A Mathematical Investigation of
Parallel Graph OL Systems*

by

Karel Culik II'

and
Derick NoodH

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

N2L 3G1

Research Report CS-78-36
August 1978

* Work supported by the National Research Council of Canada Grant
Nos. A-7403 and A-7700.

+ Department of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada, N2L 3GI1.

++ Department of Applied Mathematics, McMaster University, Hamilton,
Ontario, Canada, L8S 4K1.



Abstract

Parallel graph OL systems are investigated mathematically.
It is shown that bounded degreeness is decidable for a "doubly interaction-
less" subclass of these systems. Various subgraph occurrence problems

are shown to be decidable as well as various notions of growth or size

equivalence.



1. Introduction

The notion of sequential graph rewriting systems has been avail-
able for some time, for example, see Montanari (1970), Rosenfeld and
Milgram (1972), Abe, Mizumoto, Toyoda and Tanaka (1973), and more recently
Rosen (1975), Della Vigna and Ghezzi (1978). However, the advent of
parallel graph rewriting systems is more recent. Some first approaches
are to be found in Mayoh (1973 and 1974), while formal models have been
introduced by Culik II and Lindenmayer (1974 and 1976), Ehrig and
Tischer (1975), Ehrig and Kreowski (1976) and Nagl (1976).

It has appeared to us that the area of graph rewriting systems
has been plagued with an over-abundance of definitional suggestions, while
at the same time only limited investigations of the proposed models have
been carried out. It is our thesis that it is necessary to investigate
one particular model in some depth, rather than introducing new models
willy-nilly. (Not surprisingly della Vigna and Ghezzi (1978) make a
similar observation for sequential graph rewriting systems.) Such an
investigation should result in a greater understanding of the chosen model
and also give insight into graph rewriting systems per se, Clearly, the
chosen model should be both reasonable for its intended area of application
and natural mathematically.

Our choice is the PGOL system, that is, the propagating graph
OL system . Biologically it is a well motivated model for multi-cellular
development, see Lindenmayer and Culik II (1978), and mathematically it
is a pleasing and natural generalization of string OL systems, see Ehrig
and Rozenberg (1976) for a discussion of these points. Our aim has been

to carry out an in-depth mathematical investigation of these systems.



Some results are already available in Culik II and Lindenmayer (1976),
which are mentioned at appropriate points in the current paper. Many
questions which we consider to be fundamental mathematically and interest-
ing biologically are, unfortunately, intractable at this time.
Functionality, connectivity and equivalence are examples of such questions.

The paper consists of a further six sections. Section 2
briefly surveys the various string OL system notions and terminclogy,while
Section 3 is devoted to an extended intrbdgction to PGOL systems. We
feel this is necessary because parallel graph rewriting is much more
complex than sequential graph rewriting. We also give some examples and
discuss the role of "stencils". We informally demonstrate that stencils
can be replaced by "full stencils" as is proved in Lindenmayer and Culik
IT (1978). This serves to place the general notion of a stencil in
perspective, that is, they are simply an abbreviatory mechanism.

Section 4 is devoted to determinism, functionality, growth and
size of PGOL systems. For example, deterministic PGOL systems are
introduced, various notions corresponding to growth and Parikh functions
of deterministic OL systems are investigated, and size and Parikh sets
corresponding to length sets are discussed. This leads to the definition
of a "doubly interactionless" PGOL system, known as a PGOOL system.

The generative capacity of DPGOL, PGOL and PGOOL systems is
demonstrated in Section 5. In particular a "universal" self-reproducing
system is exhibited.

Section 6 deals with decidability results. The most important
result is that bounded degreeness of PGOOL systems is decidable. Whether

it is decidable for arbitrary PGOL systems remains open. Finally,



Section 7 presents a discussion of the "context-free-ness" of PGOL systems.
Since every DPGOL system is a PGOOL system, we have the surprising
situation that while DPGOL systems are, in our opinion, context-free, their
non-deterministic counterparts (the PGOL systems) are not. We discuss

the evidence for this conclusion and also show how easily slight pertur-
bations in the definition of PGOL systems make them even more

non-context-free.



2. Tabled String OL Systems

In this section we briefly review the various notions from
tabled string OL systems that are necessary to our investigation.

An extended tabled OL system (ETOL system) is an n+3-tuple

G=(V,Z, Py, ..., P, S) ,n >0 where V is an alphabet, I cV is

the terminal alphabet, V-Z the nonterminal alphabet, Pi cV xV* are

the tables of productions, 1 ? i<n,and S in V-I, is the start
symbol. Each table Pi is Tihite and for each X in V , there is a
production (X, a) in P, » for some a in V¥ . We usually write
(X, @) as X ~>o

For oo, B in V* , we write a =8 1in G if

1A

o = X]...X s, B = B]...B and for some i , 1 isn, Xj - Bj is 1in

m m
Pi , 1 =3=m. We denote by iy and =* the transitive and the
reflexive transitive closure of = . The language generated by G ,

denoted L(G) , is defined by:

L(G) = {x : S=*x in G and x 1in I*} .

We say L < I* 1is an ETOL language if there is an ETOL system G such
that L = L(G) .
We now consider various restrictions of ETOL systems. If V = I,
then we replace S by a word in Z* to give a TOL system, usually
denoted G = (I, Pys ..os Pps ) . If n=1 we obtain EOL and OL systems.

We say G 1is propagating if P, cV x v » 1 <i<n and deterministic
if each Pi isamapof V to V¥, 1 <i <n . Hence we obtain POL,

DOL and PDOL systems, for example.



A homomorphism 6 : £ >~ A is said to be a coding, and a
homomorphism 6 : £ -~ A u {A} is said to be a weak coding, where A
denotes the empty word.

We now obtain homomorphisms, codings and weak codings of the
various L systems. For example, a WDOL system is a pair (G, 8) where
G 1is a DOL system and 6 is a weak coding. Similarly we obtain HTOL
systems, where © 1is a homomorphism. It is well known that every EOL
(ETOL) language is a CPOL (CPTOL) 1anguagé“énd vice versa, where C

denotes coding. The language of an XDOL system (G, 8) 1is defined to be

L(G, 8) = {x : y is in L(G) and 6(y) = x} , where X=C, H or W.

Finally, we need the notion of the length set of an L system.

Let G be an ETOL system (or one of its restrictions). Then
LS(G) = {|x| : x is in L(G)} , where |x| denotes the length of x ,
that is, the number of symbols in x . Clearly we can define LS(G, 6)
similarly.

A11 other undefined notions will be found in Herman and

Rozenberg (1975) or Rozenberg and Salomaa (1978).



3. Graph OL Systems

We now generalize the notion of string OL systems introduced in
Section 2 to give graph OL systems. The definition of such systems is
quite complex for a number of reasons, which we shall discuss as we go
along. It is worthwhile reading Della Vigna and Ghezzi (1978) whose
recent paper investigates context-free graph grammars, the analogous but
simpler generalization of context-free string grammars.

Let « denote the universal environment node which is, in the

following always labelled with e , the universal environment label.

A node-labelled edge-labelled directed e-graph o over I (the

node alphabet) and A (the edge alphabet) isa triple (V, ¢, E) where

V is a finite nonempty set of nodes, « disnotin V , o : T .

V=vud{el, 2%=10ufe} is the node labelling function and

E S‘V°° x A x V° is a set of labelled directed edges, such that for each

(a, h, b) in E a#b . ¢ also satisfies the condition that for all
u in V° , o(u) =e dimplies u =« , that is the environment node
is the only node labelled with the environment label. In the following
when no confusion results we refer to o as a graph over z,A

Let (Z, A)4 denote the family of all graphs over z,A

Since graphs are defined in terms of sets of nodes and edges it
is important to grasp the notions of concrete and abstract graphs.
Clearly, we wish to specify rewriting systems that replace "mother" nodes
with "daughter" graphs just as in string systems we wish to replace
symbols by words. However, if we specify a production simply by "“labelled

node" is replaced by "graph" then this production is applicable to at



most one node in any given graph. This 1is because the node is designated
in a unique manner as an element of a set and therefore any given graph
cannot "use" the same designation more than once. However, our intention
is clear, simply replace all nodes labelled in this particular way by the
given daughter graph, taking care that unique isomorphic copies of the
given daughter graph are used in the replacemnt (that is, disjoint unions
are used).

Let a = (Va, 90y E ), B = (VB’ 9gs EB) be two graphs over

a
Z,A then o and B are isomorphic if there is an isomorphism

€ : Va -> VB such that

(1) for all v in V , g (v) = gz(e(v)) , and
(ii) for all (u, a, v) in Vu X A X Va , (u, a, v) is in

Ea iff (e(u), a, (v)) ids in EB

Hence under isomorphism (I, A), is partitioned into equivalence classes
of isomorphic graphs. We say a graph o in (I, A), 1is concrete while
[a] , the equivalence class defined by o , denotes an abstract graph

and o is a (concrete) representation of [a] . The family of all

abstract graphs over I,A is denoted by [Z, Al, . The empty graph is
the graph with no edges and only the environment node, denoted by A
We denote [A] by A . Then (I, A), = (I, A)x - {2} and

[Za A]+ = [Z, A]* - {A}

Notation

We use early lower case Greek letters to denote concrete graphs

and upper case Roman letters to denote abstract graphs.



We say o is a (concrete) subgraph of B8 , o < B if

g Ea E_EB and ¢a(u) = ¢B(u) , for all u in Va . Moreover,

= (V_, P Ea) is a full subgraph of B, written a <¢ B s if

o < B and o is the subgraph of 8 dnduced by the nodes V_ . Similarly

A is an (abstract) subgraph of B, A, B over Z,A if there exist

a, B such that o <8 , [a]l=A and [B] =B .

Note that we are forted to deal with concrete representants,
whenever we wish to specify an abstract graph.

We assume in the following that our model of graph OL systems
will fulfill the following conditions:

(1) only nodes are to be rewritten,

(2) the rewriting of a node is independent of its context, and

(3) all nodes are rewritten in parallel.

Clearly (1)-(3) are the graph analogues of the corresponding conditions
for OL systems. In fact, since nodes represent cells in the biological
context and edges communication and/or contact, condition (1) reflects
the assumption that only cells develop.

A graph OL production over TsA will be specified by a
pair (a, A) , usually written a» A , where a is in I and A is in
[z, A]+ . We say a 1isthe mother "node" and A is the daughter graph.
Given a set of such productions P over L,A and an abstract graph
B over Z,A then a v A can be applied to B if it has nodes
labelled a . Note that a v A is not allowed, node erasure adds much
complication and hence we only deal with propagating productions. We also

ensure that P is complete, that is, for all a in I , there is a



production aw» A in P for some A in [Z, A]+ .

Given a graph B and a complete set of productions P , both
over A , it is straightforward to apply the productions to the
nodes of B . This results, however, in a derived abstract graph which
consists of disconnected daughter graphs. The major question is: How are
they connected together?

Returning for a moment to the context-free graph grammars of
Della Vigna and Ghezzi (1978) we find a much simpler situation. Only one
node at a time is replaced. Hence the connecting rules are quite simple.
Each daughter graph has a specified source and target node (possibly the
same node). After replacement of a given mother node, the incoming edges
are connected to the target node of the daughter graph and the outgoing
edges to the source node of the daughter graph. Clearly,this can be
carried across to graph OL systems. However,we follow the approach of
Culik II and Lindenmayor (1976) where a much more general technique is
used. Remark that the connecting rules of Della Vigna and Ghezzi (1978)
have many drawbacks. For example: (i) Edges are always preserved, when
there are situations for which edges should be removed or extra edges
added , (ii) More than one source and one target node are often
necessary.

Consider the problem of generating the set of ZnXZn—arrays,
n>0 over {a}, {h, vl . Edges labelled h are interpreted as
horizontal, those Tabelled v as vertical.

We have one production p ,



10

a
iv (1)

Beginning with a , the 1Ixl-array, we easily obtain the derived
2%2-array using p . Consider generating a 4%4-array from the 2%2-array.

We obtain

i

e
—
O de—

—_—
-_—
_
—_

T

L)

where we have omitted edge labels for clarity. How are these 4 daughter

graphs connected? Our intention is to obtain.

v

v

Wl Ve W e—

|
| (3)
}

DV —— D e—— D C——

v

Observe that the connecting rules of Della Vigna and Ghezzi (1978) do not
allow this kind of connection, since the top left daughter graph has 3
source nodes giving rise to 4 edges, while the mother node has only two
edges.

We choose to specify connecting rules for each edge which depend

upon the daughter graphs. For £ an alphabet, letting s, t denote



1

source and target, respectively, define s(I) = {as :a in I},

t(z) = {at :a in I} , which are denoted by I and I, respectively.
We also define s'](as) = a and t'1(at) =a, forall a in £ . Let

T =L ul and st'](a ) =a, forall a_ in I A stencil (an

st t p p st
abstract stencil) over Z,A is a graph (an abstract graph) over

T, .

A connection rule over T,A is a pair (h, H) , usually

written h > H , where h is in A and H 1is an abstract stencil over
Z’A .
Continuing our example, we specify two connection rules,one for

h and one for v .

as ;as ;at >at ‘
h k—————al l (4)
a > ag > Ay > 3y
d;—> 84
and Vi—y, g —> as
(5)
at_____,at
at.____,at

Informally, we apply the appropriate connection rule to each pair of
daughter graphs in turn,matching the one daughter graph to the source part
of the stencil and the other to the target, adding the specified edges

between source and target nodes. For example, in (2) the top left hand



12

daughter graph is the source for the h-connection rule, since its mother
node has an outgoing h-edge, while the top right daughter graph is the
target for the same connection rule. Hence we do in fact obtain (3) from
a 1in two derivation steps using production (1) and connection rules (4)
and (5).

Observe that the daughter graph in (1) has no nontrivial
automorphisms, therefore the only way to connect is given by (3). However,

if we had only one edge label h and

a—h—>a
at———»lh lh (6)
a h d

———

then the daughter graph in (6) does have nontrivial automorphisms, in which

case we obtain:

v

V L

—_—
—

i
l (7)
!

Ve U

and other variants.
Note that we have added tnree more conaitions to be fulfilled
by our model for graph OL systems in the above discussion, namely:
(4) graph OL systems are node propagating,
(5) the production set in a graph OL system must be complete,
(6) daughter graphs may only be connected if their mothers

are connected.



13

We are now in a position to define a node propagating graph OL
system, however we delay the definition in order to consider a more general
notion of stencil.

Let a = (V ) be a graph over Z,A and X c V,

a’ %o’ Ea

a subset of its nodes. Define merge(X, a) as the graph (VB’ g5 EB) ,

where VB = Va - X, g is the restriction of ,, to VB , and

m
{

= (E, n (Vg x & x VB))

B

ui(u, h, ©):(u, h, v) is in Ea, u in VB’ v in X}

Ui, hy v): (u, h, v) is in Ea’ uin X , v in VB} .

Essentially, the nodes in X are merged into « , the environment node.

Using full daughter graphs in stencils as we did above, then

such a full stencil y fulfills merge(¢;](2t), v) is the source
daughter graph and merge(¢;](zs), y) is the target daughter graph. To
strip off the appropriate subscripts we need to apply st_] to both
these graphs. Our notion of applicability of a full stencil is simply
that the source merged graph is isomorphic to the source daughter graph
and similarly for the target graph.

We now relax this condition to "subgraph of". Let

Yg = st_](merge(w;](zt), ). vp® st'](merge(¢;1(zs), Y)) and

Ye = st_]((Vy, L {{u, h, v) : (u, h, v) 1in EY and either wy(u) in

%, and ¢Y(v) in I, or ¢Y(u) in I, and @Y(v) in ZS}) .

We say that a stencil vy over T,A is applicable to an

ordered pair of graphs (o, B) over z,A if:




14

(1) Va n VB = ¢ , that is, the only common node is o

(i1) Yg <o and yr < B

Let vy be applicable to (o, B) then the joining of (a, 8) by ¥y

is defined as the graph

(Va v VB’ g U Og > Ea U EB u EYC)

Let Q bé a set of stencils. Then Yy in Q is said to be Q-maximal
with respect to (o, 8) if Yy is applicable to o sB and there is
no & in Q such that & 1is applicable to asB and
Yg U Y7 < 65 U 6T .
To illustrate these notions letS return to our running example.
An edge from any node to the environment node is called a hand.
As we never represent the envirnoment node in our diagrams, hands are
represented as broken directed edges. We first modify the production for

a to:

R

- g ~——— g —»

a p—> l l (8)
—g —> d —>
Voo

where hands have been added. It is now sufficient to consider the

following simpler stencils

QO
(7]

Y]
«t+

hi—s (9)

[%2]
o+



15

and C JS:

ap ——8¢

and the initial graph is

Letting y be the stencil of (9) then

—>a
Yg L and Yr l
&= —>a
while
d—3»3
YC =
a4 ———»d

Observe that <y 1is only applicable to a source and target
daughter from (8) if they are in the appropriate orientation. The hands
in Yg and Y1 must match those in the source and target daughters,
respectively.

We are now ready for the central notion of this paper.

Definition

A propagating graph OL system (PGOL system) is a quintuple

G=(z, A, P, C, S) where
% is an alphabet of node Tlabels,

A is an alphabet of edge Tabels,



16

P is a finite subset of I x [Z, A]+ of productions

C 1is a finite subset of A x [T A]+ of connection rules, and

st?
S in [z, A]+ is the start graph.

P must be complete, i.e. for each a € £ there is at least
one production avw a inP . Foreach h in A , h-> X 1is implicitly
in C , therefore C is complete. Note that G is specified by abstract
rather than concrete graphs. It is assumed that e w» e 1is implicitly
available as a production for the environment node and that

hea h ey and h» ey h a, are implicitly available for all a in I

S t

and h in A
We define the yield relation over [ZI, A]+ informally, a
rigorous definition can be found in Culik II and Lindenmayer (1976).
For two abstract graphs U , V in [Z, A]+ we write

U ~q V (or simply U=V if G 1is understood) if:

(i) there exist daughter graphs of each node of U , given by
P and
(ii) there exist maximal stencils for each pair of daughter
graphs whose mothers were connected, given by C ,
such that the simultaneous joining of all daughter graphs results in V .
Note that in particular a hand of a certain kind which appears in a
daughter graph will only appear in the derived graph if its mother has a
hand of the same kind.
We obtain S oand o , the transitive and reflexive transitive

closure of = 1in the usual way. The graph language generated by G ,

denoted L(G) , is defined as:



17

L(G) = {U : S =* U} .

L < [£, A], s a PGOL language if there exists a PGOL system G such

that L(G) =L .

Let us formalize our earlier full stencil system. A PGOL

system G = (&, A, P, C, S) is a full stencil PGOL system (fsPGOL system)

if C fulfills the following conditions:
for each ordered pair (a » A, b » B) of productions in P and
h in A , there is a connection rule he» D in C such that

DS = A and DT =B, D is a full stencil for A, B.

Clearly, if G is a fsPGOL system then for each triple (A, h, B) there
is a full stencil D and D is maximal for (A, h, B) , where awr» A,
br B are in P and h is in A

Let L(PGOL) and L{fsPGOL) denote the families of PGOL and

fsPGOL languages, respectively. Clearly, every fsPGOL 1language is a

PGOL Tlanguage. Conversely, given a PGOL system G for each edge
and each pair of daughter graphs in G extend their maximal applicable
stencils to full stencils. In this way we obtain a fsPGOL system which
simulates G step by step. The maximality condition is critical for

this simulation to hold. Hence we have demonstrated:

Lemma 3.1
L(PGOL) = L(fsPGOL)
This serves to demonstrate that the nonfull stencil mechanism of
Culik II and Lindenmayer (1976) adds no generative power but is rather a

powerful abbreviatory tool. We can always replace a non-fsPGOL system by



18

a fsPGOL system which generates the same graph languaae.
Let us consider the hands. Are they necessary or equivalently
can the environment node be removed with restricting the generative power

of PGOL systems? Consider the following example.
S=a+b+«a;

— b

ara—>, b~ f\. and h»as—-»b

be—b t

then we obtain in one derivation step from S the graph

a—s b ¢—a

/N

bé&—b

If we do not allow hands or equivalently assume all possible hands occur

everywhere then we also obtain

a-———')/b

b&e—b «——a
which is not obtained with the above system. This demonstrates that '"no
hands" systems have weaker generative power than PGOL systems.

Let us denote by allPGOL the PGOL systems in which all possible

hands occur at all possible nodes. Then we have shown:

Lemma 3.2

L(al1PGOL) ; L(peoL) .



19

Let us close this section by giving a final example, the family of star

graphs.
let S=a;
ar +a—b br —b
and h» a,—~ bt .
then we obtain
_ b e °
a = a—b = a = a—»b =



20

4, Determinism, Growth and Size

In Culik II and Lindenmayer (1976) the notions of deterministic
and functional PGOL systems are introduced. They claim, wrongly, that
these two notions are identical. We first introduce these notions and
then compare them. Secondly, we show that various notions of growth
functions, for DPGOL systems, and size sets, for PGOL systems are
reducible to growth functions or length sets of various string OL systems.
One exception is the edge size sets of PGOL systems.

These reduction results depend heavily upon two constructions,
which given a PGOL system derive an associated OL or TOL system that is
equivalent in a certain sense. The non-applicability of the second
construction to PGOL systems leads to the notion of "doubly interaction-
less" PGOL systems, which are called PGOOL systems. These reduction
results are then used in Section 6 to derive numerous decidability results.
We say a PGOL system G = (&, A, P, C, S) is reduced if it has no useless
symbols, productions or connection rules. A symbol in I u A is said to
be useless if it does not occur in any graph of L(G) . Similarly, a
production in P or a connection rule in C is useless if it cannot be
"used" in any derivation of G from S .

Recall from Culik II and Lindenmayer (1976) that a reduced PGOL

system G is deterministic if:

(i) for each a in 3 there is only one production aw A in
P,
(ii) for each h 1in A and each edge (a], h, a2) occurring
in S,P or C,let a;» Ai be in P, A, = [uij’
i=1,2 and let Q= {y : he [y] in C} , then there is



21

at most one vy in Q such that y 1is Q-maximal for

(0"] s 0‘2) .

We say that a reduced PGOL system G 1is functional if for all
U for which S =* U there is exactly one V such that U =V .

In Culik II and Lindenmayer (1976) it is claimed that
functionality and determinism are equivalent conditions. However this is

not the case. Consider the following examples.

Example 4.1 G1 defined by:

the start graph a—-a
the production a = a—=
and the connection rules h » as-+ ay
h vaga,

Clearly, G1 is functional and non-deterministic.
In a second example we show that a system can be functional

even when the productions for nodes are non-deterministic.

Example 4.2 G2 defined by:

the start graph c_—=d=S5S

the productions C b a—r
dr—sa-> b
dwabsas
d rr—» d—r
bis b

and the connection rules h o a > at



22

h »-as—+-bt

h » bs—+ at

where h 1is the only edge label, which we are not showing explicitly in
the diagrams. This convention will be used throughout the paper. From

S one new graph is obtained, which then stays the same, namely
S

which are representants of the same abstract graph.
Although functionality does not imply determinism we do have the

weaker result which we state without proof.

Lemma 4.1

Every DPGOL system is functional.

Remarks

(1) By definition each daughter graph in a DPGOL system has no non-trivial
automorphisms.

(2) Example 4.2 demonstrates that there are functional PGOL systems which
are not node deterministic, that is, a mother having only one
daughter graph.

(3) It is an open problem whether functionality is decidable.

Lemma 4.1 implies that for each DPGOL system G there is

an associated unique sequence of abstract graphs:

S = SO’ S], 52, .



23

Hence the notion of growth and Parikh functions can be introduced
analogous to those for DOL systems. We can consider the node and edges
separately or together. In all cases we ignore the environmental node and
its connections.

Let A be an abstract e-graph. By #,(A) we denote the number
of nodes of A , by #E(A) the number of edges of A and by #(A) the

number of nodes and edges of A . Hence #(A) = #V(A) + #E(A) . Let

G=(x, A, P, C, S} bea DPGOL system. Then fG Vo the node growth

function of G , is defined by

fG’V(i) = #V(Si) , forall i=20.

Similarly we define fG E and fG » the edge growth function of G and

the growth function of G .

We need the following construction:

Construction 4.1

Let G= (%, A, P, C, S) be a DPGOL system and I have some
fixed arbitrary ordering. Let u be the mapping from [Z, A], to =I*
which maps each abstract graph A over Z,A  to the alphabetically
ordered string of all occurrences of I-symbols as node labels in A .
Construct the associated PDOL system F. = (z, PF,u(S)) where
Pe = {a >u(A) : a» A isin P} .

We now have our first theorem.

Theorem 4.2

let f: N - N then



24

(i) f 1ds a DPGOL node growth function
iff
(ii) f s a PDOL growth function.

Proof: (ii) clearly implies (i) since every string OL system can be

"simulated" by some PGOL system. Therefore consider the reverse implica-
tion. Let G = (x, A, P, C, S) be a DPGOL system with fG v f . Using

the above construction, obtain FG a PDOL system, clearly fF = fG Vv
G s

hence the result.

We now have our second construction.

Construction 4.2

Let G=(z, A, P, C, S) be a DPGOL system. Let
Q=3I xAxZ and let there be some fixed arbitrary ordering of I and
Q . Let u be the mapping of Construction 4.1 and define a mapping n
from [Z, A], to Q* , which maps an abstract graph A over I,A to
the alphabetically ordered string w of all occurrences of Q-symbols as
edges in A . That is, for each edge with source label a , target label
b and edge label h in A , there is one occurrence of (a, h, b) in
w . Let v be the mapping from [Z, A], to <I*Q* defined by
v(A) = u(A)n(A) , for each A in [z, A], . Now construct a PDOL system

HG = (zuQu{d}, PH,v(S)) where d is a new symbol and

Py = {a ~ v(A) : a» A dsin P}y {d > d} v {(a, h, b) - w : where
W= n([st'](yc)]) if n([st'](yc)]) #1 and w=d otherwise,
where (a, h, b) 1is in o and vy 1is the only stencil applicable

to o, B , concrete daughter graphs of a, b respectively} .



25

In the above construction the "edge" production in PH replaces
an "edge" by the "edges" it would be replaced by in the given DPGOL system.
Since an edge may be replaced by no edges we take care of this possibility
by using the dummy Tetter d to represent this situation.

We now obtain:

Theorem 4.3

Let f: N - N then:

(i) f s a DPGOL edge growth function

iff

(ii) f s a WPDOL growth function.
Proof: (i) = (i1)

Let G = (%, A, P, C, S) be a DPGOL system with fG,E = f .
Using Construction 4.2 construct HG . Now define a weak coding

9 : 2 uQu{dl>Au{r} by:

g(a) = x , for all a in I u {d} ,
6((a, h, b)) = h , for all (a, h, b) in @

Clearly the arowth function of (HG, ) is identical to fG,E'
(ii) = (1)
Let 6= (%, P, o) be a PDOL systemand 6 : £ - A u {A} be a
weak coding. Construct a DPGOL system
G' = (2 u {$}, A, P', fhe A :h in A}, S) where $ is a new symbol
~not in £ y A . Without loss of generality we assume :Tn A= ¢ .

Define a mapping v from x* to [z u {$}, Ale by:



26

and for all a;...a  in I, v(al...am) is the abstract graph

where e(ai) = bi in A u {A} and if e(ai) = A then there is no edge

incident to a, . Clearly #¢(v(a...a )) = le(a]...a )|
Let S = v(o) and

P' = {a~v(x) : a—= x is in P} u {$~» $} .

Now P' has only one production for each a in I u {$}
since G does. Further since no edges are preserved at each derivation
step, G' is a DPGOL system. By the observation above we therefore have

This complete the theorem.

Finally we consider the total growth function (both nodes and

edges).

Theorem 4.4
(i) Let f: N > N then f 1is a DPGOL growth function

implies f 1is a WPDOL growth function, and
(ii) There exist WPDOL growth functions which are not DPGOL

growth functions.

Proof: (i) This follows from the proof of (i) = (ii) in Theorem 4.3,

observing that deleting an "edge" (a, h, b) 1is carried



27

out by introducing a dummy symbol d , that is,
(a, h, b) >d ; d >d and removing d by a weak coding.

(i) Consider the PDOL system defined by:

initial word a
productions a-=~b ; b—=-b
and weak coding e, a-g-a 5 b-g-x .
Then the WPDOL growth sequence is 1,0,0,... . Clearly no

DPGOL system can generate such a sequence.

Remark

It should be noted that we can replace WPDOL growth function by
HPDOL or HDOL growth function in Theorems 4.3 and 4.4. This also holds

true in the following corresponding theorems for Parikh functions.

We now turn to the notion of Parikh function for DPGOL systems.

Let ¥ and A be given alphabets and A an abstract graph
over Z,A . Define some arbitrary but fixed ordering of the symbols
of z,A and I u A . Then we denote by wV(A) an element of N" ,
where #I = n , such that the value in the i-th position denotes the

number of occurrences of the i-th node label in A . Similarly we define

ﬂE(A) and w(A) . Clearly #V(A) = Trv(A)(l,...,l)T and similarly for
#E(A) and #(A) . Let G= (%, A, P, C, S) be a DPGOL system. Then

Ta.y the node Parikh function of G , is defined by:

“G,V(i) = “V(Si) , for all i=>=0.

We can define Te E and TG the edge Parikh function of G

and the Parikh function of G , in a similar manner.




28

Immediately by the proof techniques of Theorems 4.2, 4.3 and

4.4 we have the following results.

Theorem 4.5
let f: N> N', n>0, then
(i) f s a DPGOL node Parikh function
iff
(ii) f s a PDOL Parikh function.

Theorem 4.6
let f: N+ N , n>0, then:
(i) f ds a DPGOL edge Parikh function
iff
(ii) f dis a WPDOL Parikh function.

Theorem 4.7

(i) Let f: N - N, n>0, then f s a DPGOL Parikh
function implies f s a WPDOL Parikh function, and
(ii) There exist WPDOL Parikh functions which are not DPGOL

Parikh functions.

We now investigate which of the above reducibility results hold
in the non-deterministic case. First note that in this setting growth
and Parikh functions are replaced by size and Parikh sets. For example,
letting 6 = (X, A, P, C, S) be a PGOL system we define ES(G) , the

edge size set of G , as:

ES(G) = {#.(U) : U in L(G)} .

£



29

We define VS(G), S(G), Em(G), Vn(G) and =(G) similarly.

For VS and Vm we have:

Theorem 4.8

For N <N (NnSN , n=>0)

(i) N (Nn) is a POL length set (Parikh set)

iff
(ii) N (Nn) is a PGOL node size set (node Parikh set) .
Proof: Straightforward since we consider nodal growth independently
of edges.

However when considering edge size sets Construction 4.2 just

does not work.

Example 4.3
Consider the PGOL system G defined by:
the start graph a-—a
the productions dwardar; A>3 —> A
and the connection rules h oA
'\ a
/ t
ag

Consider the string representation of Construction 4.2. Initially we have
aa(a, h, a) , but we can now obtain aa(a, h, a)(a, h, a) which does

not correspond to any valid replacement in G since the connection rule
can only be applied when a source node a 1is replaced by two a-labelled
nodes. In fact we obtain all ETOL Tength sets when considering edge size

sets of PGOL systems.



30

Theorem 4.9

17 e Pn’ o), n>0, bea TOL system. There

exists a PGOL system G' = (&', ©, P*, C, S) such that LS(G) = ES(G')

Llet G= (z, P

and 1S(G) = EI(G') .

Proof: Let Z' = {d} v {1,...,n} . Define a mapping v from
{1,...,n} x * to [Z', £], by:

forall i, 1 <1 <n:

v(i, A) = A
] +
and for all a]...am in I
a]/{dt
:__,.g d
v(i, a, am) = i -t

let S =st ' (v(1, o)) ,

e
P={in] ::EZ 1 <i,jsntu{d » E:j d"} , where
m=max({|x|] :a>x in Py for a in I , for i, 1 <i <nl}),
and j and d have all possible labelled hands, and
C={aw»v(i, x) : a~»>x in Pi for some i, 1 <1 <n}

It should be clear that at each rewriting step the appropriate
connections are made since the central node labelled i selects the

appropriate connection rules corresponding to the table Pi



31

Corollary 4.10

Let G be an ETOL system then there is a PGOL system G' such
that LS(G) = ES(G') and nS(G) = Em(G') .

Proof: Each ETOL Tanguage can be represented as a coding of a TOL
language (Ehrenfeucht and Rozenberg, 1975). Therefore let G" be a TOL
system and © a coding such that 6(L(G")) = L(G) . Proceed to construct
G' , the required PGOL system by means of the proof technique of Theorem

4.9. However define v(i, a1...am) to be

Clearly ES(G') = LS(G") = LS(G') and Emn(G') = wS(G) .

The situation for size and Parikh sets of PGOL systems is not
so clear. We therefore close this section by considering a sufficient
condition on PGOL systems which ensures Construction 4.2 (suitably
modified for the non-deterministic situation) works.

Theorem 4.9 and the remarks preceeding it lead to the notion of
an edge-context-free PGOL system. Let G = (%, A, P, C, S) be a PGOL
system such that for all edges a h b occurring in S, P, or st_](C) and
for all concrete daughter graphs a; s By s i=1,2 of a and b ,
respectively, the set of maximal stencils applicable to (a], 3]) is
isomorphic to the set of maximal stencils applicable to (az; 32) . We

say that G 1is a doubly interactionless PGOL system, denoted PGOOL system,

that is, zero node-interactions and zero edge-interactions.



32

Immediately for PGOOL systems we have a result corresponding to

Theorem 4.3 for edge size sets.

Theorem 4.11

Let f: N > N then:
(i) f 1dis a PGOOL edge size or Parikh set
iff
(ii) f 1is a WPOL length or Parikh set, respectively.

Proof: (i) = (ii)

Extend the proof of Theorem 4.3 to the PGOOL case. The problem
discussed in Example 4.3 is avoided since for each triple (a, h, b) 1in
2 the possible new edges that can be produced by a derivation step are
independent of the choice of productions for a and b .

(i1) = (i)

The proof technique of Theorem 4.3 can be immediately extended
to the non-deterministic case, giving a PGOL system with no connection
rules, which is then, trivially, a PGOOL system.

Theorems 4.9 and 4.11 are of interest since they contribute to
the discussion on the context-freeness of PGOL systems. Theorem 4.9
makes us aware that as far as edge size sets are concerned non-EOL Tength
sets can be obtained. On the other hand the PGOOL systems under this

measure can be said to be truly interactionless.



33

5. Generative Capacity of PGOL Systems

In Culik II and Lindenmayer (1976) various restricted classes of
PGOL systems are investigated analogous to those for string OL systems,
namely D = deterministic, T = tabled, F = finite start set of graphs,
C = coding . It is shown that for any two combinations X, Y of
"operators" D, T, F or C, L(XPGOL) g or is incomparable with
L(YPGOL) 1if L(XPOL) £ oOr is incomparable with L(XPOL) , respectively.
Hence, for example, L(DPGOL) ; L(PGOL) . This is proved by considering
just those languages of line graphs with a single edge label which corres-
pond to strings in a natural way. We immediately obtain
L(DPGOL) ; L(PGOOL) by the same technique. We also have
L(PGOOL) < L(PGOL) by definition, while proper containment is a result of
the following non-PGOOL graph language.

Consider G over {a, b, ¢, d} , {g, h} where

the initial graph is asb

the productions are aw

the connection rules are g~ c—> ¢

giving the initial graph,

c
and d lh
C



34

Clearly G 1is not a PGOOL system. Consider any PGOL system G' such

that L(G') = L(G) . Now the initial graph of G' must be a3 b , Since
this graph has fewest nodes. Since we are dealing with propagating systems
each of a and b must give rise to at least one node, and in fact, one

of them must give rise to two nodes only while the other only one. Clearly,
the productions for a and b in G can be interchanged and the
connection rules modified appropriately to give L(G) once more in a
non-PGOOL fashion. Hence the only other possibility is that a (or b) gives
c-+~c or ¢ d and b (or a) gives = c— . However the connection
rules must differentiate between the two possible daughter graphs of a

to ensure that the appropriate connections are made. Hence this system

is also non-PGOOL. Therefore L(G) 1is a non-PGOOL language.

Let us now restrict our attention to graphs with a single-edge-
label, in other words to the webs of Rosenfeld and Milgram (1972).

Cheung (1978) has proved that any bounded degree PGOL system can be
"simulated" by a single-edge-labelled PGOL system, in the sense that the
underlying graph structures obtained are the same. By underlying graph
structure we mean the coding of the graph language which identifies all
edge labels and all node labels, that is an unlabelled graph. However
for arbitrary PGOL systems this "simulation" result does not hold.

On the other hand if we restrict attention to single-node-
labelled graphs and PGOL systems the generative power of such systems is
drastically reduced, hence the star graph language of Section 3 cannot be
generated when only a single node label is allowed. Therefore the trade-
off of edge-labels and node-labels is in one direction only. For bounded

degree systems the edge label set can be reduced at the expense of the



35

node label set.
We now give two examples which generate all complete graphs over
Z ., A and all graphs over Z1,A
Let G= (%, A, P, C, S) where A ={h},
S s a
P contains a »—a—

S,
ar Jaa

and C contains h e~ ag—> at

h Ha at

Now C preserves all edges at each derivation step and moreover adds the
appropriate new edges to maintain completeness. For each complete graph

it is straightforward to construct a derivation in G from S which
generates it. Assume G generates at least one incomplete graph.

Assume U 1is an incomplete graph in L(G) such that there is no incomplete
graph V in L(G) with either fewer nodes or more edges. Consider all

T suchthat T=U in G and T#U . Now T is complete, since

either T has fewer nodes than U or T has the same number of nodes

as U but more edges (fewer edges is not possible since edges cannot be
created with C . But if T 1is complete then U cannot be incomplete

by examination of C . Hence all U in L(G) are complete. This can



36

be proved rigorously by induction on the number of nodes.
we now turn to a system generating all grapns. In this case tnere
are a lot of connection rules, which are straightforward to specify. In
the completeness example only one kind of connection was necessary, but
in the following system all possible connections, including no connections,
must be specified.
Let G = (X, A, P, C, S) where A = {hl},
S s —-a—>
P contains arP Fa>
arrae—az
arFaeazy
ar=2razaz;
a»—-g— — da—>

C contains h»+—+-a§—+ a£—+

h»—)-(-—as<——a o

t
h = as—-+ —>a—>

—..)a
S

\\\“a N



37

and all other possible edge combinations between 3 nodes, together with
those in which s and t are interchanged. It is easy to see that every
graph is generated by G .

We close this section by demonstrating a self-reproducing system,
that is one which cenerates multiple copies of the start graph.

Let S in [z, A]+ be the start graph.

\Th/’ ~, 7
PN

for all a in I , that is, each node duplicates

P contains a

itself with all possible hands over A (labels not
shown in the diagram) and the hands shown for h ,
h not in A
T
C contains gr— a _——ab

g— a —ge-b

t Th

for all g in A and all a, b in Z

At each derivation step two new copies of S are made from each
old copy of S and each new copy is reconnected correctly by use of the
extra hands labelled h in the productions. Since S does not contain

a hand labelled h neither do any of its offspring.



38

6. Decidability Results

Many of the basic questions about PGOL systems involve decid-
ability issues. For example, does a given PGOL system G generate a
finite or infinite graph language, is L(G) = [z, A]+ , is membership
decidable, are all graphs in L(G) connected (that is, is the underlying
undirected graph connected), and so on.

Our first result concerns growth and Parikh functions for DPGOL

systems.

Theorem 6.1

Let G] and G, be two arbitrary DPGOL systems, then for

2
X=V, E or X we have:

X~-growth and X-Parikh equivalence of G] and G2

are decidable.
Proof: By the reduction results in Section 4 and since both X-growth

and X-Parikh equivalence of two WPDOL systems are decidable properties.

Since it is decidable if an EOL Tanguage or its length set is

finite we have:

Theorem 6.2

(1) Let G be a PGOL system. It is decidable whether VS(G) is
finite or infinite.

(2) Let G be a PGOL system. It is decidable whether L(G) is
finite or infinite (follows from (1)).

(3) Let G be a PGOOL system. It decidable whether ES(G) 1is finite

or infinite.



39

(4) Let G be a PGOOL system. It is decidable whether L(G) has

bounded surface area.

We say a PGOL system G has bounded surface area if there is

an integer k = 0 such that for a1l U 1in L{(G) the set of nodes
{u : either (u, h, ®) or (e, h, u) isin S, P or C for some h in A}
has cardinality < k . We suitably modify Construction 4.2 to take the

environment node into account.

In Culik II and Lindenmayer (1976) it is proved to be decidable
whether a given abstract graph U 1is generated as a (full) subgraph in
a PGOL system G . In other words whether there is an abstract graph V
in L(G) such that U<V or U < V is decidable. This also solves
the membership problem for PGOL systems. We reprove this result somewhat
differently, which enables us to solve other subgraph occurrence problems,
which are of independent interest. We present results only for the full

subgraph case, the corresponding subgraph results follow similarly.

Definition
Let G = (X, A, P, C, S) be a PGOL system. An abstract graph

U in [Z, A), occurs in G if there is a derivation S =* V , for some

vV in [I, A]+ with U ¢ V . Similarly we say U occurs finitely

(infinitely) in G 1if the set {i : S=' V, for some V , U=V} is

finite (infinite). We say U 1is preserved (ultimately preserved) in G

if forall i>0 (for i>t,some t=0), S='V and U =V,

for some V in L(G) .



40

Biologically these variants of the subgraph occurrence problem
correspond to the survival of a subunit or sub-assemblage of cells during

development. We now provide the notion of a subgraph derivation graph.

Construction 6.1

-

Given a PGOL system G = (X, A, P, C, S) and k an integer,

k > 0 , construct the associated k-subgraph-derivation graph HGI  over

K , where K = 2J and J is the set of all graphs with at most k nodes
over L, A, as follows:

Let H = (V, ¢,» E) where V 1is a set of nodes, #V
H

G,k
¢y: V> K is a node labelling isomorphism and E c V x V is a set of directed
edges. E = {(u, v) : u, v in VvV, ¢H(v) = {D : A is in @H(u), A=B,

D<.B and D 1is in J}}.

-f
For a1l A in [I, A]l, , k >0 an integer, let : A denote

k: A

the set of all graphs B with at most k nodes such that B =¢ A .

Clearly, HG,k is a finite graph. Moreover a graph U occurs
in G iff there is path from u , the node labelled by k : S ,
k = #N(U) » in HG,k to a node v Tlabelled with a set of graphs contain-
ing U . This follows since a PGOL system does not erase nodes and
therefore a k-node full subgraph is obtained in one derivation step from
a full subgraph with at most k nodes. This gives the first result,

which was proved somewhat differently in Culik II and Lindenmayer (1976).

Theorem 6.3

Given a graph U over I , A and PGOL system G over I , A

it is decidable whether U occurs in G.



41

We have a number of interesting corollaries:

Corollary 6.4

Given a graph U over Z,A and a PGOL system G over
Z,Ait is decidable whether U 1is in L(G) . That is, the membership

problem is decidable.

Corollary 6.5

Given a PGOL system G it is decidable whether G 1is reduced.

Proof: Straightforward. 0

Corollary 6.6

Given a PGOL system G it is decidable whether for all U in

L(G) U 1is complete.

Proof: It is decidable whether a two node unconnected fy1l subgraph over =
occurs in L(G). Clearly for all U in L(G) , U 1is complete iff no

such subgraph exists. 0

Theorem 6.7

Given a graph U over z,A and a PGOL system G over
Z,A it is decidable:

(i) whether U occurs finitely or infinitely.

(ii) whether U is preserved or ultimately preserved.

Proof: Consider the k-subgraph-derivation graph, HG K ° where
k = #N(U) . Let u be the node labelled with k : S . First observe

that each node in HG K has only one successor. Hence there is exactly



42

one path from u to some other node, which may be u itself. Thus, the
sequence of nodes u = Ugs Uys --- representing a path in HG,k from
u has a cycle, that is, there is an i such that u; = uj for some
j <i . Clearly, there can only be one cycle.
(i) U occurs finitely in G if U 1is not associated with any
node in the cycle, and infinitely if it is.
(i1) U 1is preserved if U 1is associated with every node in the
cycle-path from u and ultimately preserved if it is associated with all
nodes in the cycle. : 0
We may define the various notions of occurrence with respect
to L(G) rather than to the derivations of G . Let us call them the
language variants of subgraph occurrence and preservation. For DPGOL
systems there is only one derivation sequence and hence the language
subgraph problems can be reduced to consideration of the derivation
subgraph problems. For PGOOL or PGOL systems these problems appear to be difficult.
We now consider perhaps the most interesting PGOL systems from
a biological viewpoint, namely, those of bounded degree. We say a PGOL

system G is of bounded degree if there is an integer k = 0 such that

every graph generated by G has at most degree k (that is, each node
has a total number of edges, leading into and out of it, which is less

than or equal to k). Similarly we say G has bounded in-degree

(bounded out-degree) analogously. We exclude the environment node from

consideration.
We now prove that bounded degreeness is a decidable property. By
suitable modifications of the proof technique we also obtain the decid-

ability of bounded in-and out-degreeness.



Theorem 6.8

For DPGOL systems bounded degreeness is a decidable property.

Proof: Our proof technique is an indirect one. We reduce bounded
degreeness of DPGOL systems to finiteness of ETOL systems. Since this
latter property is decidable we have the result.

Let G = (2, A, P, C, S) be an arbitrary DPGOL system. We
first produce a PGOL system G' which simulates a derivation step of G
and nondeterministically marks one node in the derived graph. Secondly, using the
string representation technique of Construction 4.2, G' is simulated
by a DTOL system G" . Finally, we define a homomorphism 6 which
deletes node and edge labels and identifies "marked" edge Tabels. Then
B(L(G")) 1is finite iff G has bounded degree.

Without loss of generality assume S 1is a single node graph.
let T=4{a:a in I} be the marked node alphabet. Construct a PGOL

system G' = (zur, A, P', C', Z) . Let
P'=Pu{arA'":arA isin P and A' is in marked(A) } .

For each abstract graph A in [=Z, A]+ , marked(A) is the set of all
abstract graphs obtained from A by marking just oneappearance of one

node label. Let

C'=CufheA":heA isin C and A' is in marked(A)} .

We have ensured that one and only one node label will be marked
at each derivation step of G' by the simple expedient of marking one

node label in the daughter graph of a marked node. Observe that for



44

each triple (a, h, b) or (b, h, a) representing an edge of a derived
graph in G' and each A' a daughter graph of a , there is exactly
one connection rule applicable to it, as is the case in the original
system G . This is the crucial observation that enables the simulation
of G' to be carried out by a DTOL system.

Now,construct a DTOL system G" = (", P], ces Pm’ o) , Wwhere
m = max({# marked(A) : a» A in P, a in ZI}) . T"=3Tu 3z uqu {N}
where Q@ =(Z uI) x A x Z)u(zlx A x (£ uZ)). Consider the representation
of Construction 4.2. Let u map abstract graphs from [IuZ, A]+ to
ordered strings of node labels, and n map abstract graphs to ordered
strings of Q-symbols. Note that n s only a partial map. Again v is
a partial map from [ZuZ, Al, to (Zuf)+9* defined by v(A) = u(A)n(A),
for each A having at most one marked node.

Now each table Pj contains all "productions" from P and C ,

that is,

fa>v(A) tarA in Phu{(a, h, b) > n(lst” (y)]) = if alb
is an edge over I , A and vy 1is the maximal stencil
applicable to some o and B8 , concrete daughter graphs

of a and b} .

Secondly, we now ensure that each possible marked variant of each
production a~» A in P is found in at least one table. For each at A

in P arbitrarily number the elements of marked(A) as A], cees Ar

where 1 <r<m. Take a~ v(Ai) into Pi s 1 <1 <r and complete

the remaining tables by taking a - v(A]) into Pi s rtl <1 <m.

Now take the appropriate edge productions into each Pi s 1'<1<m:



45

for each a » v(A) and b - v(B) 1in P and for each h 1in
A take:

(53 h’ b) + w into P1

where w = n([st'](yc)]) and vy is the maximal stencil applicable

to o , B , for [a] =A and [R] =B, and similarly for (b,h,a)»x.

Finally, for any table Pi which is incomplete for some X in
" add X-> N to Pi » 1 <i<m.

For each triple (a, h, b} there is clearly only one edge
production and this also holds true for each triple (a, h, b) or

(a, h, b) , with respect to each table, since only one production for a

is taken into each table. Hence we have a DTOL system.
The symbol N never occurs in any derivation from o = v(S)
in G" , it merely plays the role of enabling each table to be completed.
Define a homomorphism 6 : " - {d}* by

8(X) =x for X in NN ufufu(ZxaAxz), and

i

d otherwise.

i

6(X)
Then 6(L(G")) < {d}* and clearly 6(L(G")) is finite iff

G has bounded degree.

O

Now consider the situation when G 1is a PGOOLksystem. In this
case the simulation by a PGOL system G' still holds. Moreover G' has
the property that for each (3, h, b) (or (a, h, b)) and each a»= A
the stencils applicable to a and B , [al =A and B8 = [B] where
br» B dis in P' , are independent of the choice of production for b .

Hence in the simulation of G' by a TOL system G" there is a separate



46

table for each production a » A for a in G' and each table contains
exactly those edge productions for (a, h, b) and (b, h, a) which are
applicable given a >~ A . The remainder of the proof follows

analogously. Hence we have shown:

Theorem 6.9

For PGOOL systems bounded degreeness, bounded in-degreeness and
bounded out-degreeness are detidable properties. Moreover, if the degree
(in-degree, out-degree) is bounded then it is computable.

The second sentence follows from the proof technique of
Theorem 6.8.

The decidability of bounded degreeness for PGOL systems remains
open.

Since it has recently been shown that the DOL sequence equivalence
problem is decidable (Culik II and Fris 1977), it is natural to ask
whether the DPGOL sequence equivalence problem is decidable. That is,
given two DPGOL systems G] and 62 whether it is decidable if they
generate the same sequence of graphs. We have shown that various necessary
conditions for sequence equivalence to hold are decidable, namely, node
Parikh function equivalence, edge Parikh function equivalence and whether
both are of the same degree. However, the DPGOL sequence equivalence problem
appears to be complex and although it is still open, we conjecture that
it is decidable.

We close this section by mentioning a number of interesting
open problems. Firstly, functionality is such a basic notion that whether

it is decidable or not is an important problem. Secondly, connectedness



47

is both biologically and mathematically interesting. Whether or not
there are generated graphs containing 2 or more disconnected components
in a PGOL (or even DPGOL) system is an open decidability question.
Thirdly, a question of mathematical interest is whether or not all graphs

generated by a PGOL (or DPGOL) system are planar. This is also open.



48

7. The Context-Freeness of PGOL Systems

When speaking of context-freeness for string rewriting systems
we usually mean that each symbol is rewritten independently of its context.
For example, in context-free grammars and EOL systems. However, in PGOL
systems and other graph rewriting systems the situation is not as clear.
We not only have node rewriting but also connection rules. In the case
of PGOL systems node replacement is context-free, hence the choice of
acronym. However whether\PG(f! systems a;'e "context-free" in total, that
is also as far as the connection rules are conéerned, is subject to
question. Some measure of their context-freeness 1is given by the
positive results for the decidability of the membership problem, the
effectiveness of the construction of reduced PGOL systems, and the
decidability of the finiteness problem. Similarly the reduction to a
full stencil normal form is also evidence in favor of the context-freeness
of PGOL systems.

On the other hand we have the results of Section 4 in which it
is shown that PGOL systems generate at least ETOL length sets when
considering edge size sets. Whether ETOL length sets exhaust the PGOL
edge size sets is an open problem. However this leads to the introduction
of the "doubly interactionless" systems, namely the PGOOL systems. These
have the pleasant property thdt the deterministic restrictions of PGOL
and PGOOL systems coincide. We claim that the PGOOL systems are the
truly context-free parallel graph rewriting systems. This is reflected in
the result that PGOOL edge size sets are EOL Tength sets in contradis-
tinction to PGOL edge size sets. Moreover bounded degreeness is decid-

able for PGOOL systems whereas this is still open for PGOL systems.



49

Observe that minor contextual change in the definition of PGOL
systems gives them the ability to simulate PIL systems (L systems in
which rewriting of a symbol depends upon the left neighboring symbol).

For example, (1) 1let the productions for nodes depend upon a neighboring
node (one that has an edge to the given node). Clearly PIL systems can

be simulated. (2) 1let the productions for nodes depend upon an edge
leading into the node. Again, PIL systems can be simulated. (3) Finally,
assume the connection rule for each edge is chosen first and then secondly
daughter graphs are generated to which the given stencils apply. This is
essentially predictive context as in Culik II and Opatrny (1974). It

again enables PIL systems to be simulated.

Thus, it seems to us that while PGOL systems may be considered
to be context-free, PGOOL systems should be considered to be truly

context-free.



50

References

Abe, N., Mizumoto, M., Toyoda, J., and Tanaka, K. (1973), Web grammars
and several graphs, J. of Computer and System Sciences 7, 37-65.

Cheung, (1978) Private communication.

Culik II, K., and Fris, I. (1977), The Decidability of the Equivalence
Problem for DOL-Systems, Information and Control 35, 20-39.

Culik II, K., and Lindenmayer, A. (1975), Graph OL-systems and recurrence
systems on graphs, Proceedings of the 8th Hawaii Conference on Systems
Science, January 1975.

Culik II, K., and Lindenmayer, A. (1976), Parallel graph generating and
graph recurrence systems for multicellular development, Int. J. General

Systems 3, 53-66.

Culik II, K., and Opatrny, J. (1974), Context in parallel rewriting, in
L Systems (eds., Rozenberg and Salomaa), Springer-Verlag Lecture Notes
in Computer Science 15, Heidelberg, 230-243.

Ehrenfeucht, A., and Rozenberg, G. (1974), Nonterminals versus homomorphisms
in defining languages for some classes of rewriting systems, Acta
Informatica 3, 265-283.

Ehrig, H., and Kreowski, H.J. (1976), Parallel graph grammars, in
Automata, Languages, Development (eds. Lindenmayer and Rozenberg),
North-Holland Publishing Co., Amsterdam, 425-442,

Ehrig, H., Kreowski, H.J., Maggiolo-Schettini, A., Rosen, B.K., and
Winkowski, J. (1978), Deriving structures from structures, IBM Research
Report RC 7046.

Ehrig, H., and Rozenberg, G. (1976), Some definitional suggestions for
parallel graph grammars, in Automata, Languages, Development (eds.
Lindenmayer and Rozenberg), North-HolTand Publishing Co., Amsterdam,
443-468.

Ehrig, H., and Tischer, K.W. (1975), Graph grammars and applications to
specialization and evolution in biology, J. of Computer and Systems Sciences
11, 212-236.

Herman, G.T., Lee, K.P., Leeuwen, J. van, and Rozenberg, G. (1973),
Characterization of unary developmental languages, Discrete Mathematics 6,
235-247.




51

Herman, G.T. and Rozenberg, G. (1975), Developmental Systems and Languages,
North-Holland Publishing Co., Amsterdam.

Lindenmayer, A., and Culik II, K. (1978), Growing cellular systems:
generation of graphs by paraliel rewriting, Int. J. General Systems, to
appear.

Mayoh, B.H. (1973), Mathematical models for cellular organisms, Aarhus
University Computer Science Report No. DAIMI PB-12.

Mayoh, B.H. (1974), Multidimensional Lindenmayer organisms, in L Systems
(eds. Rozenberg and Salomaa), Springer-Verlag Lecture Notes in Computer
Science 15, Heidelberg, 302-326.

Montanari, U.G. (1970), Separable graphs, planar graphs, and web grammars,
Information and Control 16, 243-267.

Nagl, M. (1976), On a generalization of Lindenmayer-systems to labelled
graphs, in Automate, Languages, Development (eds. Lindenmayer and Rozenberg),
North-Holland Publishing Co., Amsterdam, 487-508.

Rosen, B.K. (1975), Deriving graphs from graphs by applying a production,
Acta Informatica 4, 337-357.

Rosenfeld, A., and Milgram, D. (1972), Web automata and web grammars, in
Machine Intelligence 7 (eds. Meltzer and Michie), Edinburgh University
Press, 307-324.

Rozenberg, G., and Salomaa, A. (1978), The Mathematical Theory of L
Systems, to appear.

Schneider, H.J., and Ehrig, H. (1976), Grammars on partial graphs, Acta
Informatica 6, 297-316.

Della Vigna, P., and Ghezzi, C. (1978), Context-free graph grammars,
Information and Control 37, 207-233.




	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

