UNIVERSIDAD POLITECNICA DE VALENCIA

Jose Luis Oliver Herrero.
Universidad Politécnica de Valencia.
Dpto. Ing. Mecdnica y Materiales.

P. 0. Box 22012.

46022 VALENCIA.

SPAIN.

Phone (34)-6- 361 50 51, Ext. 128
Fax # (34)-6-360 31 78

19th September, 1988, Valencia,

UNIVERSITY OF WATERLOO
Department of Computer Science
Waterloo, Ontario N21 3G1
CANADA

Dear Mrs. DeAngelis:

kindness. We have received the repo

‘ \““Enclosed, I send you check number 002182/2076 payable to COMPUTER
SCIENCE DEPARTMENT, UNIVERSITY OF WATERLOO, for § CAD. 8.

Sincerely yours

Prof. J. L. 0. Herrero.

I ~ INFORMATION ON DEMAND, INC.
~ VENDOR NO. VENDOR NAME 2112 BERKELEY WAY ’
BERKELEY, CA 94704
WTR1 UNIVERSITY OF WATERLOD

r__, INVOICE NO. AMOUNT DISCOUNT VOUCHERND, T , \

SERVICES 4,00 DOT68B4

CHECK# k4713 CHECK AMOUNT $4.00

®, O
a \ ST A
al

- . J

PLEASE DETACH BEFORE DEPOSITING

BY ENDORSEMENT THIS CHECK WHEN PAID IS ACCEPTED

IN FULL PAYMENT OF THE FOLLOWING ACCOUNT

University of Waterloo PR

INVOICE

Waterloo, Ontario, Canada

N2L 3C1

Faculty of Mathematics
Department of Computer Science

519/885-1211

Telex Number
069-55259

Novemben 3, 1986.

Ms. Amy Rafperty,
"Ingormation on Demand",
P.0. Box 1370,

Berkelfey, CA 94701
u.s.A.

Dean Ms. Raffenty:

Enclosed please gind our technical nepornt CS-78-30 which
you requested in your phone call of Octoben 24th, 1986.

Please be advised that the cost of this repont is $4.00
Canadian. Would you please make your cheque orn money onden
payable to the Univernsity of Waterloo, Computer Science Dept.

Thanking you 4in advance.

Yours thuly,

/5d Susan DeAngelis (Mrs.),
Enct. Technical Repont Secretany.

PHONE CALL

To .. SUC o
WHILE YOU WERE OUT

Phone ... L!- lS "LUL"L}LPYOO
Telephoned B Please call [E

Called to see you D Will call again D
Wants to see you D Returned your call D

messach(3-19-20. BQ’?,HOY.M..CW

B e 1 T
Operator 80/\/969,‘6:1 CA QLFIO]

C & M OFFICE'SERVICES LTD.
127 Sheldon Drive
Cambridge, Ontario N1R 677
Telephone 621-4361 653-5675

Office Furniture @ Business Machines @ Office Stationery

PrintingRequisition/GraphicServices 45615
1. Please complete unshaded -areas on 2. Distribute copies as fotlows: White and 3. On completion of order the Yellow copy 4. Please direct enquiries, quoting requisi-

form as applicable. Yellow to Graphic Services. Retain Pink will be retumed. with the printed tion number and account number, to
Copies for your records. material. extension 3451.

TITLE OR DESCRIPTION

C’S’ - 75 -3Q0

DATE REQU[SITIONED DATE REQUIRED ACCOUNT NO.

Doesd, 9 AsA L | /L e\ 204
REQUISITIONER PRINT FHONE SIGNING AUTHORITY .
. e e Iy
< UE | t)f\NéﬁLlﬁn L1 A xﬁ;i Lie ¢ ZmaLA%AL//
MALILING NAME DEPT. BLDG. & ROOM NO. ;/D DELIVER

INFO — : /&PICK-UP

Copyright: | hereby agree to assume all responsibility and liability for any infringement of copyrights and/or patent rights which may arise from
the processing of, and reproduction of, any of the materials herein requested. | further agree to indemnify and hold blameless the
University of Waterloo from any liability which may arise from said processing or reproducing. | also acknowledge that materials
pracessed as a result of this requisition are for educational use only.

NUMBER 6 g NUMBER / N‘EGATIVES : LQUANTITY. o NEER: TIME LABOﬁu‘goDE
A e '] O O B L (g0

Py r—— IF1L1M|k|'| TR A TN S T N ['l |lci0,1]
E{A%RX;LOEBHM Jrer L IR SR A R S AT L1 J‘JCIQI“_J
Bowre O e O NEEM e T e
|

TYPE OF PAPERSTOCK

&BOND DNCR PT, :ICOVER DBRISTOL DSUPPL!ED D

PRINTING NUMBERING S - . N

O 1SIDE._~.PGS-‘§£K§ sioes ___ros. FRow To CoHERM e Tl by o001
ﬁomc/mmsmﬁe PMT , T ‘ T

COLLATING STAPLING D—SSY‘:EHED D PLASTIC RING N . :]

= e il oo e It el

FOLDING/ GCUTTING N E . . ; e .
kol s L T O S O A ROV o VI A AN R R (10T R D
Special Instructions E » ‘ T o

4L A I 0 G JLCOMJ

- e , R I g .
“r_i' X /Z AT A fu/» b £ R PLATES
i ! i

PT e ||’t |k ‘[P1011l

¥ R . U, W S 4 R’ sl j ’ ’
I) o PAT l!i,llllll“IILII'(J[PIOHI
Pt v Jle e JEa I H}PaOH‘]
STOCK . - ‘ ' ;:“
A O B R T RTINS S R B RN & SRR S LR
copy CENTRE k i ‘kgg.ER' BLDG. 'MACH;«O ‘

l
e il |,.’|J_l l,rill‘llJJik[Il’fIJLLJ‘!IIl“QlOI"J
DESIGN &:PASTEQUP’ : OPER. LABOUR Lol IR J ‘ IR J‘[0|0¢1J

th'JlTITEl IJE?H R AT R | L ;,J'I'OIQHJ

IlJ[L1 | HD]OM BINDERY

| (LS N T SRTOR I B RTINS T N[V TRA

S L1 [y [[Dog1] | ~
TYPESETT'NG‘ - QUANTITY L | LRINIG‘l [!JL [T H | H | HBO11
LplA'1P[-Q:10|ﬁ|O¢OJ H o] IJLJ‘I T RNGL v e e b 4 iBrog]

IPLAP[0101010:01 || 1 1 o Ll o [moytlfminsloei00000 f1 o g ! Ql4; 10,1]

[PAP[01010100) || 1y oy J Lo dLi oy f[Ti01]| OUTSIPE SERVICES
PROOF o

LPIR_I-FIIIkJ;IJ_JIIIIIHIH;II,HIII,' |
PREL e e e I g $
(SN SRR B | AN AT NI | NI SR S A e

COST

TAXES ~ PROVINCIAL [| FEDERAL [| - GRAPHIC SERV. - OCT. 85 . 482-2

PrintingRequisition/Gra

hicServices

150

65

1. Please complete unshaded areas on
form as applicable.

2. Distribute copies as follows: White and
Yellow to Graphic Services. Retain Pink

Copies for your records.

3. On completion of order the Yeliow copy
wili be retumed with the printed

material.

tion number and ac
extension 3451,

4. Please direct enquiries, quoting requisi-

count number, to

TITLE OR'DESCRIPTION
e

CSo%-30

| A—
DATE REQUISITIONED

DAIE REQUIRED

ACCOUNT NO.

.) T N " . *‘ : + o
LM /5 {«..{.%42 . / l /lu" t("l gléié'l ol /|[Vilw
REQUISl‘rloNER PRINT F’HgéxlE /SIGNING AUTHORITY -
| [DL s A ey
MAILING N AME DEPT. BLDG. & ROOM NO. D DELIVER
INFO - K-UP
Copyright: | hereby agree to assume all responsibility and liability for any infringement of copyrights and/or patent rights which may arise from

the processing of, and reproduction of, any of the materials herein requested, | further agree to indemnify and hold blameless the
University of Waterloo from any liability which may arise from said processing or reproducing. | also acknowledge that materials
processed as a result of this requisition are for educational use only.-

NUMBER / "{?ﬁ NUMBER / NEGATIVES . QUANTITY SSER' T‘IM LAEQU@ODE‘ '
OF PAGES oD OF COPIES ___ | A E b
TYPE OF PAPER STOCK —— lFlLFM’ Ll L H L H L H i L HCFOHJ
pAZ::sE:R_'_"pT' eover [Jomstor [Jsvrriieo [} — Y T T Rl g ! L Pl o] 'IC’IQI”

Fixn Lletee e U L O ,»‘¢;JT |“l} L lleon]
PAPER COLOUR INK) : : R - e
P wrre [12 o D— S IR AT L Tl b f'[C;0f|‘1.»“,l

PRINTING NUMBERING S , : G e
DAJSIDE__APGS. [:] 2 SIDES _____PGS. FROM To lF[L‘Ml 1] 1] 1J L |‘ i [l‘J [| i I | | J:;HI‘ |C|011J

BINI?‘ING/FINISHING/‘___, s | PMT - - e —— e ’ ' E gEE ::

E’i:;:/m o DWPZN:::NGD R { PlMlTi- L L1 1] Ll] L_u__l Lo ; L_Jic;loﬂ_‘

R O A

[Py TL g g0]l N R e llC Dslf

PLATES e ey .

lprlT{J A B Ly IHI H Lol P[OHJZ

Py 4,Jn}lfs~f,I,FlTL51J1~| i'14J1P10t1f

L S A IR M W o tJ|'ngf~w'|3 |0|1L

"STOCK RS SRR

Lo o e o et 4”;fj|010111

COPY CENTRE . oFER, MACH. , : S R .
o T !”7'!‘Ei°si | !“7'44J Liy Ao e dber s b ey |l0l011J
‘nesién&;é#sTE-Up‘ T opem. LABOUR T T |1J|:l Lig o Holo U

Laodbo o ety o by g J.,f Ll 11 IJ;R;JIO 0 1}

L

L] D10, 1]

[

1] 1D01]

TYPESETTING

BINDERY

’ 'ij; V’

1J 131011}

[RﬂhG‘j L1
IRING[|

L

Ll

G\l KLB 0L4

‘QUAANTIT‘Yv‘ . || |’ ";
UﬁAIPIO 0,00, o Il b b o flRiNGE BN lkl'l,Jii IJ [l |f| JL51031I
[P,A P[00y 0,00, ll‘iﬁi Lol e o fmeliminsloe0i0000 L1 g Jfl | | p,r,r | 80,1
[PAP1010,00010¢ [4y [l J[g 1 []Ti0g1]f OUTSIPE SERVICES | | |
PROOF ‘ : L
’PrRiFl Rl TR A 1 Ol e 0 MO e IVLJ
|PLRF] L | | L] =g
IP‘R'FI ‘4“ | ’ H IJ‘ L] I—ll L1 l TAXES = - PROVINGIAL [] ~FEDERAL [| GRAPHIC SERV. OCT. 85 - 482-2

July 15/80
SIgnaiure . . o
CEdith Huang E
Department . - :
‘Computer Science ncswm
] duction Requlremenls - e :
Byouffset EI Slgns/Repros <[] Xerox ya {.E(?

ypg of Paper Stock . . : . ‘ _
wgond [] Book [.Cover [} Bristol] Supplied

II'j'EaIQErSIze :) e -
Bexil. . []8kXM g oM
Pap gQColour .) - Ink y — -

Wf’ilte] Other . rgBrack

Prln!lng ’ ; Numberlng . ‘
[J 1Side [g/ZSndesff 44‘;{ &fj,}égﬁl Y, 5/
s

Folding

May 68 . 482:2"

User Guide fcr SPARSPAK:
Waterloo Sparse Linear Equations
Package

Alan George, Joseph Liu, Esmond Ng

Research Repcrt CS-78-30
(Revised, Jan. 1980)

Department of Computer Science

(c) University of Waterloo, January 1980.
Katerloo, Ontario, Canada

ABSTEACT

SPARSPAK USER GUIDE

This document describes the structure and use of
SPARSPAK, the Waterloo Sparse Linear Equations Package,
which is designed to efficiently solve large sparse systems
of linear equations. Computer programs for solving Sparse
systems of linear equations typically involve fairly
complicated data structures and storage management. 1In many
cases the user of such programs simply wants to solve his
problem, and should not have to understand how the storage
management 1is done, or how the matrix componerts are
actunally stored. One cf the attractive features of this
package is that it effectively insulates the user trcm these
considerations, while still allowing the package to ke used
in a variety of ways. Another important feature of the
package is the provision of a variety of methods for solving
sSparse systenms, along with convenient means by which the
best method for a given frcblem can be selected.

CONTENTS

ABSTRACT - . - - . . L] - [L] - - . L] [] .

SECTION

1.

2.

8.

9.

INTRODUCTION AND BASIC STEUCTURE OF SPARSPAK . .

MODULES OF SPARSPAK AND HCw TIC USE THEM

User Mainline Program and An Example
Modules for Input of the Matrix Structure . .
Modules for Ordering and Storage Allocation .
Modules for Inputting Numerical Values

Modules for Numerical Solution . .

SOME GUIDELINES ON SELECTING A METHOD .

SAVE AND RESTART FACILITIES . . + . .

. - [- -

SOLVING MANY PROBLEMS EAVING THE SAME STRUCTURE .

SOLVING MANY PROBLEMS WHICH LCIFFEEF ONLY

RIGHT HAND SIDE . . . =« o o « &
OUTPUT FROM SPARSPAK .+ & o = o o =« =

Message Level (MSGIVL) . « « + « .

Statistics Gathering (EFESTAIS) . .

Error Messages (I1IERR) e« = s e w @
Save and Festart Routines . . .
Input of the Matrix Structure
Oordering and Stcrage Allocatlon
Input of the Numerical Values .
Factorization and Sclution . .

SUMMARY LISTING OF INTERFACE EOUTINES

EXAHPL Es - - » - . - - L d - -» - - L] »

- iii -

IN THEIR

Routines .

.

- 24
. 25
. 26
. 27
. 27
. 28
. 29
- 30

Appendix
A.

IMPLEMENTATION OVERVIEHW

- »

User/module communication

Module/module communication

-

Save/restart implemenation .

Method checking
Stage (sequence) checking
Storage allocation of integer a

floating point arrays

-

Statistics gathering .

BIBLICGRAPHY

iv -

-

nd

T« o 8 ¢

bage

59
59
61
61
62

SECTICON 1

INTRODUCTION AND EASIC STBUCTURE OF SPARSPAK

SPARSPAK offers a ccllection of methods for solving

—— i et e it e v S . e s i

sparse systems cof linear egquations

Ax = b,
vhere A 1is an N by 8 nonsingular matrix, ard x and
b are vectors of length N . We assume the user is aware

of the basic 1issues involved in solving sparse matrix
egquations, and the basic facts about solving systems of
linear equations using Gaussian elimination. For a
discussion on the initial design of this package, see [5].

For all the methcds provided in SPARSPAK, the user
and the package interact tc solve the matrix problem through
the following basic steps:

Step 1. The user supplies the ncnzero structure of A
to the package wusing a set of sutroutines
described in Section 2.2.

Step 2. The package reorders the original probiewm (finds
a permutation P), and allocates storage for the
triangular factorization of PAP'* = LU , as
described in Section 2.3 (1),

Step 3. The user surplies the numerical values for the
matrix A to the package, as descrited 1in
Section 2.4.

Step 4. The package computes the triangular tfactors L
and U of EAP' , as described in Section 2.5.

Step 5. The user suprlies numerical values for Lt , as

described in Section 2.4. (This step may come
before Step 4, and may be intermixed with
Step 3.)

Step 6. The package computes the solution 'x , using L,
U, P and Lkt , as described in Section 2.5.

to different algorithms for choosing P (aiong with
appropriate storage methods), and whether or not A is
sSymmetric. When A 1is symmetric, U 1is replaced by L

in the above description, and of course only one of 1 and
L' is stored.

1 P! stands for the transpose of the matrix P.

-1 -

The user chooses a particular method by calling the

appropriate subroutines in Steps 2, 3, 4 and 6. The methods
are distinquished by a numerical digit i, 1<ig 6,
which is the last character of the subroutine names. The
subroutines used in Steps 1 and S apply to all the methods.
The best method to use depends very much on the particular
problem, and the context in which it is being solved, so we
cannot provide rigid rules as to which method to use. Some
guidelines and considerations regarding the choice of method
are given in Section 3.

RESTRICTIONS AND ASSUMPIICNS

1.

SPARSPAK assumes that the nonzero structure of A 1is
symmetric. If this is not the case, the package will
still work, but if A has highly unsymmetric
structure, this may lead to some inefficiencies
because the matrix will ke treated as thcugh its
structure is that cf A + A' . The diagonal elements
of A are assumed to be nonzero.

SPARSPAK assumes that for any permutation matrix P ,
Gaussian eliminaticn applied to PAP' without_roy_or
column _interchangqes yields an acceptably accurate

factorization LU . In other words, the gpackage
assumes that A can be symmetrically pernuted
without regard for numerical stability. This 1is

true, for example, when A is symmetric and positive
definite, or diagcnally dcminant.

SECTION 2

BMODULES OF SPARSPAK AKD HOW TO USE THEN

2.1 USER MAIKNLINE PROGEAN ARL AN EXAMPLE

SPARSPAK allocates all its storage from a single one
dimensional flcating point array¢2) which for purposes of
discussion we will denote by S . In addition, the user
mast provide its size MAXS, which 1is transmitted tc the
package via a ccmmon block SPKUSE , (SPARSPAK USEEL), which
has four variables:

COMMON /SPKUSRy MSGLVI, IERR, MAXS, NEQNS

Here MSGLVL is the message level 1indicator which is used to
control the amcunt of irnformatior printed by the package.
The second variable 1IERR is an error code, which the user
can examine in his mainline ©frogram for possible errors
detected by the package. Detailed discussion of the roles
of MSGLVL and IERR is rrcvided in Section 7. The variable
NEQNS is the number of equatiouns.

The following prcgram illustrates how ome might use
SPARSPAK. The various subroutines referenced are descrited
in the subsequent parts of tbis section. The problem that
is solved is a 10 by 10 symmetric tridiagonal system Ax = b
where the diagonal elements of 3 are all 4 , the
superdiagonal and sutdiagonal elements are all -1 , and the
entries in the right hand side vector b are all ones.

2 peclared either REAL or DOUBLE PRECISION, depending on the
version of SPARSPAK that is availatle. The examples in
this manual assume a single precisiom version is te€ing
used.

REAL 5(250), FCUR, CNE
INTEGER I, IERR, MAXS, MSGLVL, NEQKS
COMBON /SPKUSRy MSGLVLI, IERK, MAXS, NEQNS

aonagan

sNeNe!

sNoNsRoNe!

100

CALL SPRSPX
MAXS = 250
INPUT THE MATRIX STRUCIUFE. THE DIAGONAL 1If
ALWAYS ASSUMED 1C BE NCNZERO, AND SINCE THE
MATRIX IS SYMMETEIC, SEABSPAK ONLY NEEDS TO
KNOW THAT THE SUBDIAGCNAL ELEMENTS ARE NONZEEO.
CALL IJBEGHN
po 100 I = 2, 10

CALL INIJ (I, I-1, S)
CONTINDE
CALL IJEND (5)

- o > e - i Y - — . - - 7 —— "

FIND THE ORDERING ANT ALLOCATE STORAGE.

o —— - —— -~ D A U W M e R S T Vi AN VD G Y > A - ——

. A S NS R A M A A T M AMD Y A G S - -

INPUT THE NUMERICAL VALUES FOR A AND E. SINCE
THE MATRIX IS SYMMETEIC, ONLY THE LOWER TRIANGLE
AND THE DIAGONAL ARE INPUI.
FOUR = 4.
ONE = 1.
po 200 1, 10

IF (I .GT. 1)

CALL INAIJY (I, I-1, (-OXNE), S)
CALL INAIJY (I, 1, FOUER, 5)
CALL INBI {(I, CRE, S)

200 CONTINUE
SOLVE THE SYSTEMN.
CALL SOLVEY (5)
PRINT THE SOLUTICN, FCUND IN THE FIRST TEN
LOCATIONS OF THE WORKING STORAGE ARRAY S.
WRITE (6, 11) {(s{1), 1 = 1, 10)
11 FORMAT { , 10H SCLUTICN ,/ (5F12.5))

——— e —— - ————— - - - ——

PRINT SOME STATISTICS GATHER BY SPARSPAK.

- - — - ——— A —— N . g S Wb D N D e A Y AR - - -

CALL PSTA1TS

NOTE: If the SPARSPAK availatle to you 1is a dcuble
precision version, the FEAL declaration in this
example should te changed to DOUBLE PRECISICN.

The module SPRSPK must ke called before any part of
the package is used. Its role is to initialize some systenm
parameters (e.g. the logical unit nuabers for output files),
and to set default values for options (e.g. initializing the
timing routine). The routine needs only to be called cnce
in the user program, and the FCETEAN statement is sisply

CALL SPRSPK

Note that the only variable in the common block SPKUSR that
must be explicitly assigned a value by the user is MAXS.

It is assumed that the =ubroutines which coaprise
SPARSPAK have teen compiled into a library, and that the
user can reference them from his FORTRAN program just as he
references the standard FORTRAN library subroutines, such as
SIN, COS, etc. Normally, a user will use only a ssall
fraction of the subroutines provided in SPARSPAK.

WARNING

The modules of SEARSPAK communicate with each other
through labelled common blocks whose names are SPRUSR,
5PKSYS, SPKCON, SEKMAE, SEKDTA, and SEKOPS. Thus, the user
pust not use labelled cosmon blccks with these names in his
program.

If these common block names cause conflicts 1im your
program or at your computer installation, it is possible to
have the package distrituted with these commom blocks having
specifically requested labels. These names shculd be
specified when the fpackage is acquired.

2.2 HODULES FOR INPUT OF THE MAIRIX STIRUCIURE

SPARSPAK has to know the matrix structure Lefore it
can determine an appropriate crdering for the systes. We
now describe the group of routines vhich provide a variety
of ways through which the user «can inform the package where
the nonzero entries are; that is, those subscripts (i, j)
for which the (i, j)-th element of A 1is nonzero. Before
any of these input routines is called, the user must execute
an initialization routine called IJBEGN, which tells the
package that the structure of a new matrix problem is atout
to be input:

CALL IJBEGN

- 5 -

a)

b)

Input of a nonzerc lccaticn.

To tell the package that the {1, j)-th element
of A is nonzero, the wuser simply executes the
statement

CALL INIJ (I, d, S)

where I and J are the suktscripts of the nonzerc, and
S is the working stcraqge array declared by the user for
use by the package.

In this example,

I=14
J = 3
CALL INIJ (I, Jd, S)

the package will record a 1logical nonzero in the
position (4, 3) of the matrix.

Input of the structure cf a4 row, or part of a row.

When the structure of a row or part of a rcv is
available, it is wmore efficient to use the routine
INROW. The statement to use is

CALL INBOW (I, NIE, IR, 5)

where I denotes the subscript of the row wunder
consideration, IR is an array containing the column
subscripts ¢f some or all ¢f the ancmzeroes in the I-th
row, NIR is the numker cf subscripts in IR, and S is
the user-declared working storage.

)

For example, it

cW (I, 3, IR, S)

the package 1is infcrmed of nonzeroes in locations
5 2), (5, 5 and (5, 7) of the matrix. Note that
the subscripts in the array IR can be in artitrary
order, and the rows cab be input in any order.

Input of a submatrix structure.

To provide greater flexipility, the gpackage
allows the user tc input the structure of a submatrix.
The calling statement is

CALL INIJIJ (k1J, I1I, JJ, S)

where NIJ is the numbker of input subscript pairs, and
II and JJ are the arrays ccntaining the subscripts.

The following example

§IJIJ (3, 11, dJ, S)

informs the package that +there are nonzeroces 1in
locations ({1, V), (1, 3) and (2, 3).

d) Input of a full submatrix structure.

The structure of an entire matrix is completely
specified if all the full submatrices are giver. In
applications where they are readily available, the
“Toutine INCLQ is useful. 1Its calling sequence is -

CALL INCLC { NCLQ, CLQ, S)

where NCLQ is the size of the submatrix and CL¢ is an
array containing the subscripts of the submatrizx.

Thus, to inform the package that the submatrix
corresponding to subscripts 1, 3, 5 and 6 is full,
we execute

cIg (1) = 1
CLQ(2) = 3
C1Q(3) = 5
CLO(lU) = €
CALL INCLE (4, CLC, S)

The type of structure 1input routine to use depends on
how the user obtains the matrix structure. Anyway, the one
or ones that best suit the application can be selected;
SPARSPAK allows mixed use of the routines in inputting a
matrix structure. The rpackage automatically renmoves
dnplications so the user does not have to worry atout

inputting duplicated sukscript rairs.

cLo(l) = 1

CLO(2) = 2

CLQO(3) = 5

CALL INCLO (2, CLC, S)
IR(1) = 2

IR(2) = 4

IR(3) = 5

CALL INROW (4, 3, IR, 5)
CALL INIJ (1, 3, S)

The abtove code would ibnput the matrix structure

* %

|
l
\
|
o - -
#*
*
#
*
»
b e o o

into the package.

When all pairs have been input, using one or a
combination of the input routines, the user is required to
tell SPARSPAK explicitly that structure input is complete by
calling the routine IJEND. 1The statement to use is

CALL TIJEND (5)

and its purpose is tc transform the data from the format
used during the recording phase to the standard format used
by the later phases. The user does not have to concern
himself with this representaticn or transformation.

IMPORTANT NOTE:

SPARSPAK assumes that the value of NEQNS (the

number of equations) is equal to the maximum subscript
supplied by the routines which transmit the (i, 3) Fairs
to the package. Thus, it 1is imperative that the user
supplies at least one (i, j) pair for which i or j is

equal to NEQNS. The routine IJEND assigns the value of
NEQNS found by the package to the corresponding variable in
the common block SPKUSR .

Common_FErrors

— s e

The most comson cause of error during matrix
structure input is insufficient wvorking storage. If vwe
denote the number of offdiagonal nonzeroes in the matrix by
OFFDA, then the wminimur amcunt of storage necessary to
successfully input the structure is given by

OFFDA + 2*NECNS + 1 .,

Of course sometimes the user does not know the value
of OFFDA, and may guess too low. SPARSPAK will still
accept and count the (i, j) pairs, even after running out

of storage, and the wuser can obtain an upper bound for
OFFDA by calling the Rmodule PSTATS, descritkted in
Section 7, after all pairs have been input. (The nusber

reported may be unnecessarily large because duplicate input
pairs may not now be detected, and thus may be counted twice

by the package.)

For a complete list of errors which may be gererated
by the structure input modules, see Section 7.3.1.

2.3 HODULES FOB OBDERING AND SICEAGE ALLOCATION

with an internal representation of the nonzero
structure of the matrix A available, SPARSPAK is ready to
reorder the matrix probles. 1This is initiated by calling an
ordering routine, whose name always has the form OBDRxi .
Here i is a numerical digit between 1 and 6 that signifies
the storage method. The character x can take values A
or B, wvhich denotes one of two ordering strategies
tailored for storage methed 1 .

Executing the statesent
CAI1I CRLCEAl1 (S)

will imply the use of storage method 1 and the first
ordering algorithm for this methcd. See Section 3 for a
discussion of the various methods provided, and some
guidance onr which one to use. Section 8 contains a list of
ordering strategies provided by the package. The routine
ORDExXxi not only determimes an appropriate ordering for the
storage method, it sets wup the data structure for the
reordered matrix problemn. The package is now ready for
numerical input.

Common Errors

Just as in the structure input phase, the most ccsmon
cause of abnormal termirvatiocn cf the ORDRXi module 1is

insufficient working storage. As mentioned above, this
module actually performs two functioans: ordering, and
storage__allocation. The «crdering step determines the

permutation P, and the allocation step sets up the
appropriate data structures toc store the triangular factors
L and U of the permuted matrix PAP' .

In general, the ordering and allocation sukrcutines

requirc different amcunts of storage. Purthermore, their
storage reguirements are often unpredictable, because the
number of data structure pointers, and the onusker of

nonzeroes in the factors L and U , are not kncwa until
the subroutines have been executed.

Thus, the interface module OBRDRxi may termipate in
several distinctly different ways:

a) There was not enough storage +to execute the crdering
subroutine.

b) The ordering was successfully cbtained, but there was
insufficient storage to even initiate executicn of
the data structure set-up (storage allocation)
subroutine.

c) The data structure set-up subroutine was executed,
and the amount of storage required for the data
structure pointers etc. was determined, but there was
insufficient storage for these pointers.

d) The data structure was successfully generated, but
there 1is insufficient storage for the actual
numerical values, so the mnext step (input of the
numerical values) cannct executed.

€) ORDRxi was successfully executed, and there 1is
sufficient storage to proceed to the next steg.

If any of the above conditions occurs, the user may
execute SAVE, and re-initiate the computation after
adjusting his storage declarations {either up or dcwn) and
executing RESTRT(3), If a) or b) occurs, information
is supplied indicating the mipimum value of MAXS needed so
that c¢), d) or e) will occur upon re-execution. 1f ¢)
occurs, the mipimum value of MAXS needed for 4) and e)
1S provided.

When c¢) or 4) occurs, after executing SAVE,
adjusting our storage declaration, then executing RESTRI, we
must again call ORDRxi . However, the interface will
detect that the ordering andsor storage allocaticm have
already been performed, and will skip that part cf the
computation. Note that if a user is simply using SFARSEPAK
to select a particular method, c) may be an acceptable
termination state. (See Example 6 in Section 9.)

2.4 HBODULES FOR INPUTTING NUMERICAL VALUES

The modules 1in this grcur are similar to those for
inputting the matrix structure. They provide a ®eans of
transmitting the actual numerical values of the matrix
problem to SPARSPAK. Since the data structures for
different storage methods are different, the package gust
have a different matrix input subroutine for each method.
For the user's convenience, SPARSPAK uses the same set of

3 See Section 4 for details on how to use SAVE and FESTRT,
and Examples 4, 5 and 6 in Section 9.

- 11 -

subroutine names for all the methods, except for the last
digit which distinguishes the method, and the rarameter
lists for all the methods are the same.

IMPORTIANT NOTE:

The elements of A and b transmitted to SPARSPAK
by these routimnes are either single _c¢r double _precision
floating point_ pumbpers, depending on the version of SPARSPAK
being used. The examples in this manual assume a single
precision version of the package is being used.

There are three ways of passing the numerical values

to SPARSPAK. In all of then, sulscripts passed tc the
package always refer tc thcse c¢f the original given_problem.
The user need not te ccncerned about the various

permutations tc the prcklem which may have occurred during
the crderiny step.

a) Input of a single nc¢pzero component.

The subroutine INAIJL is provided for this
purpose and its calling sequence is

CALL LNAIJ1L (I, J, VALUE, S5)

where I and J are the subscripts, and VALUE is the

numerical value. The sukroutine INAIJL adds the
gnantity VALUE to the appropriate current value in
storaqe, rather than making an assignment. This is

helpful 1in situations (€.g. in some fipnite element
applications) where the numerical values are obtained in
an incremental fashion.

For examrle, the execution of

CALL INAIJZ (3, 4, 9.5, S))
CALL INAIJZ {(3, 4, -4.0, 5)

-
»

effectively assigns 5.5 tc the (3, 4)-th <component of
A .

b) Iaput of a row of nonzeroes.

The routine INROW1I can be used to 1nput the
numerical wvalues of a rc« ¢cr rart of a row in the
matrix. Its calling sequence 1is similar to that of
INROW, described on Section 2.2:

CALL INROWi (I, NIR, IR, VALUES, S)

Here the additional parameter VALDES is a floating pcint
array containing thbe numerical values of the row.
Again, the numerical values are added to the current
values in storage.

C) Input of a submatrizx.

The routine that allcws the input of a submatrix
is INMATLI . Its parameter list corresponds tc that of
IN1JIJ with the additicnal Fparameter VALUES that stores
the numerical quantities:

CALL INMATiL (NIJ, 11, JJ, VALUES, S)

Again, the numerical values in VALUES are added tc thcse
currently beld bty the rackage.

Mixed use of the routines INAXJi, INROWiLi and IKMATI
is permitted. Thus, the user is free to use whatever
routine is most conveniernt.

The same convenience 1is provided in the input of
numerical values for the right hand side vectcr E .
SPARSPAK includes the rcutine INBI which inputs an entry of
the right hand side vector

CALL INEI (I, VALUE, S)

Here I is the subscript and VALUE is the numerical value.
Alterpatively, the rcutine INBIBI <can be used to input a
subvector, and its calling sequence is

CALL INBIBI (NI, II, VALUES, 5)

where NI is the nuamter of input numerical values, and Il
and VALUES are vectors containing the subscripts and
numerical values respectively. In both routines,
incremental calculaticn of the numerical valuves is
performed.

In some situations where the entire right hard side
vector is availatle, the user can use the routine INRHS
which transmits the whole vectcr to SPARSPAK. It has the
form

CALL 1INRHS (RHS, 5)
vhere RHS is the vector containing the numerical values.

In all three routines, the numbers provided are added
to those currently held by the package, and the use of the
routines can be intermixed. The storage used for the right
hand side by SPARSPAK 1s initialized to zero the first time
any of them is executed.

IMPORTANT NOTES:

a) Fhen the matrix A 1is symmetric, so that method i ,
with i odd, is used, SEARSPAK requires that the
elements of the lower triangle be provided. Thus, for
example, the following statement will cause am error.

CALL INAIJ3 (3, 5, 1.3, S)

b) The examples which we have given assume that a single
precision version c¢f SPARSPFAK is being used. I1f the
version is in double precision, the numerical values and
numerical variables should be declared as docutle
precision. For example:

CALL INAIJ3 (£, 3, 1.3D0, 5)

The numerical «ccmputaticn of the solution vector is
initiated by the FORTRAN statement

CALL SCLVEiL { S)

wvhere S 1s the working storage array for SPARSPAK. Again,
the last digit 1 1is used to distinguish between solvers
for different storage methods.

Internally, the routine SCLVEiL consists of btoth the
factorization and forwardsbackward solation steps. I1f the
factorization has been performed in a previous call to
SOLVEiL, SPARSPAK will autcmatically skip the factorization
step, and perform the solution step directly. The solution
vector is returned in the first NEQNS locatiors of the

_.][‘..

storage vector S . If SCLVEi is called before apy right
hand side values are input, only the factorization will be
performed. The solution returned will be all zeroes. See
Examples 3 and 4 in Section 9.

SECTION 3

SOME GUIDELINES ON SELECTING A BETHOD

We mentioned in Section 1 that there are six tasic
methods, distinguished by a opumerical digit i satistfying
1< i< 6 . These six methods can be viewed as grouped into
three odd-even pairs; the only distinction between method 1
(pdd) and method 1i+#1 is that method 1 assumes A 1is
symmetric, and method i+1 assumes A is unsyEmetric.
Thus, we really only provide three essentially distinct
methods, with each one having a symmetric and unsysmetric
version. Hence, in this section we will largely confine our
remarks to methods 1, 2 and 5; comparative remarks atout
them will also apply to their unsymmetric analogues, methods
2, 4 and 6.

The basic methods are as follows; the remarks
comparing them, and the advice provided, should be regarded
as at best tentative. Characteristics of sparse matrices

vary a great deal.

Method Basic_Strategy and References

1, 2 The oLjective of these methods 1is to
reorderc A so 1t has a small bandwidth or
profile {61, The well-known reverse
Cuthil 1-McKee algorithm is used. For

relatively small grotlems, say N £ 200 , they
are probably the ftest overall methods to use.

3, 4 The objective of these methods 1is to
reduce storage requirenments, but the
factorization time will usually be
substantially highker than any of the other
me thods. Their storage requirements will
usually be substantially less tham mnethods
{1, 2) {anless K 1is very large). The same
repmark 1is true akout the relative sclution
times. Taus, these methods are often useful

when storaje 1is restricted, amnd/or when gmany
problems which differ only in the right hand
side must be solved (see Section 6).

There are two ordering options fprovided:
ORDRA3 and CRDRKREZ {(and similarly for the
unsyametric Case€) . The A option is

- 16 -

i

specifically tailcred for ‘*finite element
problems?, typical of those arising in
structural analysis and the numerical sclution
of partial differential equations [1]. The B
option is effective for less specific rprotlenms;
and uses a refiped guotient tree ordering
described in [2].

5, 6 These methods attempt to find o¢rderings
which minimize fill-ip, and they exploit all
zeroes. Their ordering times are almost always

greater than those above, but for
moderate—to—~large problens the reduced
factorization times usually are more than
compensatory.

Just as for methods (3, 4), there are two
ordering options provided. The A optico is
again specifically designed for fianite element.
problens, and uses a so-called nested
dissection crdering [3]. The B option uses
the minimum degree algorithn, and is suitable
for all sparse proltlems [4].

L3
To summarize, our tentative advice and guidelines are
as follows:

1. For small problems, use method (1, 2).

2. For small to moderate size problems that have tc be
solved only once, use method (1, 2) if enough storage
is available. If not, use method (3, 4). If the
problem is quite 1large, method (5, 6) might be
better.

3. For moderate to large frcblems, use either method
{3, 4) or (5, 6). 1If many problems differing cnly inm
the right hand side must te solved, method (3, 4) 1is

probably the best. If the problem is gquite large,
and many problems having the same structure, but
different numerical valupes, must be solved, then
method {5, 6) is probably the best. {See

Sections 5 and €.)

SPARSPAK has been designed so that the ORDRxi rodules
can be used as aids ipn selecting a method. The tLasic
strateqy, as illustrated in Example 6 in Section 9, is to
input the matrix structure, and then run the various ORDRxi
modules on it, printing the =storage statistics gathered by
the package {using PSTATS, described in Section 7) after
each ordering module has been executed.

SECTICH 4

SAVE ABD BESTART FACILITIES

SPARSPAK provides two subroutines called SAVE and
RESTRT which allow the user to stop the calculaticn at some
point, save the results c¢n an external sequential file, and
then restart the calculation at exactly that point some time
later. To save the results of the computation dcne thus
far, the user executes the statement

CALL SAVE (K, S5)

where K is the FORTRAN logical unit on which the results
are to be written, alcng with other information needed to
restart the computation. If execution is then terminated,
the state of the computation <can be re-estapblished &Ly
executing the statement

CALL KESTET { K, S)

Examples 4, 5 and 6 provided in Section 9 illustrate the use
of SAVE and RESIRT.

Note that executing SAVE does not destrcy any
information; the computation can proceed just 4as 1f SAVE was
not executed.

When errors occur in a module, the routines SAVE and
RRSTRT are useful in saving the results of previcusly
successfully executed modules (see Section 7.3 and Example 5
in Section 9).

Another potential use of the SAVE and RESTET modules
is to make the working stcrage array S available to the
user in the middle of a sparse matrix computation. After
SAVE has been executed, the working storage array S carn be
used by some other computation.

Finally, the SAVE and RESTIRT modules allow the user
to segment the computation into several distinct phases, and
thereby reduce the amcunt of program that must be resident
in storage at any given tirme.

IMPORTANT NOTES:

a)

b)

In the subroutines SAVE and BKRESTRI, information is
either written on or read from the FORTRAN logical unit
K using bipary feormat.

If the subroutines SAVE and RESTRT are used, then
before the user executes his program, he must define a
file for the FOBTEAN logical unit K using the
appropriate system ccentrol card or command (this depends
on the environment in which the program 1is Leing
executed). Furthermore, this file must be preserved by
the user for later access bty the RESTRT subroutine.

SECTION 5

SOLVING MANY PROBLEMS HAVING THE SANE STBUCTURE

In certain applications, many problems which have the
same sparsity structure, but different numerical values,
must be solved. In this case, the structure input,
ordering, and data structure set-up needs only +tc Le done
once, This situation car ke acccmamodated perfectly well by
SPARSPAK. The control sequence is depicted by the following
flowchart:

[s b]
} SPRSEK i
Lo ot o o e]
|
|
v
| Aeitaintatatai i q
i Input Structure {
| of A i
L R e J
|
{
v
r-TsT s TEmEmTsmes—]
{ CALL ORDEzxi |
[e e e P
|
i
v
(mem et e —————— 1
| Input Numerical i
> Values of A and b i
{ IR Uy U S SN RSOSSN S —
i {
| |
{ v
‘ r"'“““"‘““""“""\
i | CAII SCLVEL {
i U S U A
i {
| {
hm = - ——— J

When the numerical input routines (INAIJi, INBI, ..., €tc.)
are first <called after SOLVEi has been called, this is
detected by SPARSPAK, and the computer storage used for A
and b is 1nitialized to zero.

Note that if such prcblems must be solved over an
extended time period (i.e., in different runs), the user can
execute SAVE after executing CRDRxi and tbus avoid the
input of the structure of A and the execution of CELBxi
in subsequent equation solutions.

SECTICN 6

SOLVING MANY PROBLENS WHICH DIFFER ONLY IN THEIR
RIGHT HAND SIDE

In some applications, opumerous problems which differ
only in their right hand sides must be solved. In this
case, we only want to factor A into LU {or LL') once,
and use the factors repeatedly in the calculation of x for
each different b . Again, SPARSPAK can handle this
sitpation in a straightfcrward manner, as illustrated by the
flowcharts on the followirg page.

When SPARSPAK is used as indicated by flowchart (1),
the package detects that no right hand side has bteen
provided during the first execution of SOLVEi , and oply
the factorization is performed. In subsequent calls tc
SOLVEBL , SPARSPAK detects that the factorization has already
been performed, and that part of +the SOLVEiL mcdule is
bypassed. 1In flowchart (2), toth factorization and sclution
are performed during the first call to SOLVEiLi , +with only
the solve part performed in subseguent executicns of
SOLVEL . (See Example 3 in Section 9.)

Note that SAVE can be used after SOLVEL has been
executed, if the user wants to save the factorization for
use in some future calculation.

- - - - - —

| SPRSPK |

[it |

v
T T T e E e mm e 3
] Input Structure i
] of 1 |
Lo s e i e e e o - - 4
|
|
v
r"“""“"'“f"‘1
| CALL ORDEx1 {
Lo v e v i e ot ot o e .
{
|
v
T T e ST 9

{ Input Numerical |
| Values for A {

Ll —— e mewa s ———— ¥
|
|
v
rrTTT T T s mE e |
i CALL SCLVE1i {
Lo e e e o e i e e e e 4
|
t
v
FoTmE inthetatntnsit b]
1 Input Numerical i
] Values for b 1 <=+
Lo s o e e o o e a1 !
i |
| i
v }
r"“""““"f"‘1 ‘
| CALL SCLVE1 }-———- 4
Lmmm e e e e e 4

{ SPRSPK i
[TP R RS J
H
|
v
' uindadtateiainteheintadinshei 1
| Input Structure |
1 of A }
e e e T 4
|
|
v
r“"""“"'?““1
| CALL ORDRx1 {
T 4
i
|
Y
o TTT s EE e e mm b

{ Input Numerical |
{ Values for A |

[R et Rt R et 3
|
I
v
 Sebehaiebnbaitt 3
i Input Numerical)
| Values for » } <=~
Lo o o s e o e o om w m a - - 3
l
i
v
FTET T Dt |
} CALL SOLVEi j==———-
L e s s e i i 2 o 3

(2)

~ SECTIOF 7

OUTPUT FPRCM SEARSPAK

As noted earlier in Section 2, the user supplies a
one~dimensional floating point array s, from which all
array storage is allocated. In particular, the interface
allocates the first NEQNS storage locations in S for the
solution vector of the linear systen. After all the
interface modules for a particular method have Leen
successfully executed, the user can retrieve the solution
from these NECNS locations.

In addition to the solution X , SPARSPAK wmay print
other informaticn atout the computation, depending upon the
value of MSGLVL , whether or not errors occur, and whether
or not the module ESTATS is called. This section
discusses these features of SPARSPAK.

NOTE:

SPARSPAK writes output tc two FORTEBAN logical ocutput
units, whose numbers are given by IPRNTS and IPRNITE. The
values for these variables are set in the module SPESEK when
the package is installed. Standard output requested by the
user is printed on unit IPRNTS, vhile any error messages
raised by SPARSPAK are printed on uanit IPRNTE. In an
interactive environment, IEENTE is usually the wuser's
terminal, while IPBNTS is some other output device on which
the output of the (hopefully) =successful run is recorded.
In a batch oriented environment, IPRNTS and IPRNTE are
usually the same. Note that the user and/or the ccaguter
installation wmust ensure that the files associated with
IPRNTS and IPRNTE are available to the user's program tefore

execution begimns.

7.1 HMESSAGE LEVEL (MSGLWL)

The first variable MSGLVL in the <comumcr Lklock
SPKUSR stands for 'message level!?, and governs the amount

of information printed by the interface modules. Its
default value is two, and for this value a relatively small
amount of summary information is printed, indicating the

initiation of each phase. When MSGLVL is set to one by

- 24 -

the user, only fatal error messages are printed; this option
could be wuseful if SEARSPAK is being used in the ‘'irner
loop' of a large couputation, where even summpary information
would generate excessive output. Increasing the value of
MSGLVL (up to 4) provides increasingly detailed infcrmation
about the computation. Note that the module SPRSER sets
MSGLVL to its default value; 1t the user wishes MSGLVI to
be different from 2, he must reset it after SPRSPK has lLeen
called.

In many circumstances, SFARSPAK will be imbedded 1in
still another 'super! package which models rhencmena
producing sparse matrix fproblems. Messages printed by
SPARSPAK may be useless or even confusing to the ultimate
users of the super package, or the super package may wishk tc
field the error conditices and perhaps take some corrective
action which makes the error messages erroneous. Thus, all
printing by SPARSPAK can be inhibited by setting MSGLVL to
zZero.

To summarize, we have

MSGLVL Erinted_output

0 No messages

1 Fatal error messages

2 Minimal summary information

3 More detailed information

4 Detailed debugging informaticn

7.2 SIATISTICS GATHERING (PSTATS)

SPARSPAK gathers a number of statistics which the
user will find useful if he is ccmparing various methcds, or
1s going to solve numerous similar problems and wants to
adjust his working storage to the minimur necessary. The
package has a common Fklock called SPKDTA containing
variables whose values <can be printed by executing the
statenent

CALL ESTATS
The information printed is:

the number of equations,

the number of off-diagonal nonzeroes in the matrix,

the size of the working storage,

the time used to find the crdering,

the time used for data structure set-up,

the time used for the factorization step,

the time used for the triamgqular solution step,

number of operations required by the factorization step,

-25_

number of operations required by the triangular solution,
the storage used by the ordering subroutine,

the storage used Ly the data structure set-up subroutine,
the storage used by the SCLVEiLi mcdule.

Since the module PSTATS <can Le called at any time, sope of
the above information may not be available, and will not be
printed. The word 'operations' here means nmultiplicative
operations {(multiplications and divisions). Since post of
the arithmetic performed in sparse matrix computatior cccurs
in multiply-add pairs, the nupker of operations (as defined
here) ~is a useful measure of the amount of aritheetic
performed.

The reader is referred tc the examples 1in Section 9
for more discussion about the output from PSTAIS.

7.3 ERBOR MESSAGES (IEBR)

*hen a fatal error 1s detected, so that the
computation cannot proceed, a positive code is assigned to
IERR . The user can simply check the value of IERER to see
if the execution of module has Lteen successful. This error
flag can be wused in cchnjunction with the save/restart
feature described in Section 4 to retain the results of
successfully conrpleted parts of the computation, as shown by
the program fragment belcw.

CALL ORDERAl (S)
IF { IERR .EQ. 0) GO TO 100
CALL SAVE (3, S)
STOP
100 CONTINUE

The variable IERR 1is set to the value 10*k+l ,

where 01«29 distipquishes the error, and k is
determined by the type c¢f module that sets IERR positive:

save and restart modules (SAVE, RESTRT)

matrix structure input zodules (INIJ, INIJIJ, etc.)
matrix ordering and allocation modules (CRDRxi)
matrix numerical input (INAILJi, ..., etc.)

right hand side numerical input (INBI, ..., etc.)
factorization and scluticn modules {SOLVEL)

U E W - Ol

- 26 =~

7.3.1

LERR

1

7.3.2

18

Save and Restart_ Bouytipes

Insufficient storage to restart the computaticnal
process. The r®minimum value of MAXS required is
printed in the error message.

Input of the Matrix Structure

INIJ, IKIJIJ, INCLC

Insufficient storage was provided 1in the working
storage array. The (i, 3j) pairs input to INIJ,
INIJ13, and INCILQ will be counted and discarded.
Duplicates which are detected will not be ccunted,
but some duplicates may be missed.

Negative or zeroc subscript is found.
Incorrect execution sequence. Probable cause of

error: routine IJBEGN was not called before (i, 3Jj)
pairs input began.

1JEND

Insufficient storage to transform matrix structure.
The minimum value of MAXS required is printed in
the error message.

Incorrect execution sequence. IJEND was called
before new matrix structure has been input.

NEQNS 1is zero.

7.3.3

I

o]

R

N

23

24

R

1

orderipg apd Storage Allocatiop Routjnes

Incorrect execution segquence. Probable cause:
subroutine TIJEND did not execute successfully.

Imcompatible ordering method. User protably
executed part of the ordering subroutine CRDBx1i,
and then executed SAVE because of insufficient
storage. The executicn was then restarted, using
RESTRT , but ORDExj was called with i 7 j .

Insufficient storage in working storage array to
begin execution

Response: execute SAVE , and call ORDExi with
MAXS at least as large as that indicated in the
error asessage.

Insufficient stcrage in working storage array to
execute the storage allocatior subroutine. The
ordering rcutine has successfully executed.
Response: same as for error 23.

Working storage array was not large enough. The
storage allocaticn routipe was executed, tftut there
was not enough storage to hold the data stracture
pointers. ‘

Response: same as for error 23.

Working storage array is large enough for execution
of ORDRxi , and it has successfully executed.
However, there is nct enough storage availakle for

the numerical values, 50 computation <cannot
proceed.
Response: execute SAVE , and re-initiate

computation after adjusting HMAXS to at least the
value specified in the error message.

7.3.4

=t
g
tey

32

33

34

35

= |
o]
{0

b

Input of the Nuserjcal Valuyes

INAIJ1, INROWi, INMATi
Incorrect execution seguence. Probable cause:
unsuccessfal execution of the ordering routine
ORDRx1i .

Incompatible input routine - attempt to use ipput
routine INAIJL, INECWi, or INMATi after using
ORDRxj , where 1i # j . Use the routine specified
in the error message. _

Attempt to input the (i, j)-th element cf matrix

A for 1 <3. (This error occurs only for
synmetric matrix methcds; i.e., when method is
odd) . Methods for symmetric matrices exgect

elements of the lower triangle to be input.

Attempt to input an (i, j)-th element of matrix A
where i > N, j > N, 1 <1, or j < 1.

Attempt to input a numerical value foer the
(i, j)-th element «c¢f matrix A into the data
structure, but the data structure has no space for
it. Probable cause: the user has not called INIJ,

INIJIJ, INCLQ ot INROW with all the pairs
(i,) for which the (i, j)-th elements of A
are nonzero. (SEARSEAK thinks A 1s sparser than

it really is.)

INBI, INBIBI, INBHS

Incorrect executicn sequence. Probable cause is
the unsuccessful execution of ORDRxi .

Subscript out of range - attempt to ipput a
numerical value for the i-th element of L where
i >N or 1< 1.

52

53

incorrect execution sequence. Probable cause is
unsuccessful execution of the numerical isnput
routines.

Incompatible ordering and solution routines have
been called.

Response: execute SAVE and restart the
computation using SCLVEL where i is the value
of METHOD specified in the error message.

Zero pivot or negative square root detected in the

factorization routine. Fossible causes:

a) incorrect use of the numerical input routines.

b) the matrix may Treguire pivoting in order to
preserve numerical stability. In this case the
use of SPARSPAK to solve the protklem is
inappropriate. {See restricticas in
Section 1.)

SECTION 8

SUMMARY LISTINEG COF INTEBFACE ROUTINES

SPRSPK I- Initialization of SPARSP

IJBEGN

INIJ (I, J, S)
INROW (I, NIR, IR, S)
INIJIJ (NI1J, II, JJ, S)
INCLQ (NCLQ, CLQ, S)

Structure input

b s e e W e o
]

IJEND (S)
a
ORDRxi (S) i~ Ordering (se€€ next page)

INAIJLI (1, J, VALUE, S) 1
INROWLI (1, N1R, IR, VALUES, S) |- Matrix input
INMATL (NIJ, II, JJ, VALUES, S) 4

INBI (I, VALUE, S) 4
INBIBI {(NI, 11, VALUES, S) i Right hand s=side input
INRHS (RHS, S) 4
"
SOLVEL (S) i- Factorizaticn and/or
4 Solution
1
PSTATS i- Print statistics
3
™
SAVE (k, S) |- Save and Restart the
RESTRT (k, S) i computation
4

>

[5+]

[

& W

&= W

w

O n

Reverse
Reverse

One-way
One-way

Refined
refined

Nested Dissection ordering { 3];
Nested Dissecticn crdering [3];

Miniwmunm
Minimum

¢crdering_Choices

Cuthill-McKee ordering [7]; syametric
}; unsymmetric

Cuthill-McKee ordering [7

Dissection ordering {1]; symmetric
]; unsymmetric

Dissection ordering [1

quotient tree ordering [2]; symmetric
quotient tree ordering {2]; unsymeetric

Degree crdering [4]; symmetric
Degree ordering [4]; unsymmetric

syametric
unsymmetric

A

A

A

A

A

A

T I e 1
| Start { SPRSPK
L oo o v e e e v > e e J
|
i
v
rTTTTTT T T h] 3
i Input the] | 1IJBEGK, INI1J,
| Structure | <=====q 1- INIJIJ, INCIQ,
{ of A] { ! INROW, IJEND
Lo = e e e e e e 4 1 1
| i
| |
v |
T T e ——— 1 |)
i Order and J | | CRDBRxi, where
i | Allocate | i {- x = A, B,
i | Storage i i i 1 = 1,2,0ae,b
| L e e e 4 i 4
I | |
} | i
{ v l
| Sttt i 1 | 3
i i Input | R adaiaddd | i INRCWHi
pe—t=—=] Numerical | | j- INAIJi
I | } Values | | | INMATI
| } for A | <== | |
P I Sy S 1 i i 4
| | | {
| { | |
(| v i |
| { FrTTET T e s b i | 1
i L-=>] Input et { § INRHS
i § Numerical j=memm i |- INBI
{ i Values i i | INBIEI
i -1 for b {<--1 | INBIBI
[e ——— e se————- 4 i | 4
} | |
(| i | |
| v | i
niniiieindasbh bl Rt | | i q
Lem==> | Factor A j~~=2 } |
| b e e e 4 1 |
i H l |
] { 1= SOLVEi
} v { |
| intniedeiadabebelaiebeindest 1 i]
Lt-=->1 Solve jrm———— J i
L e o om o s o i o — L | 4

SECTION 9

EXAMPLES

In this section, we provide several prograss which
illustrate how SPARSPAK can be used. These programs are
derived from the one given in Section 2.1.

These examples were run using a standard single
precision versicn of SPARSFAK under the IBM FORTIRAN H
extened compiler on an IBM 3031 computer. All times
reported are im seconds. It should be noted that the
results vill be different if a different version of SPARSPAK

is used.

Example 1

This is an example of the simplest use of SEARSEAK,
with each of the modules of method 1 used in sequence. The
problem that is solved is a 10 by 10 symmetric systen
Ax = b where the diagonal elements cf A are all 4, and
the superdiagonal and sukbdiagcnal elements are all -1. The
right hand side vector b is chosen so that the entries of
the solution vector x are all cues.

In the program, the nonzerc structure of A is input
using IJBEGN, INIJ and IJEND . After ORDRA1 is executed,
the 1interface wmodules INAIJ1 and INBI are used to
transmit the numerical values of A and b to the package
respectively. The module SCLVE?1 1is <called to do the
numerical solution and then PSTAIS is called to print out
the statistics gathered by the interface during execution.
Finally, the error in the computed approximate solution is
computed.

Note that the size of the working storage provided
was 250, while the maximum amcunt used by any of the modules
was 60, which was the storage requirement for the ORDRA1
and SOLVE1 module. Thus, if the user was going to solve
this problem again, he could adjust his storage down to 60.

M ATINLTINE FROGRAMN

REAL S(250) , ERRCR, FOUR, ONE, TWO, ZERO
INTEGER I, IERR, IEENTE, IPRNTS, MAXS, MSGLVL, NEQNS
REAL RATIOL, RATIOS, TIME

COMMON /SPFKUSR/ MSGLVI, IERR, MAXS, NEQNS
COMMON /SPKSYS,/ IPRNTE, IERNTS, RATIOS, RATICL, TIME

CALL SPRSPK

MAXS = 250

CALL TIJBEGN

po 100 I = 2, 10

CALL INIJ (I, I-1, S)

100 CONTINUE

CALL IJEND {(5)

CALL ORDRA1 (S)

ZERO = 0.0EQ
ONE = 1.0E0
THO = 2,0E0
FOOR = 4.0EO

po 200 1 =1, 10
IF (I .GT. 1) CALL INAIJY (I, I-1, -ONE, S)
CALL T1INAIJY (I, I, FOUR, S)
CALL INBI (I, IWG, S)
200 CONTINUE
CALL INBI { 1, ONE, S)
CALL INBI {(10, ONE, S)
CALL SOLVEYl (§)
CALL PSTATS
ERROR = ZERO
DO 300 I =1, 10
ERROR = AMAX1 (ERRGCE, ABS (S(I)-ONE))
300 CONTINOE
WRITE (IPRNTS, 11) EEECR
11 FORMAT (, 15H MAXINMOM ERROR , 1PE15.3)
sSTOP
END

35

*okkkkkkkkkx UNIVERSITY OF WATEKRLCGC -
*kkkkkkkdk SPARSE MATRIX PACKAGE
kkkd3kkkk¥*k (S P A RS P A K)
kkkkkkkkEk RELEASE 2

* ok Rk Rk (C) JANUARY 1979
kkxkkkdkkkx STANDARD VERSION
kkkkkkkkkk SINGLE FRECISICN
*xxkkkkxkx LAST OPDATE JANUARY 1980

OUTPUT UNIT FOR ERRCR MESSAGE 6
OUTPUT UNIT FOR STATISTICS 6

IJBEGN- BEGIN STRUCTURE INFUT...

INIJ~ INBUT OF ALJACENCY FAIRS

IJEND- END OF STRUCTURE INPUT

CRDRA1- RCHM ORDEFING

INAIJ1- INPUT OF MATIRIX COMECNENIS

INBI- INPUT OF RIGHT HANL SIDE

SOLVE1- ENVELOPE SOLVE

PSTATS- STATISTICS

NUMBER COF EQUATICNS 10
OFF-DIAGONAL NONZEROS 18
SIZE OF WORKING STORE (MAXS) 250
TIME FOR CRDEEING 0.003
STORAGE FCR CBDERING 69.
TIME FOR ALLOCATICN 0.0
STORAGE FCR ALLCCATION 60.
STOEAGE FCE SCLUTION €0.
TIME FOR FACTCRIZATION 0.0
TIME FCR SCLVING 0.003
OPERATICNS IN FACTORIZATION 18.
OPERATICNS IN SCLVING 38.
MAXIMUM EBROR 1.013E-06

Example 2

This is the same as Example 1, except that the matrix

A 1is unsymmetric, The diagonal elements of A are all 4,
the superdiagonal elements are all 1, and the subdiagcnal
elements are all -1. The right hand side vector E is

chosen so that the entries of the solution vector X are
all ones.

C MAaINTLTINE PROCGBARN

C
INTEGER I, IERR, IPRNTE, IPRNTS, MAXS, MSGLVL, NECNS
REAL 5{250), ERROR, FOUR, ONE, ZERO
REAL RATICL, RATICS, TIME

COMMON /SPKUSR,/ MSGLVL, IERR, MAXS5, NECNS
COMMON /SPKSYS/ IPRNTE, IERNTS, RATIOS, RATIOL, TIME

CALL SPRSPK

MAXS = 250

CALL IJBEGN

DO 100 I = 2, 10

CALL INIJ (I, I-1, S)

100 CONTINUE

CALL IJEND (S)

CALL CRDRA2 (S)

ZERO = 0.0EO
ONE = 1.0EQ
FOUR = 4.0EQ

DO 200 I = 1, 10
IF (I .GT. 1) CALL 1INALJ2 (I, I-1, -ONE, S)
IF (I .1T. 10) CALL 1INAI32 (I, I+1, ONE, S)
CALL 1INAIJ2 (I, I, FOUR, S)
CALL INBI (I, ECUE, S)
200 CONTINUE
CALL INBI (1, ONE, S)
CALL INBI (10, -ONE, S)
CALL SOLVE2 { S)
CALL PSTATS
ERROR = ZERGC
DO 300 I = 1, 10
EFROR = AMAX1 (EREGCB, ABS (S(I)-ONE))
300 CONTINUE
WRITE (IPRNTS, 11) EBRCR
11 FORMAT (,/ 15H MAXINOM ERROE , 1PE15.3)
STOP
END

Aok ok ook Kok ok ok %
ok % ok ok Xk K
3 % o 2 ok xk ok ok %k
3 Xk o o ok ok oKk K Xk ok
ok ok A ok ok o kK
ok kK E Kok kK
3 2 o ok 2k ook ok ok ok
Rk kkkokxkk

UNIVERSITY OF WATERIQC
SPARSE MATRIX PACKAGE
(SPARSEAK)
RELEASE 2
(C) JANUARY 1979
STANDAED VERSICN
SINGLE PRECISION
LAST UPDATE JANUAEY 1980

OUTPUT UNIT FCR EHRCR MESSAGE

QUTPUT UNIT POR STATISTICS
IJBEGN- BEGIN STRUCTURE INEUT...
INIJ- INPUT OF ADJACENCY PAIRS
IJEND- END OF STEUCTURE INEOT
ORDRA2- RCM ORDERING
INALJ2- INPUT OF MATRIX COMECNENTS
INBI- INPUT OF RIGHT HAND SIDE
SOLVE2- ENVELOPE SCLVE
PSTATS- STATISTICS
NUMBER CF ECUATICNS
OFF-DIAGGCNAL KGNZEROS
SIZE OF WORKING STORE (MAXS)
TIME FCE CRDEFING
STORAGE FCEF CEDEERING
TIME FOR ALLOCATICN
STORAGE FCR ALLCCATION
STORAGE FOR SCLUTION
TIME FCR FACTOFIZATION
TIME FCR SOLVING
OPERATIONS IN FACTORIZATION
OPERATICKS IN SCLVING
MAXIMUM ERROR 0.0

[> 0o

10

18
250

2.003
€0.

o.o
60.
69.

0.C03

o.c
18.
28.

i o e s B s

This is similar to Example 1, except that methcd Z is
used (with the A crdering option), and two problems
differing only in their right hand sides are solved. After

solving the problem whose soluticn vector contains all ores,
a new right hand side is input which corresponds to a
different problem whose soluticn vector contains all twos.
When the module SOLVES3 1s called a second tire, the
interface detects that the factorization has already leen
done, and only the triangular solution is performed.

M AINLTINE PROGRAHN

INTEGER I, IERR, IPRNTE, IPRNTS, MAXS, MSGLVI, NEQNS
REAL 5$(250), ERBOR, FOUR, ONE, TWQ, ZEEFC '
_REAL _ BATICL, BATICS, TIME

COMMON /SPKUSRy/ MSGLVL, IERR, MAXS, NECNS
COMMON /SPKSYS, IPRNTE, IERNTS, BRATIOS, RATIOL, TIME

CALL SPRSPK

MAXS = 250

CALL TIJBEGNK

po 100 1 =2, 10

CALL 1INIJ (I, 1-1, 5)

100 CONTINUE

CALL IJEND (S)

CALL GCEDRA3 (S)

ZERO = 0.0EQ
ONE = 1.0EC
TWO = 2.0EO
FOUR = 4.0EO

DO 200 I = 1, 10
IF (I .GT. 1) CALL 1INAIJ3 (I, I-1, -CNE, S)
CALL INAIJ3 (I, I, FCOR, S)
CALL INBI {(I, T®C, S)
200 CONTINUE
CALL INBI (1, ONE, S)
CALL INBI (10, ONE, S)
CALL SOLVE3 { S)
CALL PSTATS
ERBOR = ZEROC
po 300 I =1, 10
EEROR = AMAX! (EEEOR, ABS (S(I)-ONE))
300 CONTINUE
WRITE (IPRNIS, 11) EERGR
11 FORMAT (, 15H FAXIMUM ERROR , 1PE15.3)

DO 400 I = 1, 10
CALL INBI (I, ECUE, S)
500 CONTINUE
CALL INBI (1, TWO, S)
CALL INBI { 10, TWC, S)
CALL SOLVE2 (S)
CALL PSTATS
ERROR = ZERO
DO 500 I = 1, 10
ERROR = AMAX1 (EERCR, ABS (S(I)-TWO))
500 CONTINUE
WRITE (IPRNTS, 11) EEECR
STOP
END

23k 3 Aok o kK ok
ok koK Kk K
3¢ 3¢ ok oo ok oo K
A4 ok ok kKRR K
ok ok oo ook koK K
Hokok ok kKo ok ok
2ok A ok R K
2ok ok oKk ok K K K

ou
0U

IJBEGN-
INIJ~-

IJEND~
ORDRA 3-
INAIJ3-
INBI-

SOLVE3-

PSTATS-

MAXIMOM ERR
INBI-

SOLVE3-

PSTATS—

UNIVERSITY OF WATERLOG
SPARSE MATRIX PACKAGE
(SPARSTEREK)
RELEASE 2
{C) JANUARY 1979
STANDARD VERSICN
SINGLE PRECISION
LAST UPDATE JANUAFY 1980

TPUT UNIT FOR ERRCR MESSAGE
TPUT UNIT FOR STATISTICS

BEGIN STRUCTIURE INEUZ...
INPUT OF ADJACENCY PAIRS
END OF STRUOCTURE INEUT

ONE WAY DISSECTICN CEDERING
INEUT COF MATEIX CCMECNENIS
INPUT OF RIGHT HAND SIDE
IMPLICIT BLCCK SCLVE

STATISTICS
NUMBER CF ECUATICNS
OFF-DIAGCNAL NCBZEBROS
SIZE OF WCRKING STORE (MAXS)
TIME FCF CEDEERING
STORAGE FCE CELEEING
TIME FOR ALLOCATION
STCBAGE ¥FCE ALLCCATION
STORAGE FCR SCLUTION
TIME FOR FACTORIZATION
TIME FCB SCLVING
OPERATICNS IN FACTORIZATION
OPERATIONS IN SCLVIKNG

OR 1.013E-0¢€
INPUT OF RIGHT HANL SIDE

IMPLICIT ELCCK SCLVE

FACTCRIZATION ALREADY DONE.

STATISTICS
NUMBER OF EQUATIONS
OFF-DIAGCNAL NCNZEROS
SIZE CF WCHEKING SIOBE (MAXS)
TIME FOR CRDERING
STORAGE FCR ORDERING

- 41 -

10

18
250

0.007
91.

0.0
4.
94.

0.003

0.€03
18.
38.

10

18
z5C

0.C07
91.

MAXIMUM ERROR

TIME FOR ALLOCATICN

STORAGE FOR ALLCCATIOCN
STORAGE FCR SCLUTION

TIME FOR FACTCRIZATION

TIME FOR SCLVING

OPEFATIONS IN FACIORIZATION
OPERATICNS IN SCLVING

1.9C7E-0¢€

0.0
9u.
94,

0.003

0.003
18.
38.

Example 4

This example illustrates the use of the save/restart
feature of SPARSPAK. pAfter the factorizatiom is computed,
SAVE is executed, which writes the current state of the
computation on PORTRAN logical unit 3. In a second progran
the module RESTRT is executed tc read the information fronm
unit 3, and the computation resumes at the point at wkich
SAVE was invoked.

C M AINLTILUVNE EROGRAMN

C
INTEGER I, 1ERR, MAXS, MSGLVL, NEQNS
REAL 5(250), ERRCR, FOUR, ONE

COMMON /SPKUSR/ MSGLVL, IERR, MAXS, NECNS

CALL SPRSPK
MAXS = 250
CALL IJBEGN
Do 100 I = 2, 10
CALL INIJ (I, I-1, S)
100 CONTINUE
CALL IJEND { S)
CALL OBDRA1 (S)
ONE = 1.0E0
FOUR = 4.0E0
DO 200 I = 1, 1
IF (I .GT. 1
CALL INAIJT {
200 CONTINUE
CALL SOLVE!l (S)
CALL PSTATS
CALL SAVE (3, S)
STOP
END

0
) CALL INAIJT (I, I-1, -ONE,
I, I, FOUR, S)

5)

ok 3 ok 3 ok ok kK

* UNIVERSITY CF WATERLCC

kkkkkkkkkk SPARSE MATRIX PACKAGE
xkkkkxkxx (S P A RS P A K)

A ek ok ok ok o ok
TITITITE:

* RELEASE 2
* (C) JARUARY 1979

kkkkhkkekkx STANDARD VERSION

Aok o ok ok ok R

* SINGLE PRECISICN

skt akkkkkx LAST UPDATE JANUARY 1580

OUTPUT UNIT FOB ERBCR MESSAGE
OUTPUT UNIT FCR STATISTICS

IJBEGN- BEGIN STRUCTIURE INFUT...

INIJ-

INPUT OF ADJACENCY PAIRS

IJEND- END OF STRUCIURE INPUT

CRDRA1- ERCM ORDERING

INALJ

1- INPUT OF MATEIX COMEGNENTS

SOLVE1- ENVELOPE SCLVE
NO RIGHT HAND SIDE PROVIDED,
SOLUTION WILL BE ALL ZEROS.

PSTATS- STATISTICS

SAVE-

NOMBER OF EQUATICNS
OFF-DIAGONAL NCNZEROS

SIZE CF WCEKING SIORE (MAXS)
TIME FCR CRDERING

STORAGE FCR ORDERING

TIME FCE ALLCCATICH

STORAGE FOR ALLCCATION
STORAGE FCE SCLUTION

TIME FOR FACICRIZATION

TIHME FCR SCLVING

CPERATIONS IN FACTORIZATION
OPERATIONSE IN SCLVING

STCRAGE VECTCR SAVED

[x~2

10
18
z5C
0.003
60.
OCC
60.
60.
0.0
0.C
18.

100

200

11

M A INLTINE PEREOGU RAMN

INTEGER I, IERR, IPRNTE, IPRNTS, MAXS, MSGLVI, NECNS

REAL
REAL

$(250), ERRCR, ONE, THWO, ZERO
RATIOL, RATICS, TIME

COMMON ,/SPKUSR/ MSGLVL, I1ERR, MAXS, NECNS
COMMON /SPKSYSy IFENTE, IEBNTS, RATIOS, RATICL, TIME

END

CALL SPRSPK

MAXS = 250

CALL RESTRT (3, S)
ZERO = 0.0EO

ONE = 1.0EQ

TWO = 2.0E0

PO 100 I = 1, 10
CALL INBI { I, THC, S)
CONTINUE
CALL INBI (1, ONE, S)
CALL INBI (10, OKE, S)
CALL SOLVE1 (S)
CALL PSTATS
ERBOR = ZERC
Do 200 I =1, 10
ERROR = AMAX1 (EEKEOEF, AES (S(I)-ONE))
CONTINUE
WRITE (IPBNTS, 11) EBRCR
FORMAT (, 15H MAXINUM EEROR , 1PE15.3)
STOP

wkkkkkkkkd JNIVERSITY OF KATEKLCC
*xkkdkkkkkx SPARSE MATRIX PACKAGE

o ok ok ok ok kK KK {SPARSPFAK)

Aok ok koK ok Kk RELEASE 2

223 T1122 23 {C) JANUAERY 1979
xkkkkkkkkx STANDARD VERSICN
kkkakkkkkx SINGLE PRECISION
xkkkkkkks® LAST UPDATE JANUARY 1980

OUTPUT UNIT FCR ERRCF MESSAGE 6
OUTPUT UNIT FOR STATISTICS 6

RESTRT- EESTART SYSTEM
INBI- INPUT OF RIGHT HANL SIDE

SOLVE1- ENVELOFE SCLVE
FACTORIZATICN ALREADY DONE.

PSTATS- STATISTICS
NUMBER OF EQUATIONS
OFF-DIAGCNAL BCONZEROS
SIZE OF WORKING STORE (MAXS)
TIME FCR CRDERING
STORAGE FOB ORDEERING
TIME POR ALLOCATICN
STORAGE FOR ALLCCATION
STORAGE FCR SCLUTION
TIME POR FACTCRIZATION
TIME FCR SCLVING
OPERATIONS IN FACTORIZATION
OPERATIONS IN SCLVING

MAXIMUM ERROR 1.013E-06

10
18
250
0.003
60.
0.C
60.
€0.
0.0
0.C
18.
38.

Example >

This example consists of four runs of essentially the
same prograan, illustrating bow the SAVE and RESIRTI
modules can be used to avcid repeating successfully
completed computations when the execution cannot §fproceed
further because of lack cf wecrkimg storage. In the first
run, MAXS was too small to accommodate the structure, and
a message was printed indicating that MAXS must te at
least 999 1in order tc input the structure. A second run
with MAXS = 999 was executed, and the structure was
successfully input; however, the CEDRAS module cculd not
execute because MAXS was less than 1400 . The module
SAVE was thenr executed and the run terminated.

The third run had MaAXS = 2500 , and the ordering and
storage allocation were successfully performed. Hcvever,
OBDRAS terminated with ap errcr because it detected that
too little storage was available for the nuserical

computation (SOLVES), so SAVE was again executed.
Finally, the last runm was executed with MAXS set to 2509
{the maximum value, printed in the third run), and the

solution to the problem was obtained.

NOTE:

‘ The following exasprles were run using a single
precision version of SEARSFAK. The working storage required
will therefore be different if a different version of

SPARSPAK is used.

. REAL_

100

200

300

400

500
11

INTEGER

REAL

COMM

COMMON

.CALL

M AINLTINE PRGCGRAHN

1, IERR, IPRNTE, IERNTS, MAXS,
5${(900), ERRCR, FOUR, ONE, TEKC,
RATICL, RATICS, TINE

ZEEC

ON /SPKUSR/

/SPKSYS/

SPRSPK
900
IJBEGN
100 I =
CALL
CONTINUE
CALL

CALL
MAXS =
CALL
DO

IF (IERR .EQ.
PSTATS

CALL
s1o0pP
CALL ORDEAS
IF (IERR
CALL
CALL
S1I0P
0.0E0
1. 0EQ
2.0EQ0
4.0EQ
I =

ZERO
ONE
IWO
FOUR
DO

Wowoun

400

IF (I .GT.
CALL INBl (I,

CONTINUE

CALL INBI (
CALL INBI (
CALL SOLVES
PSTATS
ERROR = ZERO
DO 500 I =

ERROR =

CONTINUE

WRITE (IPRNIS,
FORMAT (/ 15H MAXIMUM ERROE ,

STO0P

INIJ (I,

.EQ-
SAVE (3,
PSTATS

MSGLVL,
IPRKTE,

2, 200

I-1, S

IJEND (S)

0) GO TO

(S)
0) GO TO

5)

200
1)

1,
CALL
180, S

s)
S)

1, ONE,
200, ONE,
(5)

1, 200

AMAX1 (EEEGR,

11) EBECR

-qe_

IEBRR,
IEBNTS,

MAXS, NEQNS

RATIOS, RATIOL, TIME

)

200

300

INAIJS (I, I-1, -CNE,

)

ABS (S(I)-ONE))

1PE15.3)

MSGLVLI, NEQNS

5)

kkkokkokkkkkx (UNIVERSITY CF WATEERLCC
¥k kkk¥kkxx SPARSE MATREIX PACKAGE
*kkkkkkkkk (S P AR S P A K)

ok ok koK ok % RELEASE 2

& 3 ok o K {C) JANUARY 1976
kkkkkkkkkk STANDARD VERSICN
kkkkkxkkk% SINGLE PRECISICN
kkkkdkkskk*x LAST UPDATE JANUARY 1¢€80

OUTPUT UNIT FOR EBROR MESSAGE
OUTPUT UNIT FCE STATISTICS

IJBEGN- BEGIN STRUCTURE INPFUI...
INIJ- INEUT OF ADJACENCY EAIERS
IJEND- END OF STRUCIURE 1INPUT

IJEND - ERROR NUMBEEF 16
TO0 LITTLE STORAGE,
MAXS MUST AT LEAST BE 999

PSTATS- STATISTICS
NUMBER OF EQUATICNS
OFPF~DIAGONAL NONZEROS
SIZE OF WCRKING STORE (MAXS)

o O

200
398
cocC

M AIXNKLTINE PROGU RAHN

INTEGEER 1, IERR, IPBNTIE, IPRNTS, MAXS, MSGLVI, NECNS
REAL $(999), ERROR, FOUR, ONE, TWO, ZEEC
" REAL RATICL, EATICS, TIME

"COMMON /SPKUSR/ MSGLVL, IERR, MAXS, NECNS
COMMON /SPKSYS; IPRNTE, IERNTS, RATIOS, RATIOL, TIME

CALL SPRSPK
MAXS = 999
CALL TIJBEGN
po 100 I = 2, 200
CALL INIO (I, I-1, S)
100 CONTINUE
CALL IJEND (S)
IF (IERR .EC. 0) GO TO 200
CALL PSTATS
‘ ST0P
200 CALL ORDRAS (S)
IF (1ERR .EQ. 0) GC TO 300
CALL SAVE (3, S5)
CALL PSTATS

S10P
300 ZERO = 0.0E0
ONE = 1.0EC
WO = 2.0E0
FOUR = 4.0EQ

Do 400 I = 1, 200
I1F (I .GT. 1) CALL 1INAIJS (I, I-1, -CNE, S)
CALL INB1 (I, ING, S)
400 CONTINUE
CALL INBI (1, ONE, S)
CALL INBI (200, ONE, S)
CALL SOLVES { S)
CALL PSTATS
ERROR = ZERC
po 500 I = 1, 200
EEKROR = AMAX1 { EERCK, ABS (S(I)-ONE))
500 CONTINUE
WRITE (IPRNTS, 11) ERRCR
11 FORMAT (, 15H MAXIMOX ERROF , 1PE15.3)
STOP
END

kkkkkkkkkk [JNIVERSITY QF WATEERLCC
*¥kkkkkkkek SPARSE MATRIX PACEKAGE
*kkkkkkkk%x (S P A RS P A K)

ook Rk ko ok RELEASE 2

T FIIITIT Y {(C) JANUARY 1979
kkxxkkekkk STANDARD VERSION
kkkxkkkkkkx STNGLE PRECISICN
kxkkkkxkxkx LAST UPDATE JANUARY 1980

OUTPUT UNIT FOR ERRCR MESSAGE 6
OUTPUT UNIT FOR STATISTICS 6
IJBEGN~ BEGIN STRUCTURE INPUT...
INIJ- INBUT OF ALDJACENCY EAIRS
IJEND- END OF STRUCTURE INEUT
ORDRAS- NESTED DISSECTICH CEDERING
ORDRXI (X=A, B. 1I1=1,2,3,4,5,6)
- ERROR NUMBER 23
INSUFFICIENT STORAGE FGR CFDERING.
MAXS MUST BE AT LEAST 1400
SAVE- STORAGE VECTOR SAVED
PSTATS- STATISTICS
NUMBER CF EQUATICNS 200
OFF-DIAGCNAL NCKZEROS 398

SIZE OF WORKING STORE (MAXS) 999

M AINLTITEKE FROGRAHN

INTEGER I, IFRE, IEENTE, IPRNTS, MAXS, MSGLVL, NEQNS
REAL S (2500), ERKCEK, FOUR, ONE, TIWO, ZERO
REAL RATIOL, RATICS, TINE

COMMON /SPKUSR/ MSGLVL, IERR, MAXS, NEQNS
COMMON /SPKSYS,/ IPRNTE, IPRNTS, RATIOS, RATICL, TIME

CALL SPRSPK

MAXS = 2500 :

CALL RESTIRT (3, S)

CALL ORDEAS (S)

IF (IERR .EQ. 0) 6C TC 100
CALL SAVE (3, §)
CALL PSTAIS

STOP
100 ZERO = 0.0EOQ
ONE = 1.0E0Q
THO = 2.0EQ
FOUR = 4.0EO

po 200 1 = 1, 200
I { I .GT. 1) CALL INALJ5 (I, I-1, -CNE, S5)
CALL INAIJ5 (I, I, FOUR, S5)
CALL INBI (I, TWC, S)
200 CONTIRUE
CALL INBI {(1, ONE, S5)
CALL INBI (200, ONE, S)
CALL SOLVES (§)
CALL PSTATS
ERROR = ZERO
po 300 1 =1, 200
ERROR = AMAX1 (ERBROR, ABS (S(I)-ONE))
300 CONTINDE
WRITE (IPRNTS, 11) EBECR
11 FORMAT (, 15H MAXIMUM ERROR , 1PE15.3)
sToP
END

ok oKk ok ok K K K
Aokokokokok ok ok
ook ok ok ok ok
koK Rokok Aok % K
Fokok gokok ok # ok
Rk kokk ok Xk
*ok ok ook ok ok K
ook ook kR K ok ok

UNIVERSITY CF WATERLCC
SPARSE MATRIX PACKAGE
(SPAESPREK)
RELEASE 2
(C) JANDARY 1979
STANDARD VERSIOK
SINGLE PRECISICN
LAST UPDATE JANUARY 1580

OUTPUT UNIT FOR ERRCR MESSAGE
OUTPUT UNIT FOR STATISTICS

BESTRT~

ORDRAS-

ORDRXI

RESTART SYSTEM
NESTED DISSECTICN CEDERING

(X=a, B. I=1,2,3,4,5,6)
ERROR NUMBER 26

INSOFFICIERT STORAGE
FOR SOLVEI (I=1,2,3,4,5,¢€)
MAXS MUST EE AT LEASI 2509

SAVE-

PSTATS-

STCRAGE VECTCEF SAVED

STATISTICS
NUMBER OF EQUATICNS
OFF-DIAGCNAL NCKZEROS
SIZE OF RORKING STORE (MAXS)
TIME FCE CRDEFRING
STCRAGE ¥CEF CHLEFING
TIRE FOR ALLOCATICN
STORAGE FCR ALLCCATION
STOBAGE FCEF SCLUTION

200
39e
2500
0.083
1400.
0.030
2324,
25C9.

100

200

300
1

INTEGER
REAL
REAL
COMMON
COMMON

M A INLTINE

I,

RATICL,
MSGLVL,
IERNTE,

/SPKUSRy/
/SPKSIS/

SPRSPK
2509

CALL
MAXS =
CALL RESTRT
CALL ORDRAS
IF (IERR

CALL

CALL

STOP
0.0E0
1. 0E0
2.0E0
4.0E0
200 I =

ZERO
ONE
TWO
FOUR
DO

w N

{
{

cEQ-
SAVE {
PSTATS

1,

3,
5
0

200

5)

)
)
3,

PROG

IERR, IPBNTE, IPRNTS,
$(2509), ERRCR, FOUR, ONE, TWO,
RATICS,

TIME
IERR,
IERNTS,

GO TO 100

S)

IF (I
CALL
CALL
CONTINUE
CALL INBI
CALL
CALL
CALL
ERROR =
DO 300 I
EEROR
CONTINUE
WRITE (IPR

S0LV
PSTA

.GT. 1)
INAIJS (I,
INBI (I,

(1, ONE,

INBI (200, ONE,

ES
15

{ S)

ZERC

200

=1'

NTS, 11)

IRC,

= AMAX1 (EBKCK,

CALL
1, FOUR,
5)

<

-~

)
5)

ERRCR

FORMAT (s 15H MAXINUX EBROF

STOP

MAXS,

R AN

RATIOS,

S)

MA XS,

ZERO

RECNS

RATIOCL,

ABS { S(I)—-ONE))

. 1PE15.3)

MSGI1IVL,

NECNS

TIME

INALIJOS (I, I-1, -CEE, S)

kkkkxkxk JNIVERSITY OF WATERLCC
***k#*kkkkkk SPARSE MATRIX FACKAGE
kkxkkxkkkkk (S P A RS PAK)

Xk kK kK
* %k kkok ok Kok ok kK

RELEASE 2

(C) JANUAERY 1979

*xkxkkkkk® STANDARD VERSICN
kkkkkkkk SINGLE PRECISION
kkxdkkxkxx LAST UPDATE JANUARY 1980

OUTPUT UNIT FOR EERCR MESSAGE
OUTPUT UNIT FOR STATISTICS

RESTRT- RESTART SYSTENM

ORDRAS- NESTED DISSECTICN CRDERING

INAIJS- INPUT OF MATRIX CCMECNENTS

INBI- iINPUT OF RIGHT HANL SIDE

SOLVES- GENERAL SFAKRSE SCLVE

PSTATS- STATISTICS

MAXIMUM ERROR

NUMBER CF ECUATICNS
OFF-DIAGCNAL NCKZEROS

SIZE OF WORKING STORE (MAXS)
TIME FCE CBLDEEING

STORAGE FCK CELEFING

TIME FCR ALLOCATICN

STORAGE FCR ALLCCATION
STORAGE FCR SCLUTION

TIME FOR FACTICRIZATION
TIME FCR SCLVING

OPERATICNS IN FACIORIZATION
OPERATIONS IN SCLVING

1.550E~-06

200
398
2509
0.083
1400.
0.030
2324.
z5C9.
0.043
0.C17
g9t3.
1168.

Example &

This is a program to illustrate how one might use
SPARSPAK to choose a method. The matrix is 300 by 300, it
has nonzeroes on the diagonal, the first coluamn and the last
oV, The structure of the matrix is input using IJBEGN,
INIJ and IJENL, and then saved on FORTRAN unit 3. The
modules ORDRA1, ORKDRA3 and OFDEA5 are then executed, e€ach
one followed by a call toc PSIAIS to obtain the storage
information. Note that ~ RESIRT is called after execution
of ORDBA1 and ORDRA3, to restore the package to the state
that existed immediately after the structure dinputting
routines were executed. Note also that SAVE cculd bhave
been used after each ordering module (with different output
unit numbers). After cne of the methcds was chosen, RESTIRI
(vith the approrriate unit number) could be used to initiate
the computation, avoiding re-executing the ordering module
corresponding to the methcd chosen.

C M AINLTINE PROGRAMNM
c
INTEGER I, IERR, MAXS, MSGLVL, NEQNS
REAL S{7500)

COMMON /SPKUSR/ MSGLVL, IERR, MAXS, NEQNS

CALL SPRSPK

MAXS = 7500

CALL IJBEGN

DO 100 I = 1, 300
CALL INIJ (I, 1, S)
CALL INIJ (300, I, S)

100 CONTINUE

CALL IJEND (S)

CALL SAVE (3, S)

CALL ORDRA1 (S)

CALL PSTATS

CALL RESTRT (3, S)

CALL ORDRA3 { S)

CALL PSTATS

CALL RESTRT (3, S)

CALL ORDRAS

CALL PSTATS

STOP

END

w—
tn

wkkkxkkkk%x JNIVERSITY CF WATEKLCC
*¥kkxkkkk¥k%x%x SPARSE MATRIX PACKAGE

Kxkakkkkkkx (S P A RS P A K)
e Aok ok ook % K RELEASE 2
e e o o ok o ok % X Xk {(C) JANUARY 187¢

kkxkkkkkkkkx STANDARD VERSICON
kkkkkkkkkkx STNGLE PRECISICN

kkkkkxkkk LAST UPDATE JANUARY 1980

OUTPUT UNIT FCR ERRCE MESSAGEK
OUTPUT UNIT FCER STATISTICS

IJBEGN- BEGIN STRUCTIURE INFUT...

INTIJ~ INPUT OF ALJACENCY FAIRS

IJEND- END OF STRUCTURE INPCT

SAVE- STORAGE VECTCR SAVED

ORDRA 1~ KCM ORDERING

PSTATS~ STATISTICS
NOMBER OF EQUATIONS 300
OFF-DIAGONAL NCNZEROS 1194
SIZE QOF WCRKIKNG STORE (MAXS) 7500
TIME FCR CRDEKING 0.087
STORAGE FCR ORDERING 2396.
TIME FOR ALLCCATICN 0.C13
STORAGE FCEK ALLCCATION z3%6.
STORAGE FCH SCLUTION 2098.

RESTRT~- RESTART SYSTFH

ORDRA3— OKE WAY DISSECTICN CHDERING

PSTATS~ STATISTICS
NUMBER OF EQUATIONS 300
OFF~-DIAGONAL NCEZEROS 1194
S51ZE OF WCERKING STIORE (MAXS) 71500
TIME FOR CRDERING 0.137
STOBRAGE FCR OEDERING 3297.
TIME FCR ALLCCATICN 0.060
STORAGE FCR ALLCCATION 3300.
STORAGE FCR SCLUTION 3002.

RESTRT- RESTARI SYSTEMN

ORDRAS~ NESTED DISSECTION CEDERING

PSTATS- STATISTICS
NUMBER OF EQUATIGNS 300
OFF-DIAGONAL NCNZEROS 1194

- 57 -

SIZE CF WCBKIKG STORE (MAXS) 7500

TIME FOR CBDERING 0.123
STORAGE FOR CRBRDERING 2696,
TIME FOR ALLOCATICN 0.C43
STORAGE FOR ALLCCATION 3599.
STORAGE FCR SOLUTION 3301.

-58_

Appendix A

INPLENENTATICE OVERVIEW

in this section, we describe briefly the use of
labelled common blocks in the 1internal implementation of
SPARSPAK and the various methods of communication tetween
modules.

A.1 USER/HODULE COMNUKNICATICN

As described in previous sections of this user guide,
the user supplies a one-dimensional floating point array S,
from which all array storage is allocated. in particular,
the interface allocates the first NEQNS storage locatioms in
S for the soluticn vectcr of the linear system of egqguations.
After all the interface modules for a particular method have
been successfully executed, the user <can retrieve the
solution from these NEQNS locations.

There is one lalkelled common block that the user must
provide, having four variables:

COMMON /S5PKUSRy/ MSGLVI, IERR, MAXS, NEQNS

The variable MAXS is the declared s5ize ot the
one-dimensional floating point array S and it must Lte set by
user at the beginning of his program. For each module in
the interface that allocates storage (e.q. INIJ, IJEND,
ORDRxi), MAXS 1is used to make sure that there is encugh
storage to carry out the particular phase.

A.2 MODULE/MGDULE CONMMURICAIICN

There are several latelled common blocks used for
communication among modules within the interface. Two
important ones are the control klock and the storage map
block:

COMMON /SPKCCN/ STAGE, MXUSEL, MXEEQD, NEQNS,
NEDGES, METHCD, {and other
methcd-related control variables}

COMMON /SPKM2P/ PERM, INVE, RHS,

- 59 -

fand other method-related data
structure pointers}

The control block has fourteen integer variakbles and
contains control informationm akout the specific [frotlenm
being solved. There are fifteen variables in the storage
map block, which keep the locations (origins in S) of the
various arrays used in the particular storage scheme. These
storage schemes differ in complexity across the me thods, so
the same storage map block must te used in the corresgponding
routines ORDRxi, INAIJi, INROWi, INMATi, and SOLVEi. An
example is given below.

envelcpe of the matrix factor 1L

T |
RHS ~--=>} |
| {
| { right hand side vector
1 |
f=—--1
PERM --->}{ |
| |
i i permutation vector
| H
{==--1
INVP ——-=>| |
| i
| { inverse permutation vector
{ |
==
XENV ——=>| i
i i
| { index tc envelope structure of L
I |
I=-=—=1
DIAG =--=->] |
{ {
{ i diagonal of the matrix factor 1L
| |
-1
ENV -—~—->| i
}
|
|

Storage allocation for the symmetric envelope method
(CELEAT)

A.3 SAVE/RESTART IMPLEMENATION

The SAVE routine saves the control information in the
control block, the storage pointers in the storage map
block, as well as the storage vector S. In this way, the
state of the computation can be re-established by executing
the module RESTRT, which restores the control block and the
storage map block, and the stcrage vector S.

The variable MXUSED in the control block is used to

avoid saving irrelevant data from S. After the successful
completion of each phase, MXUSED is set to the wmaximum
number of storage locations im § used thus far. It is then

only necessary to save the first MXUSED 1locations cf S
Whenever the routine SAVE is called.

Some operation systems allow a program to change the
space it occupies in maim storage during execution. Thus,
in some installations the user of SPARSPAK may be able to
dynamically increase or decrease the size of the working
storage S. He can determine what the value of MAXS shculd
be by declaring the latelled common block SPKCON in his
mainline program, and exaeining the value of MXREQD. At the
end of each successfully executed phase of the computation,
MXREQD is set to the &minimum value of MAXS Tequired to
successfully execute the next rhase of the computation.

It is often the case that when this dynamic growing
of program space is provided, the effect is to increase the
space allocated to the unlatelled COMMON, which 1s usually
assigned the highest memory locactions in the user's progranm
area. In such a circumstance, the array S in the user's
program would have to be declared in blank common.

A.4 METHOD CHECKING

As we discussed in the dintroduction, using a
particular 'method' means calling the appropriate interface
routines OBDRxi, INAIJi, INROWi, INMATi, and SOLVEi, where
the last character is a numerical digit denoting the method.
These ordering, input, and solve modules canot Le mixed
since they in gemeral invclve different data structures. 1In
order to ensure that these modules are not inadvertently
mixed by the user, ORDRxi sets the variable METHOD in the
control block SPKCON egqual tc (10*i + k), where k 1is an
integer that distinguishes orderings A and B. This variable
is checked by subsequently executed ipput and solve mcdules.

A.5 STAGE(SEQUENCE) CHECKINE

Another control variable that deserves comment 1is
STAGE. As its name implies, it is used to keep track of the
current step or stage of the execution. This variatle is
particularly important in connection with SAVE and RESIRI
modules. 1In restarting the system using the RESTRT routine,
the variable STAGE im the control block SPKCON is restored,
and it indicates the last successfully completed stage or
phase before the routine SAVE was called. In this way, the
execution can be restarted without repeating already
successfully completed steps.

Another function of this variable is to enforce the
correct execution sequence of the various insterface
routines. Befcre the actual execution of each interface
routines, the variable STAGE is used to check that all
previous interface modules have keen successfully ccapleted.
This avoids preducing erroneous Tesults due to improper
processing sequence, or accidental omission of steps.

The content of the variable STAGE is only changed
after a phase has been successfully executed. When an error
occurs during the execution of the phase, the variable STAGE
remains unchanged. This prevents the execution of all the
subsequent phases, even if they are invoked by the user.
The variable STAGE is also used by the modules to determine
vhether some initialization is necessary 1in a module, or
whether part of the module has already successfully executed
during a previous call to it.

A.6 STORAGE ALLOCATION GP INIEGER AND
FLOATING POINI ABRAYS

The ANSI PORTRAN standard specifies that the nueber
of Lits used to represent irtegers and floating point
numebrs are the sanme, However, some vendors provide the
user with the option of specifying *'short' integers, either
explicitly in the declarations such as 'INTEGER*2', or via a
parameter to the FCRTFAN processor which automatically
represents all integers wusing fewer bits than used for
floating point numbers. Since a significant porticm of the
storage used in sparse matrix computations involves integer
data for pointers, subscripts etc., it is desirable to try
to exploit these 'short' integer features whenever it makes
sense to do so0.

SPARSPAK contains parameters RATIOS and RATICL, set
in the module SPRSPK(4), which specify the ratios of the
number of bits used for floating point numbers to the nusker
used for 'short?' and 'lcrg' integers. For example, 1in a
_double precision IBM version of the package which exploits
'short! integers, RATIOS is 4 and RATIOL is 2. Let U(x) be
the smallest integer » such that a 2 x. The package then
uses RATIOS (RATIOCL) to allocate only U(r/RATIOS)
(U(p/RATIOL)) elements cf S for 'short'! ('long') 1integer
arrays of length p.

SPARSPAK assumes that the declaration of S that the
user makes in his prcgram is of the same type as that used
for floating point computation. MWe also make the reasonakble
assumption that RATIOS > 1 and EATIOL > 1.

A.7 STATISTICS GATHERING

SPARSPAK contains a latelled common block called
SPKDTA which appears below. These variables are used to
provide the output descrited in Section 7.2.

COMMON /SPKDTA, ORDIIM, AILCCTM, FCTIME, SLVTIIHM, FCICES
SIVCES, OBLSTE, ALOSTR, SLVSTR, OVERHD

In order to supply timing information, SEARSPAK
assumes the existence of a real function DTIME which returns
the processor execution time that has elapsed since CTIME
was last referenced. Thus, the DIIME function is also
installation dependent.

¢ Thus S5PRSPK is an 1installaticn dependent subroutine.

63

(1]

{21

{31

[4]

[>51

(é]

{71}

BIBLIOGEBAPHY

Alan George, Ap_autcmatic ope-way dissection_algorithm
for irregular_ _fipite element problems, Proc. 1977
bundee Conference on Numerical Analysis, Lecture
Notes in Mathematics Nc. 630, Springer-Verlag, 1978,
pp. 78-88.

Alan George and J. K-H. Liu, Algorithms fer matrix
partitioping and the _numerical _solution of _fipite
element systems, SIAM J. Numer. Anal., 15 (1978),
pp. 297-327.

Alan George and J. ¥-H. Liu, An_automatic _nested
dissection _algorithm _for irregular _finjte _element
problegms., SIAM J. Numer. Anal., 15 (1978),
pp. 1053-10689.

Alan George and J. %-H. Liu, A_fast implementaticr of
the mipimum degree_algorithm usipg__guotjent _grarhs,
Research Report CS-78-12, July 1978. Department of
Computer Science, University of Waterloo.

Alan George and J. W-H. Liu, The design of_ _a_user

interface for a spaise matrix package, ACHM Trass. on
Math. Software, 5 (1979), pp. 139-162.

Alan George and J. ®W-H. Liu, Computer_ solution of large

sparse symmetric positive definite systems cf lipear
equations, to be published by Prentice Hall, IncC.

Lia, J. W~H. and A. B. Shersan, Comparative analysis of
the Cuthill-McKee and _BEeverse Cuthill-HMcKee ordering
algorithps for sparse matrices, SIAM J. Numer. Anal.,
13 (1976), pp. 198-213.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

