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Languages of R-Trivial Monoids

by
- J. A. Brzozowski—and-Faith E. Fich

Abstract

We consider the family of languages whose syntactic monoids
are R-trivial. Languages whose syntactic monoids are J-trivial corres-
pond to a congruence which tests the subwords of length n or less that
appear in a given word, for some integer n . We show that in the
R-trivial case the required congruence also takes into account the order
in which these subwords first appear, fromleft to right. Characterizations
of the related finite automata and regular expressions are summarized.

Dual results for L-trivial monoids are also discussed.



1. Introduction

The well-known Green equivalence relations are fundamental in
the theory of monoids [2, 6]1. They are defined as follows. Let M be

a monoid and f,g ¢ M ; then

fijg iff MfM = MgM

fLg iff Mf Mg
frRg iff fM = gM
fHg 1iff fLg and fRg

If p 1ds an equivalence relation on M , we say that M 1is p-trivial

iff fpg implies f =g . 1In 1965 Schiitzenberger [8] showed that finite
H-trivial monoids correspond to star-free languages, i.e. languages that
can be denoted by regular expressions using only boolean operations and
concatenation. In 1972 Simon [9,10] characterized the languages corres-
ponding to finite J-trivial monoids. These languages play a key role in
the dot-depth hierarchy [3, 9] of star-free languages. This hierarchy
and J-trivial and H-trivial monoids are also treated in [4].

The languages corresponding to finite R-trivial (and L-trivial)

monoids are studied here. Several new characterizations of these

languages are given.

2. Terminology and Notation

Let A be a finite non-empty alphabet and A* the free
monoid generated by A , with unit element 1 (the empty word). The
length of x ¢ A* 1is denoted by |[x| ; note that |1/ =0 . The

product (concatenation) of two words x and y in A* is denoted by



Xy . The "alphabet" of a word x ¢ A* is

a(x) = {a e A | x = uav for some u,v e A*} .

Y

The reverse x" of a word x s defined by induction on |x]

1° =1 and  (xa)P = axP

Subsets of A* are called languages. If X,Y c A* then
X=A* - X, XuY,and X nY denote the complement of X , the
union, and intersection of X and Y , respectively. The product of

two languages is XY = {w | w=xy , xe X , y e Y} . Also X*= U x"
n=0

(where X° = {1}) 1is the submonoid of A* generated by X . The
reverse of X is X° = {(x° | x ¢ X} .

For any family F of languages FB 1is the smallest family
containing F and closed under complementation and finite unions.
Similarly FM is the smallest family containing F u {{1}} and closed
under concatenation. Thus FB and FM are the boolean algebra and
monoid generated by F , respectively.

The syntactic congruence = of X < A* is defined as follows.
For all u,v,Xx,y ¢ A*

x =y y Iff (uxv ¢ X iff uyv e X)

The quotient monoid M = A*/EX is the syntactic monoid of X and the
natural morphism ¢ : A* -~ M , mapping x ¢ A* onto the equivalence
class of EX containing x , is the syntactic morphism of X . For
convenience we often denote o¢(x) by x .

If ~ is any congruence on A* we say that X is a

~ language iff X 1is a union of congruence classes of ~ . Thus X



is a ~ language iff for all x,y ¢ A*
X~y implies (x ¢ X iff y e X)

Since ~ 1is a congruence, x ~ y implies uxv ~ uyv for all u,v e A*.

Thus X 1is a ~ language iff

X~y implies X = Y i.e. x=y.

A finite semiautomaton is a triple § = <A, Q, o> , where A
is the input alphabet, Q 1is a finite set of states and o : Q x A -+ Q
is the transition function. A finite automaton is a system
A = <A, Q, dy> F, o> where A, Q and o are as above, dg € Q s
the initial state, and F c Q is the set of final states. In any

finite semiautomaton define the relation - as follows. For p,q ¢ Q

p+q iff o(p, x) =q

for some x ¢ A* . S (or A) 1is partially ordered iff the relation -
on Q is a partial order. A semiautomaton is a chain reset iff - is

a total order.
The direct product of two semiautomata § = <A, Q, o> and
I =<A, P, v is the semiautomaton § x T = <A, QxP, m> , where
m((q, p), a) = (olg, a), t(p, a)) .
The cascade product of § =<A, Q, o> and T = <B, P, > with connection
w:QxA->B is the semiautomaton S o T = <A, QxP, m™ , where
m((q, p), a) = (o(q, a), (p, w(q, a)) .

An initialized semiautomaton is a semiautomaton with an initial

state, i.e. 5 =<A, Q, 9p> O - Let § and T = <B, P, Pys T be two



initialized semiautomata. J 1is a subsemiautomaton of § iff B c A ,

PcqQ, 9% = Py o and t 1is the restriction of ¢ to P xB . A
semiautomaton § is a homomorphic image of semiautomaton T iff B = A

and there exists a surjective mapping ¢ : P - Q such that w(po) = 4,

and

¥(t(p, a)) = olylp), a)
S is covered by T iff § 1is a homomorphic image of a subsemiautomaton

of T .

The transformation monoid of a semiautomaton S = <A, Q, o> (or
of a finite automaton <A, Q, dye o o>) is the set of all transformations
of Q onto itself of the form (q],...,qn) - Qy(q], X)s veus c(qn, X))
for some x ¢ A* . It is well-known that if A is a reduced finite auto-
maton recognizing the language X < A* , then the transformation monoid
of A is isomorphic to the syntactic monoid of X .

Let M be any monoid and f ¢ M . Then

Pf ={geM| fecMgM} and M. =P%x . Thus Mf is the submonoid of

f f
M generated by the elements g "with which f can be written"

(f e MgM) .



3. Languages of J-Trivial Monoids

Simon, in [ 9] and [10], provides many characterizations for
languages with J-trivial syntactic monoids as is summarized in

the following theorem. An additional property, M3 , is taken from
[1].
Theorem 1 Let X < A* be a regular language, let M be its
syntactic monoid, and let A and /Ap be the reduced finite automata
accepting X and XP respectively. The following conditions are
equivalent.
MI. M dis J-trivial
M2. M is R-trivial and L-trivial
M3. For all idempotents e e M, eMe U Mee =e .
M4. There exists an n >0 such that for all f,g e M,
(fg)" = (fg)"f = g(fq)" .
M5. There exists an n > 0 such that for all f,g e M
= 1 and (Fg)" = (af)" .
X1. X 1is a n language for some n = 0 .
El. X e {A*aA* | a ¢ A}MB
Al. A and /Ap are both partially ordered.
A2. A is partially ordered and for all g e Q , X,y ¢ A*
1(g,x) = 1(q,xx) = 1(q,xy) and t(q,y) = t(q,yy) = t(q,yx)
imply 1(q,x) = t(q,y) .

A3. A can be covered by a direct product of chain resets.

This paper provides analogous results for languages with

R-trivial syntactic monoids. We require the following concepts from [9].



The congruence n~ e mentioned above, is defined in terms of
the subwords of length Tess than or equal to n that a given word

contains. More precisely we have:

Definition 2 Let x,y ¢ A* and n>0 . Then

(a) x is a subword of y , x <y , if and only if there exist
X]”"’Xn’uO""’un e A* such that x = x].t...xn and
Y= UgXqtye XUy
(b) the n-contents of y , denoted by un(y) , 1S the set
{x | x<y and |[x] <n}

(c) x ~y iff wu (x) =1 (y)

It is straightforward to show that n~ is a congruence of
finite index for any n = 0 [9]. Simon also proves the following three

results which are ﬁeeded for the next section.

Then

[\
<

Proposition 3 Let x,y ¢ A* and n

(b) ()"~ ()"

() ()"~ ylx)"
Proposition 4 Let x,y e A* and n=>=0 . Then x n+1™ Y implies
X~y
Lemma 5 Let u,v e A* and n>0 . Then wu n~ uv iff there

. * _
exist Upseesll € A* sych that wu Upeoly and



4., The "R Congruence

The congruence "R is defined to be a refinement of n>
in which the order of appearance(from the left)of the subwords in a word

is also taken into account. More formally:

Definition 6 Let x,y ¢ A*X and n >0 . Then x "R Y if and only if

(a) for each prefix u of x there exists a prefix v of
y such that u Vo
and (b) for each prefix v of y there exists a prefix u of

X such that u Vo
Note that if Ix] <n , x "R Y iff x=y.

The two equivalence relations n> and n~Rare closely

related and satisfy many similar properties.

Proposition 7 Let x,y e A* and n >0

(a) If x DR Y then x N~

(b) x n~ XY if and only if x "R -

(c) If xy "R XY and x ~x' then x "R X

Proof:

(a) Since x s a prefix of x there exists a prefix v of y such

that x Vo Thus un(x) = un(v) E.Un(Y) . Similarly

un(y) E.Un(x) ; SO un(x) = un(y) . Therefore x ~y .



(b) Any prefix of x 1is also a prefix of xy . Let v be any prefix
of xy . Then either v is a prefix of x or x is a prefix of
v . In the second case wu (x) cu (v) cu (xy) = un(x) so that

X o~V Therefore x nROXY The converse follows from (a).

(c) Let u be a prefix of x . Since u is also a prefix of xy

there exists a prefix u' of x'y' such that u N~ u' . Now
either u' is a prefix of x' or x' is a prefix of u' . In
' t = = '

the second case p (x') =p (u') =u (u) <y, (x) u,(x") , so that
x' n” u' and hence u N x' . Similarly for each prefix u' of
x' there exists a prefix u of x such that u 0~ u' . Therefore

~ '
X "R X

Proposition 8 Let x,y e A¥ and n =0 . Then
n n+]
(a) x n"R X

n n
(b) (xy)" ~p (xy)'x .
Proof: Immediate from Propositions 3 (a) and (b) and 7 (b) .

Proposition 9 Let x,y ¢ A* and n=>=0 . Then x n+1"R y

implies X "R Y -

Proof: Follows from Proposition 4.

Lemma 10 Let u,ve A and n>0 . Then u n~R Uv iff there
* * =

exist u1,...,un e A* such that wu u]...un and

OL(U-I) > ... zoc(un) > alv) .

Proof : Follows from Lemma 5 and Proposition 7.



Proposition 11 "R is a congruence of finite index for all n = O.

Proof: Let n =0 and let x,y ¢ A* be such that x "RY Let

aeA.

Suppose u is a prefix of xa . Then either u 1is a prefix
of x or u=xa . In the first case, because x "RY there is a
prefix v of y such that u Vo If u = xa then from Proposition
7(a) X ™Yo and since 0~ is a congruence u = xa poya . By

symmetry, for each prefix v of ya there exists a prefix u of xa

such that u Vo Therefore "R is a right congruence.

Suppose u is a prefix of ax . Then either u =1 or
u=au' for some prefix u' of x . If u=1 then u is also a

prefix of ay . Otherwise, since x ~ ¥ , there exists a prefix v

t

of y such that u' N~ v' . But N~ is a congruence soO u = au

Similarly for each prefix v of ay there exists a prefix u of ax

such that u Vo Hence "R is a left congruence.

The fact that is of finite index follows directly from

n R
the fact that n~ is of finite index.

One nice property of "R which is not shared by nSo is

that each congruence class has a unique shortest element.

Lemma 12 Every congruence class of R contains a unique element
of minimal length. Furthermore, if CERRRPL M A then ag...a, is minimal
rfandon]y'rfun(1) 5-“n(a1)-§ pn(a]az) S .- g pn(a]...am) .



10

Proof: By induction on k , the minimum length of elements in a given
"R class.
Note that minimum Tength elements exist because length is a
function from A* to the nonnegative integers which form a well ordered set.
For k =0 the Temma is true since 1 1is the only word of
length 0 . Let k =1 and assume the lemma is true for all R
classes containing elements of length less than k .
Suppose there exists a "R class containing minimal elements
x and y of length k .

Since k=1, x=ua forsome uelA*, aec A . Now

un(u) g_un(x) , and u N~ X implies u n"R X by Proposition 7(b) , so

un(u) # un(x) . Employing the induction hypothesis (since |ul| < k) the

"R class containing u has a unique element of minimal Tength. Call

this element w . If w# u then Iw| < |ul and hence |wal|l < [x]|
But w "R Y and n~R 1S @ congruence, so wa pTR U = X contradict-
ing the minimality of x . Therefore u =w . By the induction
hypothesis wu = ay...a, where un(a]) c ...Syn(a]...a ) and thus

X =a;...aa where un(a1) S e SU

Because x "R Y there exists a prefix v of y such that

u ~Vv . By Proposition 7(c) u R Y Also, v 1is a proper prefix

of y since un(v) = pn(u) $.Un(x) = un(y) . Thus v =u , for other-

wise k= |y|] =1+ |v] >1+ Jul = |x] = k which is impossible.
Therefore y = ua' for some a' ¢ A . Now un(u) ;_pn(ua); hence there
exists a word za « un(ua) - un(u) . But un(ua) = un(ua') , SO

Za € un(ua') - un(u) . That being the case a = a' and thus x =y .
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By induction on k every congruence class of "R contains
a unique element of minimal length, and if Ayse.asdp € A are such that

a a_ 1is minimal then uﬂ(]) 5—“n(a1) S .- SH

1"+

Finally, suppose x = ay. .-, where Ayseeesd € A and

(1) eq (a]) S s 5—“n(a1"'am) . Let u, = 1, Up = aps ..

Up = 37---2, be the prefixes of x and let y be the unique minimal

element of the "R class containing x . Since x R Y there exist

prefixes Vor V9o sees Yy of y such that Ui g™ Vs for 0 <1 <m.

) = ( ) 7 U (u;) = w{v,) forall i#3j , the v.'s

Because M (v j ntY; ;

i
must be distinct. Thus |yl =m . But I[x| = m; therefore by the

uniqueness of the minimal element x =y .

Definition 13 For n > 0 define the function X, A* -~ A* by

Xn(x) = the unique minimal element R congruent to x .

The following is an algorithm for finding the minimal element

of a congruence class of n~R given any word x 1in the class.

Algorithm for x (x)

Find the shortest prefix wua of x such that u ¢ A* , a ¢ A,

and u g~ ua . If none exists then x = a]...am where

un(1) $,Un(a1) $-Un(a]a2) G e g un(a]...a ) and xn(x) =X .

Otherwise x = uav for some v e A*¥* . Since u g~ ua implies

~ nd ~ i ~ = X . Thus
u ~pua n~R 1S a congruence, uv n"R uav u

xn(x) = Xn(UV) . Note that uv 1is shorter than x and so the algorithm

always terminates.
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Example Let x = abccbcac and n =2
prefix u of x EQLH_
1 1
a 1,a
ab 1,a,b,ab
abc 1,a,b,ab,c,ac,bc
abcc 1,a,b,ab,c,ac,bc,cc
abccb 1,a,b,ab,c,ac,bc,cc,cb,bb
abcebe 1,a,b,ab,c,ac,bc,cc,cb,bb

Since uz(abccb) = uz(abccbc) , abcchb o™R abccbc and hence

abccbac o™R abccbcac = x . Replace x by abccbac .

abccba 1,a,b,ab,c,ac,bc,cc,cb,bb,aa,ba,ca
abccbac 1,a,b,ab,c,ac,bc,cc,cb,bb,aa,ba,ca
Since uz(abccba) = uz(abccbac) , abccha ™R abccbac . Now

u2(1) < uy(a) g u,(ab) S u,(abe) ;uz(abCC) < uo(abeeb) g u,(abecba));

therefore xz(x) = abccba .

To construct un(ua) from un(u) it is only necessary to add
those elements wa such that w e un_](u) buﬁ wa ¢ p (u) . The
number of elements in un(u) is bounded by 'ng1 , where m is the
cardinality of the alphabet. Given x , Xn(;) can be found in 0(|x|)

steps. Thus in  O(Ix| + |yl) steps one can determine whether x "R Y-
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The algorithm motivates the following definition:

Definition 14 For n > 0 define the binary relation on A*

n R
as follows:

X néP y iff x = z,uz, and y = z,uvz, for some

Z15,Z2,,U,v ¢ A*¥ such that u ~ uv.
1°72 n

Let =R be the symmetric transitive closure of néR .

One verifies that x ﬁ&R x for all x e A* since
"= o 1=1", X = x(1n)1 and x = x(1"1)1 . Hence R is an
equivalence relation over A* . It is easily seen to be a congruence.
Propositions 15 Let n=0 ., Then x "R Y iff x R Y

Proof: If x n&R y then x WR Y by Proposition 7(b); thus x R Y
implies X "R Y since "R is transitive.
If x TRY then by Lemma 12, Xn(x) = xn(x) . From the

algorithm it follows that x R Xn(x) and y R Xn(y) . Hence x R Y

5. R-trivial Monoids

The following theorem is from [8] and [1].

Theorem 16 Llet M be a finite monoid. The following conditions are
equivalent.

1. M 1is R-trivial.

2. For all f,g,h ¢ M, fgh = f implies fg = f .

3. For all idempotents e e M, eMe =e .

4. There exists n > 0 such that, for all f,g e M,

(fg)"f = (fg)" .
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Lemma 17 Let M be a finite R-trivial monoid and ¢ : A* - M a
surjective morphism. Let n be the cardinality of M and let
u,v e A* . Then

u o~ uv implies u = uv,

where x denotes o(x) .

Proof: Suppose u g v By Lemma 5, there exist Upseeenl € A*

such that u = u;...u  and a(u]) o ... g_a(un) > afv) . Let u, =1

By the choice of n , the elements Uys UglUys -oes , cannot

U Uy...U
—0—1—
all be distinct. Hence there exist i and j, 0 <1i<j<n, such

that

f=u...u = Ugeoslye.olUs = f94+1"'“j = fgj+](gﬁ+2...uj) .

Since M is R-trivial, f = fu,,,

If u(un) =¢ then v=1 and
there is nothing to prove. Thus suppose u(un) # ¢ . Since

a(u1+1) E-Q(un) £ ¢ , we have u;,q = az for some a ¢ a(ui+1) ,
zeA* . Then f =faz and f = fa . Consequently f = fa for all

a e a(ui+]) . Because wuj q...u Ve (u(u1+]))* it follows that

.u_ = fu. uv = uv

Uu=u...u = fu Uy jpoeeUpV = UV

S e 1 =i+1—n

Theorem 18 Let M be the syntactic monoid of X c A* . Then M is

finite and R-trivial if and only if X is a "R language for some n = 0.

Proof: Assume M is finite and R-trivial. Let n be the
cardinality of M and let x,y ¢ A* . Suppose x né? y . Then

= = * ~
X z]uz and y z]uvz2 for some z],zz,u,v ¢ A* such that u n uv.

2
By Lemma 17, u =uv and x = Zauz, = zyuvz, =y . Since  ~p is the
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symmetric transitive closure of n&R , 1t follows that x R Y implies
X =Yy . By Proposition 15 x R Y iff x SR - Thus X R Y
implies x =y i.e. X is a R language.

By Proposition 8, for all x,y ¢ A* ,
n n
(xy)" ~p (xy)'x
If X is a n~r language we must have

)" = () "x .

Since M 1is the range of the surjective morphism ¢ : A* > M , it follows

that for all f,ge M,
(fg)" = (fg)"f

Because R is of finite index M is finite, and it is R-trivial by

Theorem 16.

6. Partially Ordered Finite Automata

In this section the finite automata associated with R
languages are considered. In the sequel we assume that all semiautoma-
ta and automata are finite.

Recall the definition of partially ordered automata and semi-
automata given in the introduction. The following equivalent characteri-

zation is from [9].

Proposition 19 ,§ = <A, Q, o> 1is partially ordered if and only if for

all geQ, x,yeA*, o(q, xy) =q implies o(q, x) = q .
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Proposition 20 Let § = <A, Q, 0> be a partially ordered semi-auto-

maton. Then the transformation monoid, M , of § is R-trivial.

Proof': Suppose f,g,h ¢ M are such that fgh = f . Since M is the

transformation monoid of § there exist x,y,z ¢ A* such that x = f,

y=¢g, and z=h . Now xyz = fgh=Ff=x and § 1is partially

ordered. Thus o{q, x) = o(q, xyz) = o(o(g, x), yz),and by Proposition 19,

o(g, x) = o(o(q, x), y) = o(q, xy) for all q € Q . Therefore f = x = xy = fg.
We now present additional properties of partially ordered semi-

automata mentioned in [7], [9], and [11]. The proofs of these results

are straightforward and can be easily verified by the reader.

Proposition 21 If T 1is a semiautomaton which is covered by some

partially ordered semiautomaton S then T is partially ordered.

Proposition 22 The direct product of two partially ordered semiauto-

mata is partially ordered.

Proposition 23 The cascade product of two partially ordered semi-

automata is partially ordered.

Let A= <A, Q, Ay Fy o> and B = <A, P, Pos G, v> be finite
automata and let <A, QxP, 7> = <A, Q, o> x <A, P, v> . Then the union
of A and B is

AuB = <A, QxP, (qO’ pO)’ FxPuQxG, m> »

the intersection of A and B s
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AnR=<A QP, (q., p,)s FxG, ™
and the complement of A is

B, = <Aa Qs qos Q'Fs o> .

Because the definition of a partially ordered automaton does
not depend on the set of final states it follows that if A and B are
partially ordered then AuB , AnjB , and B are also. Hence the set
of all partially ordered finite automata with alphabet A forms a
Boolean algebra.

Another way partially ordered automata can be characterized is

in termsof certain sequential networks.

Definition 24 For n=0, an n-way fork 1is an initialized semi-

automaton <A, {qo,q1,...,qn}, dy> 0> where A = Ao U A] U voo U An .
the Ai's are non-empty and pairwise disjoint, o(qo, a) = 9; for all
aeA; , and o(qi, a) = q; forall aeA,i=1,....,n. SeeFig. 1.

A half-reset is a one-way fork.
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Proposition 25 If a semiautomaton can be covered by a cascade product

of half-resets then it is partially ordered.
Proof: Immediate  from Propositions 21 and 23 and the fact that a
half-reset is partially ordered.

In [7] and [11] it is proved that any partially ordered finite
automaton can be covered by a cascade product of half-resets. Introducing

n-way forks is a convenient intermediate step.

Proposition 26 Any n-way fork is isomorphic to the connected

initialized subsemiautomaton of a cascade product of n half-resets.

Proof: By induction on n . The case n =0 is degenerate. For
n =1 the result follows from the definition of a half-reset. Assume
the result is true for n =1 . Consider the (n+l)-way fork £ﬂ+]

illustrated in Fig. 2(a).

(oD bo

=
O '—

B = {b sb-l}

—
(@]
~—
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Let En = <A, Q, Ag> > be the n-way fork of Fig. 2(b) and let
I = <{bo’b1}’ P, Pye T be the half-reset in Fig. 2(c). Define the
connection ® as follows:
b] if q= 9% and a e An+1

b otherwise

Let R = <A, R, (qo,po), n> be the connected initialized

subsemiautomaton of fnel . Note that

R = {(agspy)s (a75Py)s o5 (a;5Py)s(q,.p;)} since these are the only
states which are accessible from (qo,po) . Except for (qo,po) each is

)1

a terminal state (i.e. n(r, a)=r forall acA,re R - {(po,qO

It is clear that F

Kn+1 18 isomorphic to R .

By the induction hypothesis IEn is isomorphic to the connected
initialized subsemiautomaton of a cascade product of n half-resets;
therefore £ﬂ+] is isomorphic to the connected initialized subsemi-

automaton of a cascade product of n+l1 half-resets. Thus the result is

true for all n=1 .

We call a graph G tree-like if and only if the graph G', obtained
from G by removing all trivial Toops, is a tree. (A trivial loop is
an edge from a vertex to itself.) The height of G is defined to be the

height of the tree G'

Proposition 27 Any initialized semiautomaton whose state graph is

tree-Tike is isomorphic to the connected initialized subsemiautomaton of

a cascade product of forks.

Proof: By induction on the height of the graph.
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If the graph of an initialized semiautomaton is tree-like of
height less than or equal to 1 then the semiautomaton is a fork. Assume
the result is true for all initialized semiautomata whose graphs are
tree-1ike of height less than h , where h > 1

Let S = <A, Q, Gg> O be an initialized semiautomaton whose
graph is tree-like of height h . Let
{q],...,qn} ={geQ- {q,} | o(qo,a) = q for some a ¢ A} be the set
of sons of g - For 1 <1 <n Tlet §ﬁ = <A, Qi’ 9i» 03> be the sub-
semiautomaton of § initialized at q; . Since q; # 9o > the height
of the graph is less than h ; thus §4 is isomorphic to the connected
initialized subsemiautomaton of §% = <A, Q%, di» o%> , & cascade product
of forks.

Define ,I% = <Bs» Q55 a5, T%> as follows. If there exists an
a; e A such that o%(q, ai) =q for all qe Qi Tlet B, =A and
T} = o% . Otherwise let B. =Av {e} ,where e ¢ A, and let T; be
such that for q ¢ Q%, b e Bi s

oi(q, b) if beA
LHCP b)={
q if b=e

Note that 41% is still a cascade product of forks.

Let T = <A, P, pys T > be the n-way fork where P=={p0,p],...,pn}

and .
P, if p= Py and o(qo,a) = q;
To(Ps @) = {

p otherwise

T. o T: for i =1,...,n where the connection

Inductively define L i1 ° A5

wj * P X Q% X ... X Q%_] x A > Bi is given by
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a  if r=(pi, s eevs Qi 1)
oy (r, a) = { i’ M i-1

bi otherwise

where T;(q, bi) =q forall qc¢ Q -
It is a straightforward proof by induction to show that the set

of states of T; accessible from the initial state (po, Ays -ees qi) is

~

Ry = Upys a5 +ovs a)d v Llpys aps oees A1 9> Gpgys --vs G5)

| q ¢ Qé, 1 <k <14}

and that the following equations hold

Ti((pO’ Gqs - qi), a) = (pk, Gy vees qi) for all a € A such that

o(q,, a) = q
T (P> 15 ves Qs @ Qpyps -ees 45)s 2)

= (P> Qys oo Qgs (@5 @)y qpygs oo ag) for g e QL 1 <k <

and

Ti{loys ags ois 95)sa) = (ps Gy ovs q) for i<k s,

Now consider the bijection ¢ : Q = R_ defined by

n
(po, Gys oevs G ) if q = a4,

¥(q) n
) if g e Qi

(pi’ q]a cees qi-]’ wi(Q), q1+],-.., qn

where wi : Q1 - Q% is the isomorphism from S. to the connected

~j
initialized subsemiautomaton of 4§% . Let ae¢A and qe Q. If

g e Qi then T
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w(g(q’ a)) W(Oi(q, a))
= (Pi, q]’ <o Q570 lP-i(U.i(qa a)), Qjt1> --+> 9 )
= (pia q]a cees qi_], O%(Wi(Q)a a): q1+], e q )

= (p1’ q19 see s qi_]s T%(wi(Q)a a)a q1+]a cees G )

T, (Pys aps wevs a5 g5 wi(a)s a4,5 9.),5 a)
T, (w(a), a)

1]

and if q =q_ and o(qo, a) = q; then

¥(o(q, a)) = v(a;)
= (pja q]s LA ] qi_]’ wi(qi)s qi+]9 Pee qn)
- (p1’ q], s oy qi_]g qi, q1+], s e e qn)

T ((Pys a5 «-vs q ), @)
T, (v(a,), a)

n 0

Thus ¢ is an isomorphism between S and the connected initialized
subsemiautomaton of In; so the result is true for S . It follows by

induction that the proposition is true.

Corollary 28 Any partially ordered initialized semiautomaton is the

homomorphic image of the connected initialized subsemiautomaton of a
cascade product of half-resets.

Proof: Any partially ordered rooted graph can be transformed into a
tree-1ike graph by splitting nodes (see Fig. 3). The desired homomorphism
is the obvious one which maps a node in thg tree-like graph to the node

in the original graph from which it was produced. The result then follows

by Proposition 27.
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=> b
a,b
Fig. 3
7. R-Expressions
Definition 29 Let A be a finite alphabet. An R-expression is a

finite union of regular expressions of the form Aga]A?...amA$ where

mz0, a,....a A, and Ay eA-{a;} for 1 <i<m.

The relationship between partially ordered semiautomata and

R-expressions is mentioned in [7].

Proposition 30 Let X c A* be the language denoted by some

R-expression. Then the reduced finite automaton recognizing X is

partially ordered.

Proof: Because of the remark following Proposition 23 we may assume

the expression is of the form A3a1A?...amA$, where m > 0 and

Ai—] <A - {ai} for 1 <1 <m, without any Toss of generality.
Consider the automaton A = <A, Q, Ay {qn}, o> where

Q={gq., ..., q,> qd} and o 1is defined as follows:



24

q. if aceA;

i i
c(qi, a) = A, 1f a-= 241
Ay if aeA - (Ai u {ai+1})

c(qd, a) = a4 for all a ¢ A

It is straightforward to show that A 1is partially ordered and recognizes
X .

Since the reduced finite automaton recognizing X is a
homomorphic image of A , it follows from Proposition 21 that it, too, is

partially ordered.

Proposition 31 Every R language can be denoted by an R-expression.
Proof: It is sufficient to show the result for every congruence class
of R The only o~R class is the language denoted by A* . There-

fore assume n > 0 . Let x be the minimal element of its congruence
class. If x| =0 then, since n >0, x=1= {1} which can be
denoted by ¢* . Otherwise x = a;..-ap for some Aysecsdp € A . Llet

m .

A

A0 =¢ and let A, = {a cA | ay...353 ~ag...,5) for 1 <i

Since x 1is minimal,
pn(]) _g_un(a]) G e gun(a]...ai_]) gun(a]...ai_ﬁi) G e ;pn(ar..am)
by Lemma 12. Hence a; ¢ A; ; for 1 <1 <m and thus

Aga]AT...amA; is an R-expression. From Proposition 15 it is clear that

* * *
X can be denoted by Aoa]A1"'amAm .
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With this result, Theorem 18, Proposition 20, and Proposition
30 the languages defined by the congruences "R R-trivial monoids,
partially ordered finite automata and R-expressions are seen to be the
same. Since the set of partially ordered finite automata over a given
alphabet forms a Boolean algebra, the set of R-expressions (over the same
alphabet) also does. This result is used in the following theorem.

Proposition 32 Let A be an alphabet and Tet.

D={C*a | C<A-{alIM . Then (D u DA*)B is equal to the set of

R-expressions over the alphabet A .

Proof: Note it is convenient to consider elements of ? as “words"
over the alphabet {C*a | C < A - {a}l} . This is reflected in the

notation below.

(<) Let weD. If w=1 then w and wA* can be expressed by

the R-expressions ¢* and A* respectively. Otherwise

w = Afa,...A%a  where m >0 and a; ¢ A; for 1 <is<m. Inthis

- * * = A% * * 3
case w = ATa1...A$am¢ and wA A1a]...AmamA which are both
R-expressions. Since the set of R-expressions formsa Boolean algebra it

contains (D u DA*)B .

(=) Suppose w = Aéa]...amAa , where m > 0 and Ai-] < A - {ai}

for 1 <1i<m. Clearly, if Am ® then we D , and if Am = A

then w ¢ DA* , so suppose ¢ # Am chA. Llet
- *

W ASaq---Ar q3, € D

Claim: w = w'A* n U wbA*

beA—Am
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Let xew . Clearly x ¢ w'A* . Now a]...amb is a subword

of all words in wbA* but, if b ¢ A, > aj...a b 1is not a subword of

X . Therefore x ¢ wbA* for b e A - Am » that is x ¢ U  wbA* .

beA—/ﬁn
Thus wcw'A* n U wbA* .
beA-Am
Let x ew'A¥*q U wbA* | Since x e w'A* , x = yz where
beA-A
m
Yyew' and z e A* . Now suppose afz) n (A - Am) #¢ . Then
z = ubv where u ¢ A; » bealz) n (A - Am) » and v ¢ A* . But this

implies x = yubz « w'A&bA* = wbA* < U wbA* which is a contradiction.
beA -A
m

Therefore z ¢ A* , s0 X ¢ w'A* = w . Thus w'A* n U wbA* c w , and
m m beA-A -
m

hence the claim is true.

Now for b ¢ A - Am , Wb e D and thus

w=wA*n U wbA* ¢ (D u DA*)B . Since (D u DA*)B 1is a Boolean
beA-A
m

algebra it follows that every R-expression is in (D u DA*)B .

It is now possible to relate the family of languages correspond-
ing to finite R-trivial monoids to the dot-depth hierarchy. That
hierarchy is defined by B, = {{a} | a ¢ AIMB and Biy1 = BjMB for i = 0.
Since {{a} | a e AIM=1{¢*a | ac AIMc {C*a | Cc A - {a}} M =D
By = {{a} | a < AIMB < DB = (D u DA*)B . Bhus all languages in B, have
finite R-trivial monoids.

Any ~ language (n~1 in the notation of [9]) is also an R

n
language. However, the family B] is incomparable with our family. The

longuage A% . l, » where the cardimality of A 1is greater timan 1, has
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a reduced finite automaton which is not partially ordered. See Fig. 4.
In [9, page 116], Simon shows that for the cardinality of A greater than

2 the language denoted by the R-expeassion a*bA* is not in B, -

Finally, for any Ai shA, A? = n{A*aA* | a ¢ A - Ai} € B] » SO

that any R-expression denotes a language in B]M§_= 82 .

A-{a} @ a

A-{a}

Fig. 4
8. Other Congruences

Besides "R and R other congruences can be used to

characterize the languages corresponding to finite R-trivial monoids.

Definition 33 Let x,y ¢ A* . Then x 5Y s and x e Y if and only

if for each decomposition x = x'ax" , with a ¢ A, there exists a

decomposition y = y'ay" such that x' N~ y' and vice versa.

Definition 34 Let x,y ¢ A* . Then x-cay , and X ﬁiﬁ y if and only

if for each decomposition x = x'ax" , with a ¢ A, there exists a

decomposition y = y'ay" such that x' cﬁy' and vice versa.

Definition 35 Let n>20 and x ¢ A* . Then x is n-full if and only

if o (x) = UL(at))' |

0,...,n}
Clearly every word is both 0-full and 1-full. One verifies that,
for n>1, x idis n-full if and only if there exist XpseresXy € A*  such

that x = Xpeee X and a(x]) = .., = a(xn) .



28

Definition 36 Let x,y ¢ A¥ and n=1 . Then x néR y iff there

. * - =
exist UsVs2Zy52Z, € A* such that «x z]uz2 s ¥ T Zywz, 5 U
is n-full and afu)2 o(v) . nZR is the symmetric transitive

closure of an .

Definition 37 Let x,y ¢ A* and n=>=1 . Then x néR y iff there

i * = =
exist UsV,2q,2, € A* such that x 2z, 5, Y = Zquvz, , U
is n-full and o(u) = a(v). n"r 1S the symmetric transitive closure

of’""n;’R‘ et T Tt Toto T T -

These various congruences are related as illustrated in Fig. 5.

Proofs of these results can be found in [5].

m = cardinality of A

—— valid for n=>20
-+~ valid for n = 1
--~-valid for n = 2
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9. Summary

Theorem 38 Let X < A* be a regular language, let M be its syntactic
monoid, and let A = <A, Q, 9y F, o> be the reduced automaton accepting

X . The following conditions are equivalent.

MI. M ids R-trivial.
M2. For all f,g,h e M, fgh = f implies fg = f .
M3. For all idempotents e ¢ M, eMe = e .
M4. There exists an n > 0 such that for all f,ge M,

(fg)"f = (fg)" .

X1. X s an 0"R language for some n = 0 .
X2. X is an R language for some n =0 .
X3. X 1is an Y language for some n = 0
X4. X 1is an Sy language for some n 2 0
X5. X is an n2R language for some n = 1
X6. X 1is an n"R language for some n = 1
E1. X can be denoted by an R-expression.

E2. X e (D v DA*)B where D = {C*a | C < A - {a}IM.
Al. A 1is partially ordered.
A2. For all x,y ¢ A* and for all q e Q , o(q, xy) = q
implies o(g, x) = q .

A3. A 1is covered by a cascade product of half-resets.
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10. Languages of L-trivial Monoids

The L-trivial property is dual to that of R-trivialness. As a
result, characterizations analogous to those in Theorem 33 hold.

Definitions for the corresponding congruences are formed by
using suffixes in place of prefixes. More precisely if x,y ¢ A* and
n=0 then x nL Y if and only if for each suffix u of x there
exists a suffix v of y such that u n~ Vv and vice versa. The five
other congruences (ngl’ Z 7? s nEL , and n7L ) have similarly
modified definitions.

If A 1is the finite automaton of a language with an L-trivial

syntactic monoid then AP is partially ordered. However it is possible

to describe these automata more directly.

Lemma 39 Let S = <A, Q, o> be a semiautomaton, let x ¢ A* and let
B<A. If o(q, ax) = o(q, x) for all a e B and all q e Q then

o(q, wx) = o(g, x) for all we B* and all q e Q .

Proof: By induction on |w]|

1l

The result is clearly true for |w| = O . Assume it is true

n+1

for all words in B" . Suppose W ¢ B Then w = aw' , where a ¢ B

and w' ¢ B" , so that o(q, wx) = o(o(q, a), w'x) = o(o(q, a), x) =

= o(q, ax) = o(g, x) . By induction the result is true for all words in
B* .

Proposition 40 Let § = <A, Q, o> be a semiautomaton and Tet M be

its transformation monoid. The following are equivalent.
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1. M s L-trivial.
2. There exists an n > 0 such that for all connected sub-

semiautomata T = <C, P, p , ™ of & and all n-full words w

it

with a(w) =C , t(p, w) = t(p', w) for all p,p' ¢ P .
3. If x e A* then o(q, x) = a(q, xx) for all q ¢ Q implies

o(q, x) = o(q, ax) forall qeQ, acea(x).

Proof:
(1 = 2) Suppose M is L-trivial. By the dual of Lemma 17 there
exists an n > 0 such that for all x,y ¢ A* , X n YX implies
X =YX -
Let T = <C, P, Po> T be a connected subsemiautomaton
of S, let p,p' ¢ P, and Tet w be an n-full word with
a(w) = C .
Since T is connected there exist wu,v ¢ C* such that

T(po, u) = p and T(po, V) = p Now w 1is n-full and
u,v e {(a(w))* so uw Woand v ~w This implies that
uw = w = vw and thus

T(ps w) = t(py> uw) = o(py> uw) = alpy, ww) = t(p,, vw) = t(p', w).

(2 = 3) Suppose x e A* is such that o(q, x) = o(q, xx) for all
qe Q. By induction it follows that o(g, x) = o(q, x") for
all geQ and n =1

Let g e Q and Tet a ¢ a(x) . Consider the connected
subsemiautomaton J = <a(x), P, q, > of § . Since XN is
n-full o(q, x) = a(a, x") = 1(q, x") = t(t(q, a), x")

= o(o(q, a), x") = o(o(q, a), x) = a(q, ax) .
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(3=1) Let e «M be idempotent and let g ¢ Pe - Let f;h eM be
such that e = fgh . Since M 1is the transformation monoid of
S there exist x,y,z ¢ A* such that x=f, y = g, and
z=h. Let w=xyz so that w = xyz = fgh =¢e .

e =el = y? SO

Since e 1is idempotent w
o(g, w) = o(gq, ww) for all q e Q . Therefore
o(q, aw) =o(q, w) for all a e a(w) , g ¢ Q . Because
a(y) < a(w) we have, by Lemma 38, that o(q, yw) = o(qg, w)
for all qe Q. Thus ge=yw=w=¢e so Pee = e . But

Pee = e implies Mee = e ; hence M is L-trivial.

The final theorem, analogous to Theorem 38, summarizes the

characterizations of languages with L-trivial monoids.

Theorem 41 Let X < A* be a regular language, let M be its syntactic
monoid, and let A = <A, Q, g F, 0> be the reduced automaton accepting

X . The following conditions are equivalent.

MI. M is L-trivial.
M2. For all f,g,h e M, hgf = f implies gf = f .
M3. For all idempotents e e M, Mee = e ,

M4. There exists an n > 0 such that for all f,g e M,

g(fg)" = (fg)" .

X1. X s an n~L language for some n > 0 .
X2. X i ~ ] for s >0 .
is an = anguage for some n >
X3. X is an - Tanguage for some n > 0 .

X4. X 1is an = language for some n = 0 .
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I\
]

X5. X 1ds an noL language for some n

\%
—

X6. X 1is an n7L language for some n

E1. X can be expressed as the finite union of regular expressions of
the form Aéa]Af...amAa where m =0 , Ayse.esdy, € A and
Ay cA-Ha;l for 1 <i<m.
E2. X e (D uA*D)B where D= {aC* | C c A - {a}}M
Al. IAp is partially ordered.
A2. If x e A* then o(q, x) = o(q, xx) for all q e Q
implies o(q, x) = o(g, ax) for all g e Q , a € a(x) .
A3. There exists an n > 0 such that for all connected
subsemiautomata T = <C, P, Py> T of A and all n-full
words w with a(w) =C , t(p, w) = T(p', w) for all
p,p' ¢ P .
A4, Af is covered by a cascade product of half-resets.
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