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ABSTRACT

In this paper, we show that a relational data base which consists of
a set of relations may contain some implicit constraints which are induced
by functional dependencies. These constraints, in turn, induce updating
dependencies among the relations. To discover all implicit constraints,
an algebraic representation for describing the functional dependencies in
the closure of a given set of functional dependencies is presented.
Conditions for a functional dependency to induce a constraint in the
minimum set of implicit constraints are given. As a result, given an optimal
set of relations, its minimum set of implicit constraints can be derived
by using the algebrajc representations of the functional dependencies

involved.
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0. Introduction

The problem of maintaining the integrity of a data base is to
ensure that the stored data is accurate at all times. Integrity can be
achieved, to a certain extent, by protecting and preventing the stored
data against invalid updates of the data base due to carelessness or lack
of knowledge of the users. Different ways of classifying integrity
constraimts are described in several articles [Date 77, Hammer 75,
Kapali 75, Furtado 77, Stonebraker 75]. A1l these integrity constraints
must be given by the data base designers and described in the conceptual
schema by some language, e.g. predicate calculus notation or any other
language of equivalent expressive power such as SEQUEL [Chamberlin 74].

It is not our aim to study all these types of integrity con-
straint. Rather, in this paper we examine some hidden integrity con-
straints called implicit constraints within relational data bases which
contain more than one relation. This type of constraint is due to the
functional dependencies of a set of relations, and occurrences are
easily overlooked by data base designers (section 2). In order 1o
discover all these implicit constraints in relational data bases, we
give an algebraic representation for describing a functional dependency
in the closure of a given set of functional dependencies (section*3).
This algabraic representation explicitly recerds in a single enpression, ail
ways of deriving a functional dependéncy and from this, we can derive the
implicit constraints. Results concerning the minimum set of implicit

constraints for a given optimal set of relations are given in section 3.3.



" A relational data base, consisting of several interrelated
relations, was first introduced by Codd [Codd 70]. A relation is defined
as follows:

Given sets of atomic (non-decomposable) elements D1’DZ""’Dn

(not necessarily distinct), R s a first normal form relation (or

simply relation) on these n sets if it is a set of ordered n-tuples
(d1,d2,...,dn) such that d. belongs to D> for i =1,2,...,n, 1i.e.
ReDyx D2 S Dn* where 01 X 02 Xoe. X Dn denotes the Cartesian
product of DT’ DZ’ ..., and Dn' We call 01, DZ’ cees Dn the domains
of R. Rather than referencing each domain by a position number, we give
each one a unique role name called an attribute of R and refer to the

elements of the domain having attribute name b as b-values. We say that

a set of attributes B of R is functionally dependent on a set of

attributes A of R iff each A-value in R has associated with it at

most one B-value in R (at any time). We demote this by A -+ B and call it

a functional dependency of R. A functional dependency A ~ b of R,

where A is a set of attributes of R and b 1is a single attribute of R,

is said to be a full dependency of R (or b 1is fully dependent on A)

iff there exists no proper subset A] of A such that A] > b. A set of

attributes K 1is called a candidate key (or simply key) of R iff all

attributes of R are fumctionally dependent on K, and no proper subset of
K has this property. It is easy to prove that every relation has at least
one key, and some relations may have more than one key. When a relation has

more than one key, it is customary to designate one of the keys as the



primery key of the relation. To avoid identification problems, all attributes
in the primary key must have defined (i.e. non-null) values for each triple

[Ling 78b].

We denote keys of a relation by underlining the attributes, and
the primary key by a double underline if the relation has more than one key.
For example R](gig,c,d) has one key, namely {a,b} which is aliso the
primary key of R], whereas the relation Rz(g;p)g¢g,e,f) has three keys,
namely {a}, {b} and {c,d}, and {a} is the primary key of R,. Because
single letters are used for attributes names, in this case we can simply
denote {a}, {b} and {c,d} by a, b and cd respectively without causing
any ambiguity.

Given a set of functional dependencies F over a set of
attributes A, we define the closure of F, denoted by F+, as follows
[Osborn 787:

(1) Fef,

(2) projectivity: for all subsets X and Y of A,

if YcX then X>VYcF,

(3) transitivity: for all subsets X, Y and Z ofA,

if X>Y, Y>ZecF then X-+ZcF,

(4) additivity: for all subsets X, Y and Z of A,
if XoV, X>ZcF then X>YuZecF
(or simply denoted by X » YZ),

. . +
(5) no other functional dependencies are in F .



Secause of the property of additivity, we can assume a camonical forwm, in
which for each functional dependency exactly one attribute appears on the
right hand side. Given a relation R, we project it into a set of relations
R = {R]’RZ"'°’Rm}‘ Two distinct relations Ri and Rj of R have the
non-1oss property iff for any instance I of R, if we replace I by its
projections onto the Ri's then we can recover the projection of I onto

the union of tﬁi-attributes of Ri and Rj by using the join of the instances

of R, and R

; 5 (a formal definition is given in [AM 77])) ARc has shown

that two relations Ri and Rj have a non-loss join iff Ri n Rj - Ri

or Ri o Rj > Rj’ where Ri and Rj here denote the attributes of the
relations Ri and Rj respectively [Aho 77]. The set R 1is said to be
reconstructablg if we cam rederive the original relation R without any loss

of informetion [Oshorn 78].

Given a set of relations R and a set of functional dependen-
cies G defined on R. R 1is said to be optimal if and only if for
any two different relations R] and R2 of R with keys AK] and
. + +
K2 respectively, K] > K2 ¢ G or K2 > K] ¢ G .

Given an optimal set of relations R and a set of functional
dependencies G defined on R. A key K of a relation R of R s

called an explicit key of the relation R 1if there exists an attribute

b in R and b ¢ K such K-+ b ¢ G. A key of a relation R of R

which is not an explicit key is called an implicit key of R [Ling 78a].




2. licit traintg in ] 1

Let R = {l] ;Rz.....R'} be an optimal set of relations and the
functional dependency set of R be F(R):

F(R) ={K~->b | K is an explicit key of some relation

R of R, b 1is an attribute of R and b ¢ K}.

We say that R covers a set of functional dependencies G if and only if
F+(R) = 67, Let FB(Ri) represent the restriction of F*(R) to the

relation Ri’ that is,

FD(R;) ={A~>be F'(R) | A u {b} are attributes of R.}

for all i =1,2,...,n. Then U FD(R.) < Fi(R) and, if we also require

;

;

covering during norwalizatien, (U FD(Ri))i = FI(»).
i

Now let us consider the updating of a relation Ri e R.

Under what conditions does an updated data base instance still satisfy
+
(

F (R)? Ensuring that the updated instance of the relation R. satisfies

;
all functional dependencies in FD(Ri) does not, in general, ensure
that the updated data base instance will satisfy F+(R), as we can see

from the following examples:

Example 1.  Let R ={R1(§3b,c), R2(§3d), R3(5i,d)] be
an optimel set of relations. Clearly
FRY={a>b,a>c,b>d, c>d), FO(R) =fa-b,ac),
FD(RZ) ={b~d} and FD(R3) ='{c->d}+. An instance of this data

base R 1is shown in figure 1.



a b ¢ b d ¢ d
a by by d, ¢ 4
a, by ¢ b, dy ¢, 4y
¢z dy
Ry (@.b,c) Ry(bsd)  Rylc.d)

Figure 1. An instance of the data base.

Clearly this data base instance satisfies all functional dependencies
in F+(R). Consider updating R, by changing the tuple (b],d]) to (b],dz). }
The updated instance of I: as showm in Figure 2 satisfies m(kz).

a b ¢ b d ¢ d
ay b] ;1 b1 .d2 ¢y d]
a, by ¢ by c; dp

c3 dq

Figure 2. The instance cof the data base after updating.

Considering F+(R), since a > b, b > d ¢ F(r), therefore a ~ d ¢ F+(R).
But we see that a ~ d is not true in the updated instance of R, since

(a],b],c]) e R, and (b d2) € Ry, S0 the a-value a is associated with

']5
the d-value d2; also (a],b],c]) € R1 and (c1,d]) € R3, so the a-value a
is associated with the d-value d1, i.e. the a-value ay is associated with

two d-values d] and d2‘ It is also important to notice that even though

this updated data base instance does not satisfy F(R), it still does

satisfy all functional dependencies in F(R).



One thing we should notice is that if A -~ b is a functional
dependency in F+(R) and A is nog contained in any relation in R, then
by the non-Tloss property, the existence of an A-value implies that this
A-value can be obtained by projecting a tuple which belongs to a non-
Toss join of some relations of R. For example, the natural join of the
instances of R, and R, in figure 1 is {(b],c],c]), (bT,c3,d1), (bZ’CZ’dZ)}'
Mowever, this join is lTossy: omly b1c' and h,cz are existing bc-values

of the data base instance of R, but b]c3 is not.

Let us look at another example.

Example 2. Let R ={R (2,b,c), Ry(c,b)} be am optimel set
of relations. If we want to update an instance of R2, we should check
whether the updated instance has no conflict with the relationships between

b and ¢ 1in the instance of R] and the instance of R2.

From the above discussion, we have the following conclusion:

Assume an optimad. set of nelations R and the functional
dependencies set F(R) of R. 1t is not thue that an instance of the
data base which satisfies all functional dependencies in F(R) will
awtomatically satisfy all functional dependencies in F (R); akso when
we update a relation Ry of R, Lt 45 not always sufficlent Lo check
only whethen the updated instance of ,Ri STLL s0tisfies the gunctional

dependencies in FD(Ri).



This means that we need to find the conditions (i.e. constraints) for

update validity. We call this kind of constraint implicit functional

dependency constraints (or simply 1ﬁﬁﬁicit'tonst§aintsj within a set

of relations. A formal definition will be given in section 3.2.

3. Algebraic Representation of the Functional Dependencies in a Closure -

Given that A > B 1is in G+, the closure of a given set of
functional dependencies G, we know that A -+ B can be derived from
G. However, which functional dependencies and which rules are involved
when deriving A - B are usually not explicitly recorded. Adaptations
of derivations and derivation trees from formal languages to express how
functional dependencies are derived in G [Bernstein 75], record only
one derivation even when there may be several. Here we give an algebraic
approach in which all ways of deriving a functional dependency in G
can be captured by a single expression. By using these expressions we

can find all implicit constraints within a relational data base.

3.1. Basic Mathematical Background

To date, there is little mathematical basis for manipulating
functional dependencies described in the Titerature. The concepts of
partial functions capture the properties of functional dependencies.
Thus in this section, we give a basic partial function theory which

is used for deécribing implicit constraints within relational data bases.



Let A ='{A],A2,...,An} and B ='{B],B2,...,Bn} be two non-

empty collections of non-empty sets. For simplicity, we will write

f:A>B, aeA, beB, (a,b) e f, (a,b) e AxB and f(a) = b,

by which we mean

f : AxA x...XAn > B1XB2x...xB ;

172 m’
a = (a],az,...,an) € A]XAZX...XAn, a; e A1,
b = (b]’bZ""’bm) € B]XBZX...XBm, bj € BJ,

(a],...,an,b],...,bm) e T3

(a1,...,an,b1,...,bm) € A]X...XAnXB]X...XBm;

and f(a],...,a ) = (b],...,b ) respectively.

n m

A relationship* f from A to B 1is a subset of AxB.

A partial function f from A to B, denoted by f : A-> B, is a

relationship from A to B such that for every a ¢ A, there exists
at most one b e B such that (a,b)ef. If (a,b) ¢ f, then we write
f(a) = b.

Let A, B and C be three non-empty collections of non-

empty sets. Let f: A->B and g : B+ C be two partial functions.

10

The composition of f and g, denoted by f o g, is defined as follows:

fog =1{(asc) | ae A, ceC, 3beB such that

(a,b) e f and (b,c) ¢ gJ.

*
Note that this term is called a relation in set theory, but that would
lead to confusion here.
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It is obvious that the composition f o g is still a partial function

and is defined from A to C [Stanat 77].

Let f: A->B and g : A~>C be two partial functions

and B n C=¢. The additive join of f and g, denoted by f A g,

is defined as follows:

fag = {(a,byc) | aechA, beB,ceC such that
(a,b) ¢ £ and (a,c) ¢ g}.

It is clear that the additive join f A g is also a partial function

and is defined from A .to B x C.

let f:A~>B and g : A~ B be two partial functions
defined on the same domains. The union of f and g, denoted by

f + g, is defined as follows:

f+g = {(a,b) |aeA, beB such that
(a,b) e f or (a,b)egl.

It is not difficult to show that the union f + g defines a relationship
between A and B which is not necessarily a partial function, as we

can see from the following example:

Let A= {1,2,3}, B = {a,b,cl.

i

Let f:A->B with f = {(1,a), (2,b)} and

{(2,a), (3,c)}.

g:A->B with g

We have f + g = {(1,a), (2,a), (2,b), (3,c)}, and f + g is not a
partial function from A to B since (2,a) and (2,b) are in

f +q.
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Two partial functions f and g defined from A to B are

equal (or identical) if

(a,b) ef iff (a,b) € g for all a ¢ A, b e B.

We denote this by f = g. We say that f and g agree iff (a,b) ¢ f
and (a,b') e g implies b =b' forall aec¢A, beB and b' ¢ B
[Bourbaki 68].

It 1s clear that if two partial functions are equal then they
also agree, but the converse is not true, as we can see from the following

example:

Let A=1{1,2,3}, B= {a,b,c}.
Let f:A>B and g:A->B and f={(2,b), (3,c)} and
g = {(1,a), (2,b)}.

By the definition, f and g agree, but clearly they are not equal: e.g.,
f(3) is defined but g¢(3) 1is not.

Lemma 1. Let f: A>B and g : A=+ B be two partial functions
from A to B. The unionof f and g, i.e. f + g, 1is a partial
function from A to B iff f and g agree.

let f: A->B and g : C-~D be two partial functions.

We say fog is defined where 6 € {o,+,A} iff

(1) =< and B=C, or
(2) o=+, A=¢C and B=D, or
(3 e=a and A-=C.

Let o, B and vy be three partial functions. In the following



properties, the equality is true iff the right hand

side are defined.

P1. (Idempotence of +.) a+ta=o

P2. (Commutativity of +.) at+tpB=8+
P3. (Commutativity of A.) aAB=BA
P4. (Associativity of +.) (o +8) + v

Hence we can simply denote (o + B) + Yy or o +
a + B + vy without any ambiguity.

P5. (Associativity of A.) (o0 A B) A Y
Hence we can simply denote (@ A B) Ay or a A
a A B Ay without any ambiguity.

P6. (Associativity of o.) (0 o B) o v
Hence we can simply denote (a o B) vy or a o
o o B oy without any ambiguity.

P7. (Left distributivity of A over +.) o A (B8 + v)

P8. (Left distributivity of o over +.) a o (B + v)

P9. (Left distributivity of o over A.) o o (B A a)

P10. (Right distributivity of o over +.) (B + y) o a

For convenience, we give priorities. to the

o the highest priority and + the Towest priority

13

side and left hand

=0L+

(B +

>

(B

=04 [»]

(B o

I

(a
(a
(a
(8

i

Hi

H

(8 + v)
Y) by

(B A vy)
v) by

(B o v)
v) by

AB)+ (oA
B) + (o o v)
B) A (o o B)

]

[+]

y) + (y o a)

©

se operators by giving

. Hence

(@aB)+(any), (@eB)+ (aeoy) and (a o B) A (wey) can be

written as o AB+a Ay, e B+taoy and a o B AQ Y,

respective]y.
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3.2. Label Expression of a Functional Dependency

In this section, we will give an algebraic representation
for the functional dependencies in the closure of a given set of
functional dependencies. We first define what is meant by a partial
Tabel of a functional dependency in the closure of a given set of

functional dependencies.

Definition 1. Let G be a set of functional dependencies which

is in canonical form and consists of k functional dependencies iamed
by 1,2,...,k respectively. Let A, B and C be three non-empty

sets of attributes of G. The partial labels of functional dependencies

of G+ are defined recursively as follows:

(1) For each i e {1,2,...,k}, i 1ds a partial label of the
functional dependency in G with name 1.

(2) (Projectivity.) If B c A, then PE is a partial Tabel
of the functional dependency A -+ B ¢ G

(3) (Additivity.) If o and B are partial labels of
functional dependencies A+ B and A -» C of 6" respectively and
BnC=4¢, then o A B 1is a partial label of A > BC ¢ G+.

(4) (Transitivity.) If o and B are partial labels of
functional dependencies A+ B and B~ C of G+ respectively, then
a o B is a partial label of A~ C ¢ G+. ‘

. (5) ({(Alternativity.) If o and g are partial labels of
a functional dependency A » B ¢ G+, then o + B is also a partial
Tabel of A B c 6.
(6) No other expressions are partial labels of functional

dependencies of G
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The semantics of partial labels can be described as follows:

Assume an optimal set of relations R with the set of func-

- tional dependencies G = F(R) which is in canonical form and consists

of k functional dependencies named by 1,2,...,k.
(1) For each i ¢ {1,2,....,k}, a partial label i of
the functional dependency A -+ b with name i of G, at any time t,

defines a partial function

fy D(a]) x ... xD(a,) >~ D(b)

o)

where A = '{a],...,ag} and D(ai) denotes the domain of the attribute

a- This partial function ft is obtained by projecting the relation

R of R, in which A is a key of R and b 1is an attribute of R,

on the attributes set A u b. For simplicity, we also denote fy by

ft : A> b and if there is no ambiguity, we simply denote ft by f.
(2) Let A and B be two non-empty sets of attributes

such that B < A and A be a key of some relation R of R. PE is

a partial label of A > B ¢ G+ and at any time t, defines a partial

function f : A - B. This partial function f is obtained by project-

ing the relation R on A, and for all a e« A in the projection,

f(a) is defined as the projection of a on the attribute set B.

Note that we do not consider the case when A is not a key of any

relation in R, since we do not need this type of projection (see

section 3.3 ).

(3) Let A, B and C be three non-empty sets of attributes
of G and Bn C=¢. Let o and B be partial labels of A > B

and A>C of G respectively. If at time t, a and B define
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relationships f (from A to B) and g (from. A to C) respectively,
then the partial label o A 8, which is a partial label of A >BC e G,
at time t defines the additive join f Ag of f and g.

(4) Let A, B and C be three non-empty sets of attributes
of G, and let o and B. be partial labels of A+ B and B~ C
of G+ respectively. If at time t, o and B define relationships
f (from A to B) and ¢ (from B to C) respectively, then the
partial label « o B, which is a partial Tabel of A > C ¢ G+, at time

t defines the composition f o g of f and g.

(5) Let A and B be two non-empty sets of attributes of
G. Let o and B8 be partial labels of A -+ B ¢ . If at time t,
a and B define relationship f and g (from A to B) respectively,
then the partial label o + B, which is also a partial label of

A->Bc¢ G+, at time t defines the union f +g of f and g.

A11 the above interpretations can be proved to be valid by
the definitions of partial label and closure of a given set of func-
tional dependencies. Now we can define what is meant by a claim that

two partial labels of a functional dependency are equal.

Definition 2. Let o and B be two partial labels of a functional

dependency A » B ¢ F+(R), where R 1is an optimal set of relations.
We say that o and B are equal, denoted by o = g, if and only if

o and B define the same relationship from A to B at all times.

It is easy to show the partial labels of F'(R) satisfy
the properties P1 to P10 given in section 3.1, We have the following

additional properties:
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PI1. If BchA, CcA, BaC=¢ then Py A.Pg - ch.
PI2. Phooa=aoPS=a

. B C_ .C
PI3. If CcBcA then PYe pf=pl.

Given an optimal set of relations R, let o be a partial
label of a functional dependency in F+(R). By the properties of
partial labels (P7, P8 and P9), it is clear that o can be expressed

in disjunctive normal form [Stanat 77] i.e.

i\
w—t
-

= + + ... F
o a] az o n

n3

and each o does not contain "+" , for all i 1,2,...,n. We call

each oy a term of o.

Definition 3. let o= ap ot ..o o, 02 1 be a partial

label and in disjunctive normal form. o is irreducible iff 04 # aj

for 1 #3, 1, ] =f],2,...,n.

Lemma 2. Let R be an optimal set of relations and A and B

be two non-empty sets of attributes of R. We have:

(1) If a-= ap ta, v o (n = 1) 1is a partial label
of a functional dependency A - B ¢ F+(R) and is in disjunctive

normal form, then each term o¥ of o defines a way to derive A -+ B

in F(R).

(2) For any functional dependency A + B « F+(R), there

‘exists a partial label ¢ = ap * ... to (n 2 1) which is in dis-

n
junctive normal form, such that for any way of deriving A > B ¢ F+(R)
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there exists a j ¢ {1,2,...,n} such that as. represents this way of

deriving A > B e F (R).

We say o in (2) of Jemma 2 is complete.

Corollary 1. Any two complete and irreducible partial labels of a
functional dependency 1in F+(R) have the same number of terms and
they are equal, i.e. they define the same relationship for attributes

which appear in the functional dependency.

From now on, we call a complete and irreducible partial Tabel
of a functional dependency a label of the functional dependency. Note
that if we give some method for ordering labels of functional depen-
dencies, then each functional dependency in F+(R) can be labelled by
a unique Tabel which has the minimum ramk in that ordering among labels of
the functional dependency.

Let us Took at some examples:

Example 3. Let R"='{R](§,b,c); Ry(b,d), R;(c,d,f)}
be an optimal set of relations. Clearly F(R) ={a-> b, a->c, b~ d,
cd ~ f}. Let us name the functional dependencies in F(R) by 1,2, 3
and 4. We see that 1 and 3 afe partial labels of a-+ b and b~ d
respectively, hence 1 o 3 1is a partial label of a > d ¢ F+(R)- Also
2 is a partial label of a->c, so 1o 3 a2 (i.e. (10 3)A2) is
a partial Tlabel of a » cd ¢ F+(R). Now 103 A2 and 4 are
partial labels of a »cd and cd - f of F+(R) respectively, so
(1 e34A2)o4 1is a partial label of a~fe F+(R). Note that
(2 A1 03) o4 1is also a partial label of a » f ¢ F+(R), but we can

show that it is equal to (1 o 3 A 2) o 4 and both are complete and
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irreducible, so both are labels of a = f € F+(R).

Example 4. Let R = {R](g,b,c), Rz(g,d), RB(Eﬁd)} be

an optimal set of relations. Clearly F(R) = {a~>b,a->c, b>d, c~>d}.

Let us name the functional dependencies in F(R) by 1, 2, 3 and 4.
Since 1 and 3 are partial labels of a +b and b +d respectively,
hence 1 o 3 1is a partial label of a ~d ¢ F+(R). Similarly, 2 and 4
are partial labels of a > c, c -+ d respectively, hence 2 o 4 1is

a partial label of a~+d ¢ F+(R). Thus, 1 ¢ 3+ 204 1is also a
partial label of a~>d ¢ F+(R), and we can show that it is complete
and irreducible, hence it is a label of a ~ d ¢ F+(R). Note that

neither 1o 3 nor 2 4 1is complete.
We now give a formal definition for implicit constraint.
Definition 4. Let R be an optimal set of relations and F(R)

be the set of functional dependencies of R. We say that R  contains

an implicit constraint induced by a functional dependency A » b e F+(R)

iff a disjunctive normal form label of A - b has the form

=oq ta, F ..+
0] OL-I 01.2 O(,n,

That constraint is: at any time, the partial functions defined by each

a.s 1 =1,2,...,n must agree.

13
Thus any time we want to update a relationship involving a

functional dependency in F(R), and this functional dependency appears

in o, then we may have to check whether all partial functions defined by

the o, agree after updating. If not we should either reject the

updating request or do some other updating to ensure that all partial
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functions defined by o; agree.

3.3. Minimum Implicit Constraints of a Relational Data Base

It may be that a disjunctive normal form label
@ =0y tapt . ta (n 2 2) 1is "induced'by another implicit
constraint B 1in the sense that if the updated data base instance
satisfies B then it necessarily satisfies o. Thus it is possible
that we need not check whether or not the updated data base instance
satisfies the implicit constraint o every time we update a relation-

ship of a functional dependency in F(R) which is contained in a.

Let us show this by the following example:

Example 5. Let R = {R](g;b,c), Rz(gjd), R3(§3d),
R4(g,e)} be an optimal set of relations.
Ciearly F(R) = {a»b, a»c, b»d, c>d, d»e}. Let us name the functional
dependencies in F(R) by 1, 2, 3, 4 and 5. It can be shown that
a»d and a->e arein F+(R) with labels B =10 3+ 2 0 4
and a=10305 + 20405 respectively. We can rewrite o as
(1 o3+204) 05 (byP10). If a data base instance satisfies the
implicit constraint B, then it also automatically satisfies the

implicit constraint o.

We have the following result:

Lemma 3. Let R be an optimal set of relations and F(R) be the
set of tunctional dependencies of R. Let o be a label of a func-
tional dependency A - B ¢ F+(R), where A and B are non-empty

sets of attributes of R. If a=8 6 vy, where B and vy are
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partial labels of some functional dependencies of F+(R) and 6 is

either A or o, then we can ignore o as an implicit constraint of R.

Proof. If f:A »B, g:A~C and h : B> D are three partial
functions, then f ag and f o h are also partial functions from A
to BxC and from A to D respectively.

Now Tet o =8 6 vy be a label of some functional dependency
of F+(R) and 6 be either A or o. If a data base instance
satisfies the implicit constraints induced by 8 and vy, then B8 and
y define two partial functions, say f, and f,. By the results stated in
section 3.1, f] 0 f2 is also a partial function, which implies that the
data base instance also satisfies g 6 vy, i.e. a. This proves the lemma.

a

Theorem 1. Let R be an optimal set of relations with the func-
tional dependencies set  F(R). "‘...nr. that all tmplictty comstraints
are satisfied, we need to consider only the implicit constraints induced
by functional dependencies in F'(R] which have the form K - b, where

K ¢s a primary key of some relation in R and b i3 an attridbute of R.

Proof. From lemma 3, we can ignore the implicit constraints induced

by the functional dependencies of F+(R) which have the form
A+BecF(R) with |[B] =2

since these have labels of the form 8 A y. Suppose that A > b ¢ F (R)
and A is not a primary key of any relation of R. Assume that there
exists an A-value ay and two b-values b-I and b2 such that aj is

associated with b] and b2.
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Case (1). If there exists a relation R of R with
primary key K, and a tuple t of the relation instance of R such
that t[A]*; ajs then t[K] 1is defined and is associated with as
since all primary key values of tuples are defined. Hence t[K] is
associated with b1 and b2. Since K> A, A->b e F+(R), therefore
K>be F+(R). By assumption, the data base instance satisfies K- b,

hence b] = b2.

Case (2). If there exists no relation instance with a tuple
t such that t[A] = 4 then the existence of the A-value a; implies
that a; can be constructed from a set of relations {R1’R2""’Rn} and
A 1is contained in the union of all attributes in these relations. By
the property of reconstructability and the non-loss property there
exists a j ¢ {1,2,...,n} and a tuple t of the instance of Rj such
that Rj > R] ° Ry o vii o Ry and t[K] 1is associated with ays
where K 1is the primary key of Rj' Hence t[K] 1is associated with
b, and b,. Since K > A, A>beF(R) therefore K»b e F (R).
By assumption, the data base inséance satisfies K > b, therefore
by = b2’ Thus we can ignore the implicit constraint induced by

A>b e F+(R) if A s not a primary key of any relation in R. This

proves the theorem. 0

*
t[A] denotes the projection t on the attribute set A.
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4. Accommodating Implicit Constraints

A tool called the functional dependency table fLing 78b], which is an
extension of an implication matrix [Fadous 75], can be used to find the
minimum set of implicit constraints within a given reddational data hase.
Briefly, given an optimal set of relations, R, the functional dependency
table is used to derive the labels of elements in F+(R) for which the
left hand sides constitute the primary keys of some relations in R and
the right hand sides are single attributes. A complete description is
given in [Ling 78b], where it is shown that the algorithm involved runs in
time polynomial in the number of functional dependencies and the number of

attributes.

4.1. Incidence of Implicit Constraints

Given a set of relations R, 1if there exist two relations R]
and R2 with keys K] and K2 which are properly equivalent, that is

Ky ~ K, ¢ F+(R) and K, -+ K] € F+(R), then we can merge R] and R2 into

1 2 2
one relation R such that R has an attribute set equal to the union of
the attribute sets of R1 and R2, and the keys of R are all the keys of

R, and R,. Denote this by R = merge(R],Rz).

1 2

Lémma 4: Let R be a non-optimal set of relations. Suppose there exist
two relations R1 and R2 of R with primary keys K] and K2 which are
properly equivalent. Let R = merge(R],RZ) and let R' =R - {R],R2}1J{R}.
If there exist two disjoint non-empty sets of attributes A and B of
relations R, and R, respectively with B n attribute(R]) = ¢, and an

attribute d e K, such that AB > d 1is a full dependency in F+(R), we
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have: R' has simpler impticit constraints thah R in the sense that fewer

relations need to be involved in implicit constraints in R'.

Proof. Let us first consider the case where K] is also a key of R2.
It can be shown that there exists an implicit constraint in R which
can be expressed as

8= (g > A) (g > B)) o ot Py

where o 1is a label expression for the functional dependency
AB > d ¢ F+(R). The relations which are involved in B are Ri> R,
and the set of relations which are involved in a. Similarly, in
R', there exists an implicit constraint which also can be expressed as
B, and relations involved in B are R and the relations which are
involved in «a, hence the number of relations involved in 8 of R’
is one less than in B of R.

Now let us consider the case in which all keys of R2 are
not keys of R]. It can be shown that there exists an implicit con-

straint in R which can be expressed as

- d
B] = ((K] >~ A) A (a] o (K2 > B))) o G + Pk']
where a, and %, are label expressions for functional dependencies
K] > K2 and AB > d 1in F+(R) respectively. The relations which are
involved in By are R], R2 and relations which are involved in
o and o,. Similarly, there exists an implicit constraint in R'

which can be 2xpressed as



By = (K > A) A (K > B)) o ay + pg].

Hence the relations which are-involved in Bé are R-and relations

which are involved in Qo s and therefore the number of relations
involved in P in R' dis less than in B] in R. This proves

the Temma. d

Example 6 Llet R = {R](gilgq,bz,c), Ry (a,,b,,by,d) s
(c d, b ), R4(a],a2) It can be shown that a]b] and a2b2 are

properly equivalent. R  has an implicit constraint which can be

represented by

a
B = ((a]b" > C) A (((a]b] - b2) A (P

b
° (a2b2 »>d))) o (cd ~ b]) + Py

b, ° (a; > a,)))

b

—_J-—J—I-—I

1

A1l four relations are involved in B. Now if we merge R] and R2

into R, we get

The implicit constraint in R' becomes

b
_ i 1
%
and By = (a]b] > az) + Pa b © (a] -~ az).

11

The relations involved in B and B, are R, R3 and R4, which

is one less than in B.

25
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Boyce-Codd form relations [Codd 74] are sometimes thought to
contain M functional dependency constraints other than the key constraints,
and hence they are thought to he better than non-Boyce-Codd form
relations in the sense that they have less constraints to be main-
tained. This 1is not necessarily true when we consider a set of

relations, as we can see from the following examples:

Example 7 Let Ry = {Ry(a,by,by), Ry(k,a,by,c)}
and R, ='{R1(g,94i§8), Ré(gigq,bz,c)}. We can show that
F+(R]) = F+(R2). We see that R, is a set of Boyce-Codd form re-
lations and there is no implicit constraint in Ry. R] is not a
set of Boyce-Codd form relations and there exists an implicit con-

straint which is represented by

B = (ka»by) + (5 o (aby)).

Hence R2 is better than R].

Let us Took at another example which was given by Csborn

[0Osborn 78].

Example 8 Let R].=’{R](gjgig), Rz(b,c,d,e), R3(g,c)}
. . +
and Ry = {Ry(a,b,c), Rh(a.d.e), Ryle,c)l. We see that F'(R) = F' (R,),
R2 is a set of Boyce-Codd form relations but R1 is not. In R]

there is an implicit constraint which is represented by
= c
By = (bcd +e)o (e»c) + Pbcd

and the relations involved are R2 and R3. In RZ there is also

an implicit constraint which is represented by
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82'_' (,ad+e) o (e—)- C)_ + (Pgd o (a > c))

and the retations involved are R], RE and R3. It is clear that
to maintain the implicit constraint By in R] is easier than to
maintain the implicit constraint B, 1in R, 1in the sense that Bo
involves more relations. This example shows that some non-Boyce-Codd
form relations sets are better than Boyce-Codd form relations for
maintaining the implicit constraints.

From the above two examples,we see that although Boyce-Codd
form relations set is sometimes better than non-Boyce-Codd form

relations set, the reverse may just as well be true.

4.2. Checking implicit comstraints

As described so far, implicit constraints are expressed
in terms of functional dapendencies rather than in terms of the
relations involved. It may be better to express the implicit con-
straints in terms of relations by using relational algebra expressions
[Codd 71], since relational data bases are conventionally described
in terms of operations on relations rather than functional dependencies.
We now define what is meant by restricted natural join'of two relations,
and then give a method to transform label expressions into relational

algebra expressions.
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Let R] and R2 be two relations and A be a key of R]

and A ¢ Ry (i.e. A g’attribute(Rz)). The restricted natural join
of R] and R2 on A, denoted by (R1 o RZ){A}’ is defined as
follows: ‘

(1) If Ry n R2 = A then, the restricted natural join of
R] and R2 on A is the same as the natural join of R] and R2
[Codd 71], and we simply denote it by R] ° R2.

(2) 1f Ry n R, 2 A, then the restricted natural join of
R] and R2 on A 1is the same as the natural join of R] and the
relation obtained from R2 by assigning different new names (but
remember the original names) for those attributes of R2 which belong
to R] n R2 - A. If there is no ambiguity, we denote the join by
Ry ° R2.

Note that each new name in the join represents an implicit
constraint: the projections of every tuple of the join on this new name
and the original name of the attribute must agree. Note that the re-
stricted natural join of two relations is non-loss whereas the natural
join of two relations may be lossy (as was described in section 2).

Now we informally present a method to transform a label
expression o of a functional dependency A - b 1into a relational
algebra expression.

First express the label expression o in
disjunctive normal form. Then delete any term
that only contains a single projective function.
For each other term, find all relations having

functional dependencies involved in the term,
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and project the relations on the attributes

which are involved in the term. Then find

"~ the restricted natural join of these projected
relations.and project the join on A u {b}
and the new attributes.

Let us Took at the following example:

Example 9 4‘ Let R ='{R](glggc), Rz(gﬁg)}. An implicit
constraint of R is Pgb + (ab»c) o (c»b). To transform this to a
relational algebra expression, we drop the term Pgb. (absc) o (c»b)
involves R] and RZ’ the join key is ¢, and b belongs to both
relations but not a key, hence we rename the attribute b of Rz‘by b',
and the restricted natural join is R*(a,b,c,b'). The constraint is:
for each tuple t in R', t[b] and t[b'] must agree. Note that
the natural join of R] and R2 is R"(a,b,c) from R" we cannot

find the constraint.

Example 10. Let R = {R,(a.p.c.d.e,f), R,(e,b.9), Ry(f.9), Re(g.h)}.

b

The implicit constraints Pap * (ab+e) o (e > b) and (ab~>e) o (e > g)

+ (ab > f) o (f > g) can be transformed into
(R][a,b,e] ° Rz[e,b'])[a,b,b‘] (where b in Ry is renamed by b')

and  (Ry[a,b,e] o Ry[e,g1)[a,b,g] + (Ri[a,b,f] o Rg)[a,b,q]

respectively, where "+" has the same meaning as in label expressions,

which denotes a constraint.

Example 11 Let R = {Ry(a,b,c.d,g), Ry(b,c,f), R5(d,f)}.
The label expression ((a»b) A (a»c)) o (beof) + (axd) o (d»f)  can

be transformed into
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(R][a,b,c] ° Rz)[asf] + (R][a,d] °'R3)[aaf]-

If we Tet Ri = R][a,b,c,d] then it can be also transformed into

' - '
(R] ¢ Rz)[dsfj + (R] °© R3)[a:f]-
For simplicity, we can write it as

(R

1 ° R

2 + Ri ©° R3)[a:f]

since there is no ambiguity to interpret it as the original expression.
Expressing an integrity constwaint in terms of operations on
relations allows us to establish the validity of an instance of the relations
at any point in time. However, it is sometimes more desirable to check on
every update that the resulting instance does not violate any integrity

constraint.
Let R be an optimal set of relations with the functional

dependencies F(R). Let

a = ay ta, ..t o (n>2)

be a disjunctive normal form label of a functional dependency

A~>be F+(R). Let fi : A+ b be the partial function defined by

the term a; at a time t, for i=1,2,...,n. Let f: : A >b

be the new partial function defined by o after the data base instance
is updated, for i =1,2,...,n. In order to check whether the updated
data base instance satisfies the implicit constraint induced by a,

we must merely ensure that for all 1 = 1,2,...,n, if there exists

an A-value a such that f%(a) is defined and f%(a) # fi(a) then

(1) if there exists j e {1,2,...,n}, 1 # J, such that

fj(a) is defined and fj(a) = fj(a), then f%(a) = fj(a),
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(2) if for all j ¢ {1,2,...,n}, 1 # ], fj(a) is undefined

or fj(a) # fj(a), then f%(a) = fi(a) whenever fé(a) is defined

and & e {1,2,...,n}.
This gives us a better way to check the implicit constraints
because we need not check whether or not f% and f5 agree for all

i# 3, 1,3=1,2,....n.

5. Conclusion

We have shown that an optimal set of relations may contain some
implicit constraints. In fact, implicit constraints may even exist in
optimal sets of relations in Boyce-Codd form, which were designed to reduce
such dependencies between attributes [Ling 78b]. We have given an algebraic
representation for describing the functional dependencies in the closure
of a given set of functional dependencies. We have proved that we only need
to find the implicit constraints induced by the functional dependencies of
the form K-~ b, where K is a primary key of some relation in the set and
b is an attribute, and we can ignore the implicit constraints induced by
the label expressions of the form a = g o y, where B and vy are also
Tabel expressioné. An algorithm, which is based on & tool called functional
dependency table, to find the minimum set of implicit constraints within a

given optimal set of relations is given in [Ling 78b].
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