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ABSTRACT

The topoiogy of computer~communication metworks
has been modelled by Generalized Moore Graphs, an extension
of the Moore Graphs first studied by Hoffman and Singleton.
The construction of these graphs has been studied in a
number of previous papers and a large number of such graphs
have been exhibited. This paper contains a proof that the
connectivity of the class of trivalent Generélized Moore
Graphs is three. This result is important for the design
of computer networks and is closely related to the reliability

of such networks.



THE CONNECTIVITY AND RELTABILITY OF A
"""" o7 CLASS OF EXTREMAL GRAPHS

D.D. Cowan

7. Introduction

In recent studies of the topological design of
computer communication networks [1,2,3,4,5,6] a class of
extremal graphs was analyzed. Each graph in this class
was regular and had a minimum average path length. This
paper discusses the connectivity of such graphs and proves
that members of this class with valence 3 have a connectiv-
ity of 3. Previous papers have presented a census of these
graphs and explored methods for constructing them.

The class of graphs possessing the property of
minimum average path-length is interesting in itself, and
includes the Petersen [8], Heawood, McGee [10] and Tutte
8-Cage [12]. Also all graphs which have been found with
the exception of the Petersen graph and a graph on 28
nodes [7,11] have Hamiltonian circuits.

These graphs have been called Generalized Moore
Graphs since they were a natural extension of the graphs
defined by E.F. Moore and first studied by Hoffman and
Singleton [9].

It has also been shown in a previous paper [2]
that some graphs satisfying admissible parameters for this

class do not exist.



2. Genernalized Moore Graphs

The study of cost, delay and reliability in com-
puter communication networks led one to consider networks
or graphs in which the distance travelled by a message was
minimized. Such considerations would lead to a complete
graph which certainly solved the delay and reliability
problem but would present the designer with a network whose
costs were prohibitive. In order to construct an optimum
network design which attempted to produce reasonable values
for all three variables one was led to an analysis of regu-
lar graphs with minimum average path length. The minimum

average path length P(N,V) is

v o$ (ve1)d (441-m)+(-1)m
=0 , (1)

N-1

where N is the number of nodes in the graph, V is the

valence of a node, and

m = [logy_; M“’—-’-)i-?:[ (v>2). (2)

Networks which could satisfy this expression were
a reasonable compromise [1l]. They minimized delay and maxi-
mized reliability for a fixed valence and they could be

constructed for a reasonable cost.



The development of this expression led to a

number of questions:

(i) Are there many graphs which satisfy this

minimum average path length constraint?
(ii) 1If such graphs exist, can one exhibit them?

(iii) Do these graphs have maximum reliability;
is the valence of such a graph equal to its

connectivity?

A short presentation of the derivation of ex-
pression (1) is appropriate at this point, as it provides
much of the background for the discussion of questions (i),
(ii) and (4idi).

Consider a tree with N nodes in which each node
has either valence V or valence 1. The nodes of valence 1
are called leaves. A tree with N = 10 and V = 3 is
illustrated in Figure 1. One node will be chosen as the
root node, and it is labelled R in Figure 1. The root
node R will be considered to be at level zero in the tree,
the V nodes adjacent to R will be at level one, the V(V-1)
nodes adjacent to those at level one will be at level 2,
and so forth. The levels are shown on the right side of

Figure 1.
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Figure 1
A tree such as this with
m-1 .
1+V 3 (v-1)7 (3)
j=0

nodes, where m is the maximum level, will be called a complete
tree, since new nodes can only be added by starting a new
level. The graph formed by joining the nodes at the top
level of the tree so that all nodes have valence V has been
called a Moore Graph [9] and the tree has been called a Moore
Tree.

In order to find the average path leangth from R
to all nodes in the tree, it is necessary to sum all paths
and then divide by N-1l. Since there are V paths of length 1,

V(V-1) paths of length 2, V(V-1)? paths of length 3, and so



on, then the average path length from R in a full tree

with m levels is

j=0 , (4)

By removing nodes and their corresponding edges
from the highest-numbered level of the full tree, it is
possible to arrive at the general formula for average path
length in any tree of this type. If the number of vertices

in the tree is N then the number of vertices removed is
1+v ¢ (v-1)J - n . (5)

Then the average path length P(N,V) in this

"pruned" tree is

m-1 . . m-1 .
VIw-IGH) - {1+ vz -1y - §tm (6)
j=0 j=0
P(N,V) = ]
which can be rewritten as
m~1 .
v I wv-d G- + WD
P(N,V) = 3=0 . (7)

N-1

The level m can easily be computed by noting

that
m-1 .
1+vzI (v-1) - x
j=0

(8)

v
o
-



and that m i1s the smallest integer which satisfies this

-inequality. .
Since
m-1 . , o
. ow-1)3d = w-1O" -1 ,
j=0 (9)
V-2
then
) m
oy VOG- -1y, 0, (10)
V-2
and
n = rlogv_l-N(V'z) * 2 Yfor v oz 2. (11)

Here [x] denotes the least integer y such that y 2 x.

If the leaves of this tree can be joined by edges
to make them V-valent so that each node can be treated as a
root, then expression (7) represents the minimum average
path length for a graph of this type. Graphs of this type
have been called Generalized Moore Graphs, and are denoted
by the symbol M(N,V).

We shall denote the trivalent case by M(2N, 3)
since all of these graphs must have an even number of

nodes.

3. Some Preliminary Resulis

In the next section the connectivity of M(2N,;3) -

the trivalent Generalized Moore Graph will be shown to have



a value of 3. Before proceeding to discuss the connectivity
of M(2N,3) some results of graph theory will be stated with-
out proof. These results can be found in the literature and

references are given.

We denote a linear graph by G, its connectivity
or point connectivity by C(G), its line comnectivity by L(G),
its minimum valence by V(G), and its diameter by D(G).

Definitions of these quantities can be found in [8].

Lemma 1 [8]
The connectivity, line-connectivity, and minimum

valence are related by the following inequality
C(G) = L(G) =< V(G). (12)

Lemma 2 [8]
The connectivity and line~-connectivity are equal

in every cubic graph, hence
C(G) = L(G). (13)

Lemma 3 [2,3]
The diameter D(M(2N,3)) of M(2N,3) is equal to m,

the number of levels.

4. The Connectivity of M(2N,3)

This section concludes with a theorem which states
that M(2N,3) has a connectivity or point-connectivity of 3,

Since for a cubic graph connectivity and line-connectivity



are equal, this means that three edges or three nodes

must be removed before the graph is divided into two

disjoint components.

The proof proceeds in stages. First we prove
that the connectivity must be at least two and then we
prove a number of lemmas which lead to the result that

the connectivity is three.

Lemma 4
The connectivity of G = M(2N,3) is at least

two, hence

c(G) = 2,

Proof:

We assume that C(G) = 1; hence there is a cut~-
point in G. Since G satisfies the minimum average path
length condition, any node could be chosen as the root node

R. We choose R as the cutpoint and then G can be represent-

ed as the two graphs G1 and G2 connected by the node R as

in Figure 2.

Figure 2.



If we assume that G has m levels with level m possibly
incomplete then the distance from R to level m-1 in both

Gl and G2 is m-1.

Hence the diameter

D(G) 2 2m-1,

since the nodes in the dncomplete level may all be in Gl

or G2.

Since there are m levels in G
D(G) = m,
and
m 2 2m-1,
which is a contradiction for m > 1,

The complete graph on four nodes which is the only
graph with one level has no cutpoint and so there is a contra-
diction for all m.

Hence

c(G) = 2.
From lemma 1 it is obwvious that C(G) ié either two or three
since G is trivalent. We assume that C(G) = 2 which implies
that L(G) = 2.

This assumption means that G can be partitioned
into two graphs Gl and G2 which are joined by exactly two
edges as in Figure 3. We observe that both a and b and ¢ and

d are distinct nodes otherwise there would be a cutpoint in G.



Figure 3

As part of our proof we need to know whether the
number of nodes in Gl and G2 is odd or even. We prove the

following lemma.

Lemma 5

Both G1 and G2 have an even number of nodes.

Proog:

Suppose the number of nodes in G1 is odd and equal
to 2p+1. Then the number of edges in Gl’ not counting the
edges connecting it to G2, is

3(2p+1) _
2

This expression is not an integer and so the number

of nodes in G1 must be even.

The number of nodes in G1 will be denoted by 2p.

Similarly G2 has an even number of nodes which can be denoted



by 2q. Since G is a cubic or trivalent graph the number
of nodes in G will be 2N and

N=p+ q.

This leads to a lémma which contradicts our
aSSumpﬁion that L(G) = 2 and shows that most of the General-
ized Moore Graphs are three-connected; in particular those
which have more than 6 nodes. The proof of the lemma is
obtained by replacing the graphs G1 and G2 by two trivalent
graphs H and K which have minimum diameter. This new graph
is illustrated in Figure 4. We then calculate the diameter
of this new graph and show that this diameter is larger
than the diameter of the original graph G and hence we

obtain a contradiction.

Figure 4

Lemma 6

Generalized Moore Graphs M(2N,3) are three-

connected for 2N » 6.

Proog:

It has been assumed that L(G)=2 and hence the

- 11 -



graph M(2N,3) can be represented as shown in Figure 3. We
now replace the graph Gl by a trivalent graph H of minimum
diameter on 2# nodes and then have ‘

D(Gl) 2 D(H),
where

2p+2
P 7.

D(H) = I'log2

Similarly G2 is replaced by a trivalent graph K.on 2q nodes
with

D(6,) = D(K),
where

D(K) = llog, 2q+2q

The new graph showing H and K replacing Gl and G2 is illustrated
in Figure 4. The connecting nodes between the two graphs
are still labelled,. a,b,c, and d.

Since H is a minimum diameter trivalent graph, then
either a or b may be designated as a root node of H. Hence
there is at least one node in H which is distance D(H) from
a and b. Similarly there is at least one node in K which is
distance D(K) from c and d. |

Then the diameter of the combined graph in Figure 4

is given by

v

D(H) + D(K) + 1 D(H) + D(K)

2p+2.I + Tlog 2q+2]
3 2

2p+2, ,2q+2

( N )1
3 3

2p+2q+2
3

rlog2

v

rlog2

\%

rlogz( )1 for p=22,q=22

2N+2°

)T

rlogz(

= m.



Hence the diameter of the graph in Figure 4 where H and K
each have 4 or more nodes is larger than the diameter of

the original graph G. Since this graph was constructed

by replacing G, and G2 by H and K we have a contradiction.

1
Hence the line connectivity of M(2N,3) is three for 2N>6.

It is now necessary to examine the cases for
2N = 4 and 6, and to complete the proof using the following
lemma.

Lemma 7

The graphs M(4,3) and M(6,3) are three-connected.
Proog:

At least one of the graphs Gl and G2 must contain
two nodes in order to construct the graph of Figure 3 since
each one must have an even number of nodes. . Choose G1 to
contain the two nodes. Hence G1 must appear as in Figure 5.
This means that there are at least four edges joining Gl
to G2 which violates our assumption. Hence M(4,3) and
M(6,3) are three-connected. The results of these lemmas
lead to the
Theorem:

All trivalent Generalized Moore Graphs M(2N, 3)

are three-connected.



Figure 5

ReLiability of M{2ZN,3)
Since the graphs M(2N,3) were originally chosen

as models for the topology of a computer-communications
network we should examine their reliability. Reliability
is a generalization of connectivity in that one wishes to
find a mixed set of nodes and edges which separates a graph
into two components. Specifically, one wishes to find a
connectivity pair of a graph G. A connectivity pair [8] is
an ordered pair (x,y) of non-negative integers such that
there is some set of a nodes and b edges whose removal
separates the graph, and there is not a set of a-1 nodes
and b edges, or a nodes and b-1 edges with this property.
For example (C(G),0) and (0,L(G)) are two such pairs. The
following results [8] have been shown for connectivity
pairs:

(i) There are C(G) + 1 connectivity pairs.

(ii) If (x,y) is a connectivity pair with y > O,

then (x+1, y~1) is also a connectivity pair.

These two facts allow us to construct the connectivity

- 14 -



pairs for M(2N,3). Obviously (0,3) is a connectivity pair
and using (ii) so is (1,2) and (2,1). A final connectivity
pair is (3,0) and according to (i) this computes all the
connectivity pairs for M(2N,3).

This simple analysis reveals that this model for
a computer network has a high degree of reliability. Its
connectivity and its valence are the same, a situation which
is highly desirable in any network which must remain opera-

tional under failure.

Conclusions

We have presented in this paper a discussion of
the connectivity and reliability of a class of extremal
graphs. These are the trivalent Generalized Moore Graphs
M(2N,3). These graphs have been used as models for computer-
communication networks, and hence it is quite important to
study connectivity and reliability, since such a network must
be able to function in spite of the failure of some compon-
ents.

There are a number of other problems which are
associated with these graphs. For example, it would be
interesting to enumerate graphs for other values of valence
up to 4 or 5. One would also wish to investigate the
connectivity and reliability of these configurations as

well. Finally an algorithm or heuristic should be found



which will allow the extension of M(2N,3) to a graph which
is close to if not exactly M(2N+2,3). Hopefully, this
rwould be done without changing the connectivity or reliabil-
ity properties. This extension method is required since
one must be able to expand networks without extensive re-
configuration.

Some of these questions have been studied and will

be presented in subsequent papers.
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