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Abstract

In this paper we deal with the problem of the mechanization of
establishing a cause for given events. A definition of mechanical cause
in terms of predicate logic is provided. Various aspects of this definition
are discussed, and a number of restricting conditions are suggested (in
order to satisfy some essential intuitions behind the concept of a cause).
An extensive example of the application of our concepts to the problem

of pattern recognition is also presented.



1. Introduction

We may view the area of problem solving as answering various kinds of
guestions. The first type of question is: "Is it true that ..." and we
are on the ground of mechanical theorem proving. The second group of
guestions begins with the key words: "Who", "Where", "What", "When" or
"How many (or much)". They lead us towards the question-answering systems
where an individual answer is a constant representing a person, place,
thing, time or number respectively. The third group involves the question:
"How to" (specification of the goal) and the answer should be a description
of a plan (or program). Obviously this is the domain of mechanical
plan formation (or if one prefers: automatic programming). In all the
above-mentioned situations, mechanical deduction is employed and there are
numerous, well known publications investigating this, so it does not seem
to be necessary to go into any further details.

However, there is another type of questions, which we encounter very
frequently in every walk of 1ife, starting with the word "Why". Apparently
such questions ask for a reason, cause, or, in other words, a hypothesis
which can explain some events which have been observed. Such hypothetical
cause combined with our knowledge of the subject matter should make it
possible to prove the existence of above events by purely logical reasoning.
Interestingly this situation is different from the three cases discussed
above: there thé answer had a flavour of certainty while here we are making
only a hypothesis and we are never able to tell Whether this hypothesis is a

real cause. But in spite of such philosophical difficulties we do make such



hypotheses in nearly every moment of our conscious 1ife where the range of
subjects extends from the kitchen sink to quantum mechanics. Such
overwhelming popularity of hypothesis formation seems to provide sufficient
motivation to try to mechanize some aspects of these processes. Surprisingly
however, with the exception of the research of Shortliffe [9] which will be
discussed later, not much has been published (for these and related topics,
see [1], [3], [4], [7] and [10]). 1In Chapter 2 of this paper a formal
definition of mechanical cause is given. This chapter also contains a
discussion of conditions necessary to restrict this definition in order to
remove trivialities and capture the essential features of many possible
mechanical causes. There is presented an open problem.

Chapter 3 provides an extensive description of an example of the
application of ideas of mechanical causation to the recognition problem. On
the basis of this example, some more general results about the relations

between the structure of knowledge, events and causes are discussed.



2. Mechanical causation

2.1 Preliminaries

A wff with matrix being a conjunction of literals will be
called conjunct. If B 1is a set of w*ffs then AB denotes the con-
junction of all elements of B. If a,b are wffs and K 1is a set
of wffs then aIW(-b means that (aaAK)=b is valid. We assume

existence of special wffs: TRUE and FALSE with usual properties.

2.2 Mechanical cause

2.2.1 Definition: Let K be a set of wff called Knowledge base

whose elements are called descriptors and e be a conjunct called

event.

A conjunct ¢ 1is called a cause of e under K (cause of e or

cause) iff cljze.

¢ is minimal iff for all causes x of e, |—c>x implies

¢ is basic iff for all causes x of ¢, |—x=c.

c is relatively nontrivial

(i) |—<coe does not hold

(i) there is a set K' < {x'|x' is an instance of xeK} such
that ¢ 1is a cause of e wunder K' and
AK' A ¢ is satisfiable.

c is absolutely nontrivial if the condition (ii) holds for

K' = K.

2.2.2 Txamples and comments

Minimality Let K = {IxP(x)>q} and e = q. Then VxP(x), 4xP(x)ar

and 2xP(x) are causes of e but only the last one is minimal.



Basicness Let K = {p>q, gor} and e = r. Then both q and p
are causes of e but only p is basic.

Triviality Let K= {p} and e = q. Then any cause of e is
trivial. But if K = vx(P(x) = P(f(x))), -P(a), -P(ff(a)) > q} and

e = P(f(a)) A q. Clearly there is no absolutely nontrivial cause but
P(a) A-P(ff(a)) is relatively nontrivial with the set

K' = {P(a) > P(f(a)), ~Pff(a)) > q}. Note that the set K' could not

be a subset of K.

2.3 Finiteness of the set of causes which are minimal and basic

We shall identify wffs which are mutually equivalent. For
K = {yx(R(x) = P(x)), Vy(P(f(y)) > P(y))}, e = P(a). The set minimal
and basic causes: {R(f(a)),...,R(f(i)(a)),...} is clearly infinite.
However, it seems to be important that f is a function symbol which
is not a Skolem one because if we define K' = {V¥x(R(X) > P(x)),
vy(3zP(z) > P(y))} the only cause for e is: VxR(x). Interestingly
note that if we Skolemize K' it looks very similar to K.

Open problem Let K be a set wffs which do not contain any

function symbols. Is the set of minimal and basic causes under K

always finite for any event e?



3. Application to the identification problem

In the previous chapter we provided the basic definitions of mechanical
hypothesis formation. However the abstract character of these definitions,
perhaps makes it difficult for the reader to see how to apply them in
practical situations. Therefore we present here an example using our
concepts of mechanical causation to solve a problem of identification. The
example used will be rather concrete, however the techniques applied have

more general character.

3.1 Description of the problem

Let us assume that we are facing the problem of mechanical recognition
of the letters of the alphabet. We have at our disposal a device called the
analyzer which accepts as input a figure and outputs certain elementary
logical information. In this case let us assume that the analyzer is able

to recognize the following types of characteristic points of an input picture:

P end, .ft%r : angle, f*%? : triple and j:;if : quadruple. It should

’
~ - ~ -

be noted, for the sake of general interest that the types of points, with
the exception of angle, are invariants of topological transformation. Angle,
however, is an invariant of differentiable transformations. The output
information of the analyzer could be divided into the following categories:
(a) discovery of at least one point of a given type:
Ix P(x)

where P is called characteristic predicate and can be one of the

following: end, ang, tri or qua which correspond respectively to

the type of a characteristic point.



(B) discovery of certain number of distinct points of a given type.
For two points it will be:
Ix 3y(P(x) A P(y) A x = y)
where '=' is the equality predicate, for three points:
Ax 3y 3z(P(x) A P(y) A P(z) A xzy A X2z A yzZ)
The reader can easily generalize this type of message for any
number of points.

(y) statement that the given input contains only certain types of

points:

Vx(P](x) v Pz(x) ce. V Pk(x))
where Pi (1 < i < k) are characteristic predicates. For example,
the statement

yx(end(x) v tri(x))
says that in the pi#cture there are only end points and triple
points.

The reader should note that the above classification of outputs applies
to a wider range of problems than recognizing pictures through their
characteristic points.

The final output of the analyzer, the event, is a conjunction of
statements of the kind described above.

The events are used to recognize what kind of picture has
been akalyzed. For the sake of simplicity we shall assume that there are only
five possible kinds of pictures:

A, B, C, D, E



The purpose of the following discussion is to find out what events and what

kind of knowledge base are needed in order to uniquely recognize given letters.

3.2. Existential descriptors

In this section we shall introduce the simplest of elements of

the knowledge base, namely existential descriptors. The general format of

such a descriptor is:
LP:BX]...ka (P] (x]) A vl A Pk(xk))

where LP 1is a letter predicate and Pi(] < i < k) are characteristic

predicates. The letter predicates are 0-argument predicates: a, b, ¢, d
or e, corresponding in obvious ways to the respective pictures. We shall
assume that our knowledge base contains the following existential descriptors:

(1) a>3x 3Jy 3z (ang(x) A end(y) A tri(z))

(2) p>3x 3y (ang(x) A qua(y))

- (3) ¢>3x énd(x)

(4) 4>3x ang(x)

(5) e>3x 3Jy 3z (ang(x) A end(y) A tri(z))

The meaning of the above descriptors is rather obvious: for example,
(1) says that the picture 4 contains at least one angle, one end and one
triple point.

Let us examine how our knowledge base works on example of some events.
Let

E = 3x3y(end(x) A ang(y)).

In this case the set S of non-trivial, minimal and basic causes (to which

we shall refer in future as n-m-b causes) is as follows: -



§={a,b/\c,c/\d,e}

clearly there are four possible causes: the picture could be A or E or
B and C together or C and D together. In this situation the simul-
taneous appearance of two letters is impossible but there are situations,

for example, identifying illness (cause) on the basis of symptoms (events),
when such conjunction is legitimate: 1like two illnesses occuring together.
So we do not yet reject any of the above possibilities. In order to obtain
more resolving power we have to make our knowledge base more sophisticated,

which is described in the following section.

3.3. Negative descriptors

The role of these descriptors is to specify types of characteristic
points which a given picture does not contain. The general form of negative
descriptors is

LP > Vx(TP](x) V...V TPk(x)) .
The meaning of the symbols is the same as in 3.2. We shall assume that our
knowledge base has the following negative descriptors:

(6) a > vx(lqua(x)) |

(7) b > yx(7end(x) A Ttri(x))

(8) ¢ o vx(hang(x) A Ttri(x) A Tqua(x))

(9) 4a o vx(Tend(x) A Ttri(x) A 7Jqua(x))

(10) e o vyx(Tqua(x))

Now for the same event E as in 3.2 the set S of n-m-b causes is

reduced to:



S ={a,e}

It is interesting to notice that it is the condition (ii), nontriviality
that eliminates the conjuncts b A c and c A4 from the n-m-b causes.
Let us analyze it in the case of b A c. Assuming ¢ = b A c, after the
skolemization of (7) and (3) we find the following clauses are a part of
c A M

—1b v-lend(x) from (7)

“lc v end(a) (3)

” |
c
(o)

where o 1is a Skolem constant. Obviously the above set is unsatisfiable
which makes ¢ A Ax unsatisfiable and contradicts the nontriviality
condition. In similar manner c A d 1is eliminated. It is clear that the
negative descriptors are a very useful tool to improve the selectivity of
the knowledge base. However, they have an important drawback: in a
situation where we have a large number of characteristic features (in our
case they are the characteristic points), the negative descriptors may become
very large (for example, when we deal with hundreds of symptoms in medical
diagnosis). In order to handle such a situation we have to choose, among
all the features which a given object does not have, only a few, and record
these as a negative descriptor. It motivates us to introduce another type

of descriptors which will play a similar role.
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3.4. Excluding descriptors

Here we present a type of descriptors which state that a given picture
possesses no other characteristic points than those specified. We achieve
it by the following formula:

PLZDVX(P](X) Vol V Pk(x))
where the meaning of the symbols used is the same as in 3.2.

In the case of our example we shall add to x the following:

(11) a>vx (end(x) v ang(x) v tri(x))

(12) bovyx (ang(x) v qua(x))

(13) e>vyx end(x)

(14) 4> vx ang(x)

(15) e>vx (end(x) v ang(x) v tri(x))

We also add to k the following statements which show that different
characteristic points are indeed distinct:

(16) vx (end(x)> (hang(x) A7Ttri(x) a1qua(x)))

(17) vx (ang(x)> (tri(x) a—qua(x))

(18) ¥x (tri(x)>qua(x))

The general form of such statements is:
VX(P#X)DfW$H(X)A...A“Wnu)) 1 <1< n-1
where n s the number of all characteristic features (in our case n = 4),
We shall now show that (12) and (16) combined will play an analogous

role as (7) in excluding » A ¢ as a trivial cause. If Cc = b A c then

the following is a part of ¢ A Ax:
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=1b v ang(x) v qua(x) (12)
—1end(x) v—ang(x) from (16)
—1end(x) v-—qua(x)
—1c v end(a) (3)
b }
C
c
Again it is easy to notice that the above set is unsatisfiable. Instead of
(3) we could use (13) which is stronger, but we wanted to show that b A ¢

would be excluded even in the absence of (13). In order to eliminate c A 4

we could use: (3), (14) and (16).

3.5. Quantitive descriptors

In the previous sections we discussed ways of eliminating from among
n-m-b causes such elements as b Ac or c A d. However, the set of n-m-b
causes still consists of two elements, a and e so we do not know if it is
a letter A or E which the analyzer tested. Problems here are twofold:
first in our knowledge base, all descriptors referring to A and E, that
js: (1) and (5), (6) and (10) as well as (11) and (14), present the same
properties. Secondly, the data given in the event E = 3x 3y(ang(x) A end(y))
does not provide enough information to distinguish between letters A and E
even under the most sophisticated knowledge base. Therefore we have to both
extend the knowledge base and make the events more informative.

In order to achieve the first, we shall introduce quantitive descriptors.

Essentially they are of two types: one says that a given type of picture
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contains no less than and another, a stronger version, that it contains

exactly a certain number of characteristic points. The general form for
the first type is:

WARNCHEEW)

i<j<k

PL o Hx]...Exk(Pz(x]) Al A Pl(xk) A

and it says that the picture PL contains no less than k points of P2

kind.

For the second type we have:

PL 5 HX]...Exk[Pz(x]) Aol A Pl(xk) A ]éfék (xi#xj) A Vy(Pz(y) =

i<j<k
> (y = Xp V... vys xk))]
which states that PL contains exactly k points of the P2 type.

We augment our knowledge base with two such descriptors; their
meaning seems to be self evident:

(19) a > 3x 3y (tri(x) A tri(y) A x #y) (first type)

(20) e o 3Ix (tri(x) A vy (tri(y) » x = y)) (second type)

Obviously we could introduce many more but for the sake of brevity in
the presentation we will use only first of the above ones.

As we mentioned before, in order to utilize the power of such descriptors
we need more information from events. So far we have used only events con-
sisting of outputs of category (a) (see 3.1); and now we will add
information of types (B8) and (y). Let us consider the event

E=3x 3y (tri(x) A tri(y) A x # ¥) A 3u ang(u) A end(v)
which consists of the outputs of the type (B8) and (a). (We abandoned
here putting all quantifiers to the left for the sake of clarity.) The
set of minimal and basic causes for E is:. {a,e A ¥x 3y -{Eri{y) A x#yH—
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The first cause is apparently non-triviai. However, if we skolemize
the second one and combine it with description (20) we obtain:

e

tri(e(x)) c

x # o(x)

TNe vtri(z) vy = z (from 20)
where ¢ and ¢ are skolem symbols, which is clearly unsatisfiable and
contradicts the nontriviality condition.

Now we shall discuss a problem of distinguishing between pictures
such that the set of characteristic points of one of them is a subset of
that of another: for example, distinguishing D from E. Let us suppose
that it is the letter D which is analyzed. Using outputs of the type
() and (B) the most informative event will be:

g = 3Ix 3y (ang(x) A ang(y) A x #y) .
Even if we add to x the following quantitive descriptors:

(21) a > 3x 3y (ang(x) A ang(y) » x # y)

(22) e > 3x 3y (ang(x) A ang(y) A x # y)
still the set of n-m-b causes will consist of both literals: 4 and e.
In order to resolve such ambiguity we have to resort to outputs of the
type (y) combined with (8). 'In the case of the letter D they will
generate the event:

E = ¥x ang(x) A 3x 3y (ang(x) A ang(y) A x # y).
Clearly in this case the only n-m-b cause is the formula consisting of

the Titeral 4 . This concludes the discussion of our example.



14

Bibliogranhy

[1] Buchnan, B., G. Sutherland, and £.A. Feigenbaum;
Heuristic Dendra’i, Machine Intelligence 4, 1969, pp. 209-254.

[2] Chang, C.L., and R.C.T. Lee;
Symbolic Logic and Mechanical Theorem Proving,

Academic Press, 1973.

[3] Cohen, B.L.,
A powerful and efficient structural pattern recognition system;
Artificial Intelligence, Vol. 9, No. 3., Dec. 1977, pp. 223-255.

[4] Lenat, D.B.,
Automated theory formation in mathematics;
Fifth IJCAI, Cambridge, 1977, pp. 833-842.

[5] Mendelson, E.,
Introduction to Mathematical L'ogic, D. Van Nostrand, 1964.

[6] Nilsson, N.J.,
Problem solving methods in artificial intelligence, McGraw Hill, 1971.

[7] Report of First AIM (AI in Medicine) Workshop, Rutgers University, 1975.

[8] Robinson, J.A.,
A machine oriented logic based on the resolution principle,
J ACM 12, 1(Jan. 1965), pp. 23-41.

[9] Shortliffe, E.H.,
Computer-Based Medical Consultations: MYCIN,
Elsevier Computer Science Library, 1976.

[10] Verne, S.A.,
Induction of concepts in the predicate calculus,
1JCAI-75, pp. 281-287.



	

