section was implemented for
the CDC STAR-100 using vector operations provided through STAR FORTRAN [7]*
The algorithm was programmed into a main program and three subprograms
performing node generation, buffer processing and function evaluation as in
§3. The main program consists of initializing the quadrature sums using
triangle vertex values (V), calling the node generation subprogram, carrying
out the extrapolation, ((2.6)) and printing out. Its execution times were
essentially independent of buffer size and integrand and were about .032 seconds
for level 6 extrapolation and .052 seconds for level 8. These times are
omitted from subsequent reported time figures.

Two integrand functions were used, a simple one
(4.1) f(x,y) = exp(x+y)
and a somewhat more complex one
(4.2) f(x,y) = 8 Xsin(16m(x~y))sin(16m(x+y)).

The STAR FORTRAN 1ibrary provides vectorized exponential and sine functions,
as well as a vectorized summation routine used to update the partial sums
of the quadrature formulae. Extrapolation tables for these functions were
built to levels 6 and 8.
In 84.1, the basic results for the buffered algorithm applied to a
single triangle are reported. In §4.2, several comparisons are made concerning

the interaction between algorithm organization and computer architecture.

* We are grateful to R.A. Pimblett and staff of Control Data Canada for their

assistance in arranging remote job entry to CDC STAR service from
Minneapolis, Minnesota.

17

In §4.3, tests involving domains triangulated into multiple triangles are

reported and in 54.4, some concluding observations are made.

§4.1 A Single Triangle

For these basic tests, the integrands (4.1) and (4.2) are integrated
over the triangle with vertices at (0,0), (1,0) and (0,1) to extrapolation
levels 6 and 8. In each of Tables 4.1-4.4, the 1ines show the times and
percentage of time used by the three major subprocesses of the buffered
algorithm to carry out the same computation using the buffer size indicated
for that line. The actual array space used by the buffers was slightly
greater than the quoted buffer size to allow for the buffer header (see §3).
The times for the very short buffer size of 6 shows anomalous behaviour
and is included for interest. The data for level 6 extrapolation from
Tables 4.1 and 4.2, excluding the buffer size of 6, is also shown in Figures
4.1 and 4.2.

As-the node generation and the buffer processing precesses carry out
the same sequence of computations for either integrand, the variations of
the data in the corresponding columns of Tables 4.1 and 4.2 (or 4.3 and 4.4),
indicate the lewel of variability in the timing of these processes. (For a
general discussion of factors influencing timing see [1]). The trends 6f
this data for level 6 and level 8 seem very similar, so a number of
subsequent discussions will be carried on for level 6 extrapolation only.

The effect of vectorizing on BUFFER PROCESSING and INTEGRAND EVALUATION
seems clear in the reductions of CPU time required With increasing buffer
size. A more modest decrease in CPU time with increasing buffer size can be

seen in NODE GENERATION; however, it is believed that this is primarily due

18

*
LEVEL NODE BUFFER INTEGRAND TOTAL
6 GENERATION PROCESSING EVALUATION
BUFFER SEC. % SEC. % SEC. % SEC.
SIZE
(words)
6 .0943 21 .1660 37 .1915 42 456
60 L0174 30 .0180 31 .0232 39 .059
120 L0131 36 .0098 27 .0136 37 .037
240 L0110 43 .0056 22 .0089 35 .026
480 .0100 49 .0036 18 .0068 33 .020
960 .0095 53 .0028 16 .0057 31 .018
1920 .0094 55 .0025 15 .0053 30 017
3840 .0094 54 . 0028 16 . 0051 30 .017
Table 4.1
Buffered algorithm - Level 6 extrapolation
integrand f(x,y) = exp(x+y)
*
LEVEL NODE BUFFER INTEGRAND TOTAL
6 GENERATION PROCESSING EVALUATION
BUFFER SEC. % SEC. % SEC. . — SEC.
SIZE
(words)
6 .0834 11 .1563 21 .5120 68 .752
60 .0167 17 .0170 17 .0655 66 .099
120 .0128 20 .0093 15 .0414 65 .064
240 .0109 24 . 0054 12 .0293 64 .047
480 .0101 28 .0035 10 . 0231 62 .037
960 .009%6 30 .0027 8 .0206 62 .033
1920 .0095 29 . 0026 8 .0202 63 .032
3840 .0095 28 .0025 8 .0214 64 .033

Exclusive of main program.

Table 4.2

Buffered algorithm - Level 6 extrapolation

integrand f(x,y) = e Xsin(16mw(x+y))sin(16mw(x-y))

19

) *
LEVEL NODE BUFFER INTEGRAND TOTAL
8 GENERATION PROCESSING EVALUATION
BUFFER SEC. % SEC. % SEC. % SEC.
SIZE
(words)
6 1.450 21 2.565 37 2.980 42 6.995
60 . 261 29 .269 30 . 357 40 .887
120 .195 35 .145 26 211 38 .551
240 .163 43 .080 21 .138 36 .381
480 147 49 .049 16 .104 35 .300
960 .139 53 .034 13 . 087 34 .260
1920 .135 56 .027 11 .078 33 .240
3840 .133 57 .028 12 .074 31 .235
Table 4.3
Buffered algorithm ~ Level 8 extrapolation
integrand F(x,y) = exp(x+y)
*
LEVEL NODE BUFFER INTEGRAND TOTAL
8 GENERATION PROCESSING EVALUATION
BUFFER SEC. % SEC. % SEC. % SEC.
SIZE
(words)
6 1.284 11 2.424 21 7.987 68 11.70
60 .248 16 .253 17 1.020 67 1.521
120 .189 19 .136 14 .654 67 .979
240 .161 23 077 11 467 66 .705
480 .146 26 .048 8 .372 66 .566
960 140 28 .033 7 .324 65 .497
1920 .137 29 . 026 6 .306 65 .469
3840 .135 28 .028 6 311 66 474

Table 4.4
Béffered algorithm - Level 8 extrapolation

Exclusive of the main program.

integrand f(x,y) = e Xsin(16m(x+y))sin(16m(x-y))

CPU TIME (sec)

0.025

0.020

0.015

0.010

0.005

0.000

A NODE GENERATION
O INTEGRAND EVALUATION
O BUFFER PROCESSING

20

| 2 3 4 S 6
BUFFER SIZE
LG, (65)
Figure 4.1

Variation of Process times (sec) with buffer size (words)

Integrand (4.1), f(x,y) = exp(x+y)

CPU TIME (sec)

21

0.06
0.05
A NODE GENERATION
O INTEGRAND EVALUATION
0.04 - O BUFFER PROCESSING
0.03
0.02 —"0
0.0i A A
—0 o
0.00 ! l 1 | | s
0 | 2 3 4 5 6
BUFFER SIZE
LOG,, (=5
Figure 4.2

Variation of Process times (sec) with buffer size (Words)

Integrand (4.2), f(x,y) = exp(-x)sin(16m(x+y))sin(16m(x-y))

CPU TIME (sec)

0.07

0.06

22

O SCALAR NODE GENERATION
O SCALAR ADDITION
A UNMODIFIED BUFFERED ALGORITHM

0.05 —O— O
0.04
0.03
—- -(]
0.02
~/ - 7\
0.0l —
0.00 l | l l l l -
0] I 2 3 4 -5 6

BUFFER SIZE)

LOG, 50

Figure 4.3 Influence of Vector

Instructions in Node Generation and Summation

23

to the decreased overhead associated with managing fewer, Tonger, buffers.

The two parts of the computation affected by vector instructions other than
evaluation of the integrand are the transformation of nodal coordinates from
the standard triangle to the domain of integration, and the summations of

the quadrature sums. To illustrate the influence of vectorizing these two
computations, the buffered algorithm was run with the simpler integrand ((4.1))
at Tevel 6 extrapolation with two independent modifications. The first
modification involved generating nodes with scalar arithmetic directly in

the domain of integration. The second modification involved replacing the
vectorized summation process with scalar summations. The influence of these

two modifications can be seen in Figure 4.3.

§4.2 Some Comparisons

In this subsection comparisons are made between the running of the
conventional and buffered algorithms on the STAR-100 as representative of-a
vector processor and on the Honeywell 66/60 as representative of a sca-
lar processor. Table 4.5 summarizes the total CPU times used by the STAR
in running the alternative algorithms applied to the integrands (4.1) and

(4.2) integrated over the same triangle as in §4.1.

24

Integrand (4.1) | Integrand (4.2)
Level Level |Level Level
6 8 6 8
CONVENTIONAL ALGORITHM 136 2.422 551 8.845
BUFFERED ALGORITHM
BUFFER SIZE = 60 words 059 887 1 L0993 | 1.521
BUFFERED ALGORITHM 017 .240 .032 .469
BUFFER SIZE = 1920 words
Table 4.5

Comparison of Total CPU times (sec.)
for alternative algorithms on CDC STAR-100

Table 4.6 compares total CPU time programs implementing the buffered
algorithm and the conventional algorithm as run on the HW 66/60 of the
University of Waterloo. As might be expected, there is relatively Tittle
dependence of the running time on the buffer s$ize. It is somewhat surprising
however that there is so little difference between the running times for the
two algorithm organizations.

It is, of course, questionable to attribute time performance measurements
directly to algorithms, since the coding of algorithms in a programming
language plays a significant role in determining the execution time of the
resultant program. Our coding objective was to turn the algorithms of (2.7),
(3.1), and (3.4) into FORTRAN programs in as straightforward a way as possible.
No effort was made to ehhance either implementation through coding techniques,

beyond what is explicitly mentioned in §3. The programs used to obtain the

25

times of Table 4.5 and 4.6 only differ in their references to STAR FORTRAN
features. The source Tisting for the STAR FORTRAN implementation and details
about the buffer head are given in an Appendix. Hence we feel that the fact
that Table 4.6 shows so Tittle effect of varying buffer length and Table 4.5
shows a very significant effect can indeed be attributed to the interaction

between architecture and algorithm, rather than details of coding.

Integrand (4.1) Integrand (4.2)
Level Level Level Level
6 8 6 8
CONVENTIONAL ALGORITHM .515 7.62 .980 13.8
BUFFERED ALGORITHM
BUFFER SIZE = 60 words 561 | 7.20 884 14.3
BUFFERED ALGORITHM
BUFFER SIZE = 120 446 | 7.05 .884 14.3
BUFFERED ALGORITHM
BUFFER SIZE = 240 441 7.00 .898 14.1
BUFFERED ALGORITHM
BUFFER SIZE = 480 435 | 6.49 872 14.7
BUFFERED ALGORITHM
BUEFER SIZE = 960 440 | 6.55 .905 13.7
BUFFERED ALGORITHM .
Table 4.6

Comparison of Total CPU times (sec.)
for alternative algorithms on HW 66/60

26

§4.3 Multiple Triangles

As described in 83, the intention of the buffered algorithm organization
is to separate the loop structure of the node generation process, which does
not appear well suited to vectorizing, from function evaluation and some
other computations which can be vectorized conveniently. The effect of this
have been demonstrated in §4.1, in which it can be seen that as the time
spent in the vectorized parts of the algorithm drops, node generation takes
up an increasingly large fraction of the total time. One might then consider
ways to vectorize node generation as a process. However, if the underlying
computational problem is really one of estimating an integral over a domain
triangulated into multiple triangles, then a simpler avenue is available.

As mentioned in §3.1, the nodes of the standard triangle need only be
generated once, and then the BUFFER PROCESSING process can be invoked for
each triangle of the domain to transform the standard nodes to nodes in that
triangle via transformation (3.3). In this way the scalar operatdon
dominated NODE.GENERATION process—can be amortized over-multiple triangles
and a computation which proceeds at essentially vector instruction speed
results. The buffered algorithm was run for integrating integrands (4.1)
and (4.2) over the unit square triangulated into 4, 8, and 16 triangles as

shown in Figure 4.4.

27

Figure 4.4

The running times per triangle are shown in Tables 4.7, 4.8 and the data of
Table 4.8 for 1, 4 and 8 triangles are shown in graphical form in Figure 4.5.
As can be seen in the tables, the times per triangle for 8 and 16 triangles
are essentially the same.

To estimate the speed up gained by this technique, we may use .008 sec.
and .023 sec. as the execution times per triangle for the buffered algorithm
applied to 8 to 16 triangles at level 6 extrapolation and to integrands (4.1)
and (4.2) respectively. The times for the corresponding calculations done on
the STAR with the conventional algorithm, as taken from Table 4.5, are .136 sec.
and .551 sec. Using these figures then, we can estimate that the running times
for the calculation have been reduced by factors .008/.136 = 1/17 and
.023/.551 = 1/24 respectively, which are the basis for our remarks of the

introductory section.

28

BUFFER SINGLE ' 4 8 16
SIZE TRIANGLE TRIANGLES TRIANGLES TRIANGLES
60 . 0587 .0403 .0379 .0370
120 . 0365 .0242 .0225 .0217
240 . 0256 .0160 .0147 .0141
480 .0203 .0124 .0108 .0103
960 .0181 L0104 . 0092 . 0087
1920 .0172 . 0097 . 0085 .0080
3840 0173 .0097 .0083 . 0078
Table (4.7)
‘Total CPU Time/Triangle at Level 6
for Integrand f(x,y) = exp(x+y)
BUFFER SINGLE 4 8 16
SIZE TRIANGLE TRIANGLES TRIANGLES TRIANGLES
60 .0993 .0831 .0800 .0796
120 .0636 .0527 . 0601 . 05600
240 . 0456 .0369 .0347 .0344
480 .0367 . 0289 .0270 . 0271
960 .0329 . 0255 .0237 .0239
1920 .0324 . 0241 ,0224 .0227
3840 .0334 . D246 .0228 .0229
Table (4.8)

for Integrand f(x,y)

Total CPU Time/Triangle at Level 6

exp{-x)sin(16w(x+y))sin(16m(x-y))

CPU TIME (sec) PER TRIANGLE

- 0.10

0.09

0.08

0.07

6.06

0.05

004

0.03

0.02

0.0l

0.00

O SINGLE TRIANGLE
A 4 TRIANGLES
0O 8 TRIANGLES

29

s 2 3 a 5 6
BUFFER SIZE
LOG, (60)

Figure 4.5 Total CPU Time/Triangle at Level 6

for Integrand f(x,y) = exp(-x)sin(16m(x+y))sin(16m(x-y))

30

§4.4 Some Observations

These experimental computations indicate that for multi-dimensional
quadrature calculations done with vector processors, the buffered algorithm
organization can offer significant running time improvements, (reductions by
factors down to 1/20,) over algorithm organizations which are appropriate
for scalar processor computer architectures. Tables 4.1-4.4 and Figures 4.1
and 4.2 show that nearly all of the benefits of the buffered algorithm have
been reached with buffers of size about 1000 words. The increase in program
complesity is not substantial so the additional memory requirements for the

buffered algorithm are reasonably modest.
We will speculate further about the appropriate buffer size for the

algorithm. Let us hypothesize that the time spent by the algorithm on one
buffer of length & (i.e. time to generate nodes for it, to process them
into function values, and to add its contribution to the partial sums of the
quadrature rules) can be characterized by two parameters, a 'fixed' time,

tf and a 'variable' time, tv as

(4.3) t=te+ tvz

The number of buffers used in any one computation depends on 2 ‘and will be

denoted N(2), with
(4.4) £ N(e) = C.

C is a constant determined by the total number of nodes required for the

computation. The total time to do the computation will be

T(2) = N(2)t

N(2) (te + t,2)

c(tf/z + tv)

31

If the computation is done twice, with buffer lengths 21 and £Z-> Q], then,

under (4.3) the relative improvement using the longer buffer is

(4-5) (T(Q']) - T(zz))/T(gz)
= tf(l/z] - 1/22)/(tf/22 tt,)

Notice that this relative improvement is independent of C of (4.4), the
size of the computation. This effect is suggested by the similarity in the
shapes of the curves in Figures 4.1 and 4.2.

In our computations, we have repeatedly doubled the buffer size, i.e.

Lo = 22]; (4.5) suggests that the relative benefit of doubling the buffer
size is

(4.6) r(xz) =1/(1 + zz(tv/tf))

or

(4.7) t,/te = (1/r(22) - 1)/22

The right hand side of (4.7) is immediately computable from successive lines

of Tables 4.1-4.4, and for any cases where r(zz) > .1, this expression lies

3 3

between 5.0 x 10°° and Z.0 x 10°°. The relative constancy of this

expression lends credence to (4.3) as a hypothesis. But more striking is

3 is quite close to the ratio

the fact that this ratio t /t; =5x 10
1‘V/1'f of the parameters if and iv used to describe the execution time of
vector instructions in terms of vector length L. The parameter if, is
referred to as the set up time, and the time to add two vectors of length L

on the CDC STAR-100 is given as ([5])

32

s . P -3
tadd =i + 1VL for 1v/1f =7.2x10

and for multiplication

_ s . . gs -3
tmu]t =g + 1VL for 1v/1f =6.3x10

This suggests the conjecture that the relative improvement returned by
increasing the buffer length from %y to 22 could be estimated, a priori,
from (4.6) with ratio tv/tf replaced by a typical ratio of vector instruction
timing parameters iv/if. This would enable one to determine reasonable

buffer lengths for the buffered algorithm from essentially machine constants

of a particular vector processor.

[aXaNeEslsEaNeNeNeoNeleEs NoNe o Nt N Re Ne e ls Nt e NeXa)

OO0

APPENDIX

STAR-100 FORTRAN PROGRAM

THIS PJIAGRAM IS WRITTEN IN STAR FORTRAN LANGUASGE,

IT PERFORMS EXTRAPOLATION ON A GENERAL TRIANGLE

USTN3 4 LINEAR RULE AT THE VERTICES.

IN THE MAIN PROGRAM (EXTRAP) THE INITIAL APPROXIMATION
TG THE INTESRAL IS COMPUTED AND NODEGEN SUBPROGRAM

IS CALLED FOR TH:I COMPUTATIONS ON HIGHER LEVELS.

UPON RZTURN FROM NODEGEN, EXTRAPOLATION IS PERFORMED
ON THE ROMBERG TABLE PROJUCED BY THE

DTHER SUBPRIGRAMS (FEVAL).

THE SOLLOWINS VARIABLES ARE USED IN THE PROGRAM:

XC(1)— X—COORDINATES OF THE VERTICES
(INPUT)

Yetr) - Y-COJRDINATES OF THE VERTICES
(INPUT)

AREA - AREA OF THE TRIANGLE

TROMB (I} - ROMBERG TASBLE

XD1,¥YDL - TRANSFORMATION ELEMENTS

Xp2,Y02 - TRANSFORMATION ELEMENTS

BUF(I) - BUFFER USED FOR STORINS

NODAL INFORMATION
AND FUNITION VALUES. (VECTOR)

LYMAX - MAXIMUM LEVEL ‘OF EXTRAPOLATION
(INPUT)
- JBUFSIT =~ BUFFER LENGTH (INPUT)

PROGRAM EXTRAP{UNITA=0UTPUT,UNITS=INPUT)

DIMENSION XC(3),YC(3) '

COMMON BUF(5000),TROMB(20),XD1,XD2,Y01,YD2,X3,Y3
1»TNODELTFEVALSTFUN

TROMB(1:20) =0,

INPUT THE X-COOR) AND Y-UOORD OF THE TRIANGLE

READ(52100)(XC(I)sI=1,3)

READ(S,1000(YC(I)s[=153)
100 FORMAT(3F10.6)
200 T1=SECONDI(CPY)

TFEVAL =0,

TFUN=D.

READ(5,101»END=999)L MAX,»KSIZ
101 FORMAT(2]10)

IBUFST Z=6%KSTIZ+2%LMAX¢]

WRITE(6,112)LMAX, IBUFSIZ
112 FORMAT(10X»110»5X5»110)

SET UP THE ENTRIZS OF TRANSFORMATION MATRIX

LEV2=2%%_MAX

OO0

OO0 (g

¢

X3=xC (3} 34.
Y3=YC (3) -

XD1=(¥XC{1l)-XC(3))/LEV2

XKD2=(XC(2)-XC(3))/LEV2

¥Y)1=¢YC(1l)=YC(3))/LEV2

¥02=(YC(2)-YC(3))/LEV2

OMPUTE THE AREA AND FIRST APPROXIMATION

AREA=XC(2)¢YC(3)-XC(3)¢YC(2)=XC(LIK(YL(3)~=YL(2))+YC(1)=
3(xXC(3)-xC(2})

AREA=QD .5*A8S(AREA)

TROMB (1) =aREA/3.*(EXPIXCOLI+YC(L1})+EXP(XC(2)+YC(2))+
LEXP(XC (3)+YL(3)))

WRITE(6,103)TROK3(1)

108 FORHAT (10X»E21.1%4)

CALL NODEGEN(LMAX, IBUFSI12)

UPDATE THE FIRST ROW OF THE ROMBERG TABLE AND EXTRAPOLATE

110

111

999

Do 2 I=1l,LvaAX
TRDYB(I+1)=0.25%TROMB{I)+AREA®TROMB{I+1) /(3. %4,%%])
CONTINUE B
PO 3 I=1,LMAX
WRAITE(6,108)TROMB{LI+1)
CONTINUE
D05 J=1l,LMAX
JN=L MAX=J+}
DO 4 K=1l,JN
TROMBIK) =TROMB(K+1)+ (TROMB{K+1)=TROUBIK) Y/ (4.%%]~1.)
WRITE(6,110)J,TROUB(K)
CONT INUE
FORMAT(5X»110,5X%sE21.1%) i .
SONTINUE :
TIME=SECOND (CPU)-TL
WRITE(6, 111)TIME
TNODE=TNJDE~TFE VAL
WRITE(6+ 111)TNDDE
YFEVAL=TFEVAL-TFUN
NRITE(6,111)TFUYN
FOMAT(1S5X» EL4,T7)
60 T0 200
STOP
END

OO OOO0

35.

THIS SU3ROUTINE GENERATES A NODE BUFFER AND PASSES IT
TO FEvVAL 3SUBPROGRA™M FOR PROCESSING UNTIL ALL THE
BUFFERS ARE GENERATED TO LEVEL=LMAX

VARIA3ZLES USED IN THIS RQUTINE:

LP- POINTER TO BUFFER

LHAX~ MAXIMUM LEVEL OF EXTRAPOLATION
IBUFSIZ- BUFFER LENGTH

BUF(I) - NODE BUFFER (VECTOR)

THEAD - A POINTER TO BUFFER HEADER

SUBROUTINE NODEGEN(LMAX, IBUFSIZ)

DIMENS ION X(3),Y(3) _

COMMON BUF(5000),TROMB(20)sX01,%XD2,YD1,»YD2,X3,Y3
4Ly TNODES»TFEVALSTFUN

TNDDE=SECOND (H)

LEVMA X=LMAX 5
LEVZ2= 2*%LEVMAX : T e
LP=2¢(LMAXE]) '
K3=(IBUFSIZ—2¢LMAX—-1)}/2

IHEAD =2

BUF(l})=1.

GENERATE EDGE NODES E

DO 2 LEVEL=1,LEVMAX
JFAC=LEV2/(2%%LEVEL)
INC=2%JFAC
JBQU=LEV2-JFAC
DD 3 J=JFAC,JBOU,INC
IF(LP.LT.(IBUFSIZ~-K3)) GO TO 4
BUF(IHEAD)=-1,
BUF(IHCAD+LMAX)=LEVEL
CALL FEVALILMAX,LP—-1,IBUFSIZ)
IHEAD=2
LP=2%(LMAXF]1)
4 3UF(LP)=0.0
BUF(LP+1) =
BUF(LP+2)=)
BUF(LP+K3)=0.0
BUF(LP+K3+1)=J
BUF(LP+K3+2)=LEV2-J
LP=LP+3
3 CONT INUE
BUF(THEAD) =LP -1
BUF(IHEAD+LMAX)=LEVEL
IHZAD=1HEAD+]
2 CONTINUE
IF(LP.GT 2k (LMAX+1)) CALL FEVAL(LMAX,LP=-1,1BUFSIZ)
THEAD=2
LP=2k(LMAX+])

36.

BUF(1) =2,

£
o GENERATE INTERIOR NODES 1
c

DO 5 LEVEL=z2,LEVMAX
IFAC=LEV2/2%kLEVEL
"TFAC 2=2%1 FAC
TEND=LEVZ=-3&«[FAC
D0 6 I=1FAC,IEND,IFAC2
JEND=LEV2-]~IFAC?2
D0 7 J=1FAL,»JEND,IFAC?2
IF(LP .LT.(IBUFS!IZ-K3)) G0 TQ 8
BUF(IHEAD) =~1.
BUF(IHEAD+LMAX)=LEVEL
CALL FEVAL(LMAX,LP-1,IBUFSIZ)
THEAD =2
LP=2k (LMAX+])
8 BUF(LP)=I
BUF(LP+1)=1¢IFAC
BUF(LP+2) =1
BUF(LP+K3)=
BUF(LP+K3¢1)=J
BUF(LP+K3I+2)=J+]FAC
LP=1L2¢3
7 CONTINUE
6 CONTINUE o .
BUF(THEAD) =LP ~1 TR
BUF (ITHEAD +LHAX)=LEVEL ’ .
IHEAD=IHEAD+]
5 CONTINUE
IFCLP.GT.2¢(LHMAX+1)) CALL FEVAL(LMAX,LP-1,1I8UFS12)
TNDDE=SECONO(H) -TNODE
RETURN
END

[N o]

e N e NeNe)

HaXeNel

o

37.

THIS RCUTINE EVALUATES FUNCTION AT THE NODES OF
THE 0BJ=ZCT TRIANGLE USING VECTOR OPERATIONS,

SUBROQUTINE FEVALI(LMAX,»ISIZE,1BUFSIZ)

COMMON BUF(5000),TROM3(20)sXD1s»XD2,YDLsYD2,X3,Y3
6» TNDDES TFEVAL,TFUN

T1=SECOND(H)

IS=2k (LMAX+ 1)

K3=(ISIZE-2%LMAX-1)

Ke=(IBUFSIZ-2=L MAX~1)/2

ASSIGN PXVAL,3UF({1S:K3)

ASSIGN PYVAL,BUF{[S+<4;K3)

ASSIGN TEYPX, . 0YN.K3

PERFORM TRANSFORMATION TDO ORIGINAL TRIANGLE
USING VECTOR OPERATIDNS

TEMPX =X DLEPXVAL+XD24PYVAL+X3
PYVAL=YDL+PXVAL+«YD2=PYVAL+Y3
PXVAL =TEMPX
T2=SECOND(E)

INVOKE VECTOR FUNCTION SUBPROGRAM F

BUF(ISZK3)=F{PXVAL,PYVAL;BUF(IS;K3))
TFUN=TFUN+SECOND{E) -T2
IPOINT =2
LEV=BUF (IPOINT+LMAX)
ISTART =13
WEIGHT =6,
IF(BUF(1).EQ,1,)WEIGHT=3,
BUF(IS:K3)=WEIGHT*BUF(IS;K3)
1 IFINIS=ISIZE
IF(BUFC{IPOINT) NE.=1.)IFINIS=BUF(IPOINT)
LENFUN=TIFINIS-ISTART+]

UPDATE PARTIAL SUMS OF RJIMBERG TABLE

TRDMB(LEV+1)=TROM3(LEV+1)+Q3SSUM(BUF(ISTART;LENFUN))
ISTART=BUF(IPOINT}+1

IPOINT=IPOINT+]

LEV=BUF(IPDINTHLMAX)

TF(ISTART L T.ISIZECANDLLEV.GT.O0.AND, IPOINT LEL(LMAX+1))GO TO 1
BUF(2:2%LMAX) =0,

TFEVAL=TFEVAL+SECOND(H)-T1

FREE

RETUIN

END

OO

VECTDR FUNCTION SUBPRGOGRAM TO COMPUTE
THE FUNCTION AT THE NODES OJF THE BUFFER
IT RETURNS A VECTOR OF FUNCTION VALUES

FUNCTION F(PXVAL,PYVAL %)
DESCRIPTOR FrPXVAL,PYVAL
PXVAL=PXVAL+PYVAL
F=VEXP(PXVAL:F)

RETURN

END

38.

peSH Jdajing

Appendix

STRUCTURE OF A BUFFER

TYPE OF NODES
1 IF NODES e E_
2 IF NODES e I

39.

result
vector

POINTERS TO
LEVEL INTERFACES

LEVEL INFORMATION

X

x-coord y-coord
X In

1.

8{

40.

References

Gentleman, W.M. and Wichman B., "Timing on Computers", SIGARCH,
Computer Architecture News, Vol. 2, No. 3, 1973, pp. 20-23.

Kahaner, D.K. and Wells M.B., "An Algorithm for N-Dimensional Adaptive
Quadrature Using Advanced Programming Techniques", Los Alamos
Scientific Labratories Report, Nov. 1976, to appear.

Knuth, D.E., "Structured Programming with go to Statements", Computing
Surveys, Vol. 6, No. 4, 1974, pp. 262-301.

Lyness, J.N., "Quadrature over a Simplex: Part I and II", submitted
to SIAM J. Num. Anal. (1976).

Trivedi, K.S., "Prepaging and Applications to the STAR-100 Computer",
High Speed Computer and Algorithm Organization, Proc. of Symposium
of U. of Il1linois, 1977, edit D.J. Kuck, D.H. Lawrie, A.H. Sameh,
Academic Press, (See references).

Ramamoorthy, C.V. and Li, H.F., "Pipeline Architecture", Computing
Surveys, Vol. 9, No. 1, 1977, pp. 61-102.

STAR FORTRAN LANGUAGE, Version 2, Reference Manual, Control Data
Corporation, 1977.

Voigt, R.G., "The Influence of Vector Computer Architecture on Numerical
Algorithms", High Speed Computer and Algorithm Organization,
Proc. of Symposium at U. of Illinois, 1977, edit D.J. Kuck, D.H. Lawrie,
A.H. Sameh, Academic Press.

Zienkiewicz, 0., "The Finite Element Method in Engiheering égqénce“,
McGraw-Hill, 1971.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

