i,

. - LY L] [] ['Pep‘_ No.
aquisition/Graphicservices =+ 956
L 4 ' [: '
1. Please complete unshaded areas on
T 3 form as applicable. (4 part no carbon
- 2'\3 > required).
S - 2. Distribute copies as follows: White,
Date Required Account ¢ ' E%nary and Pir|1k—bF;rin(t;ing, /é;rts
I N - o ibrary or applicable Copy Centre
“gd ASAP F} gase 126-£353-41 Goldenrod—Retain.
- 3. On completion of order, pink copy will
Signing Authority /, /) t())e returned witrlll %rinted nhateridal,
. anary copy wi e costed an
. van Dmden LD VA T ¢ returned to requisitioner, Retain as a
i i 'L' /{ W ﬂu record of your charges.
Room Phone Iﬁlivery O 4. Plea§e_t_direct er’;quirtiesIs gutc_nin/G .
ER Y - Vs Mail Via Stores requisition number, to Printing/Graphlc
WY SC’i efice M,&C {;] {‘3825 3&@3 Pick-up] Other Services, Extension 3451.
e 2 4
rements Number of Pages Number of Copies | , o
£ ') oy oyl
3/Repro’s [Xerox . 36 (' Tea
et
10k O Cover O Bristol Im Supplied
[J8%z2x14 g1 x17
Ink
] Other [] Black
Numbering
[] 2 Sides to
ations

r Stitching O 3 Ring

O Tape O Plastic Ring O Perforating

Cutting
Finished Size

with covers.,

i thout covers;

only corper stitchin

Graphic Services
May 68 482-2

AN ALGORITHM FOR
BALANCED FLOATING~POINT ADDITION
by
M.H. van Emden and Helio de M. Silva
Department of Computer Science
University of Waterloo

Waterloo, Ontario

CS-78-28
June 1978

AN ALGORITHM FOR
BALANCED FLOATING~POINT ADDITION
by
M.H. van Emden and Helio de M. Silva %)
University of Waterloo

ABSTRACT

The associativity of exact addition of n floating-point numbers leaves
a certain amount of freedom in the choice of which partial sums to evaluate.
We represent this choice as an "addition tree" and derive an error bound that
is proportional to its path length, thereby generalizing a result of P. Linz.
We present an algorithm which adds n floating-point numbers in such a way
that the error bound is close to its theoretically attainable minimum. Apart
from an additive constant, the time required by the algorithm is proportional
to n; the required space is proportional to log n. We provide informal, yet
rigorous, proofs of the correctness and of the claimed performance characteristics

of the algorithm.

Keywords and Phrases: error bounds, floating-point addition, path length,

balanced trees

CR categories: 5.11, 5.24, 5.25

£
) on leave of absence from the Universidade Federal da Paraiba

1. Introduction

Because of rounding errors, floating-point addition is not quite an
associative binary operation. Therefore it matters in which order the
additions are performed which are required to obtain the sum of n numbers.

The expression
S =a, +a,+ ... +a
n n

1 2

does not convey this information and therefore we consider instead an addition

tree. For example, if Sn is obtained by

S, = a; + S for i=1,...,n e ()

then the addition tree for S is

We will call this "linear addition". In general, we recursively define an

addition tree for a sequence of numbers

ars az,...,an with n 21

to be either a node containing a single number or to consist of a left
subtree and a right subtree, both of which are addition trees. We are
interested in addition trees which nearly minimize a certain bound for the
rounding error. We express the bound in terms of the path length of the
addition tree.

The path length p of an addition tree is the sum of the distances
from the root to each of the leaves. More precisely, p can be defined
recursively as follows. 1If the addition tree consists of a single node,
then p = 0. Otherwise p=n; +n +p; +p, where ni{nr} is the
number of leaves in its left { right} subtree and pffpr} is the path
length of its left { right} subtree.

A bound for the error € in a single addition of two numbers ay with
floating~point representation fi X 2ei, where .5 < fi< 1, and where
i=1,2, is

€2

e
Ielst(2l+2)

In this expression ¢t = 2—q’ where q is the number of bits to which the
exact sum is truncated.
When the sequence @jseresd is summed, a bound for the round-off

error € 1s given by
le| < 2atp .. (2)

where a 1is such that |ai| <a,1=1,...4n, and p 1is the path length
of the addition tree according to which the sequences is summed.
This may be proved by induction. ¥For an addition tree consisting of a

single node (2) is immediate: p = 0 and there is no addition and no rounding

error. For an addition tree consisting of a left subtree with sum S1 and
path length Py and a right subtree with sum Sr and path length Pps the
rounding error is bounded as in

e e

le] < 2atp; + 2atp_ + t2 Lyt

where e; is the exponent of Sl and e, the exponent of Sr' Let n;
e

be the number of leaves of the left subtree; then 2 1 < 2anl and similarly

for the right subtree. Using this we obtain

le] < 2at (p; + p,tn + n) = 2atp

1

which completes the proof by induction of (2).

The bound in (2) suggests that one should add in such a way that for
the resulting addition the path length p is minimized. It is well-known
that pz2n logzn. The lower bound is achieved when the addition tree is

a complete addition tree, which is one where each leaf has an equal distance

k from the root, k = 0,1,2,... . Such an addition tree has 2k leaves
and a path length of k2k.

We call balanced addition any algorithm for which the addition tree has

path length < n flogzn]. That is, the path length, though not necessarily
minimal, is nearly so. Note that the algorithm (1) has an addition tree with
a path length of about 1/2 n2. Relative to (1) balanced addition achieves
as improvement in the error bound a factor of about -——1L¥——.
2 logzn
Linz (1970) has described a form of balanced addition and derived for
complete addition trees the bound obtained by substituting p =n logzn into

(2). Our analysis is more general because it applies to any addition tree.

Moreover, we show that in this method the bound for the rounding error is a

"path length phenomenon" and that, therefore, the improvement of balanced
addition over linear addition is due to the same phenomenon as the improvement

of binary search over linear search and of quicksort over insertion sort.

2. The algorithm

Linz (1970) mentioned as disadvantages of balanced addition "... it is

more difficult to program than the standard method, and it is difficult to
use unless all numbers are available at the start of the summation ...". But
balanced addition is desirable precisely in those cases where the length of
the sequence to be summed is so large that it is out of the question to have
the entire sequence simultaneously available and typically the length of the
sequence is not even known in advance.

In figure 1 we present a PASCAL program for a demonstrably correct
linear-time algorithm for balanced addition, which does not require the
length of the sequence to be summed to be known in advance. We will prove
the algorithm correct by an informal version of Floyd's well-known method.
First we establish some definitions.

The binary representation of a nonnegative integer n is a sequence

of binary digits (value 0 or 1). For n = 0 the binary representation is

empty (not, as conventionally, the sequence consisting of a single 0). For

- vk h| 4 = ’
n >0 it is do,...,dk such that n = Zj=0 dj2 and dk = 1. The partial

=] i = -
sums of n are nj Zi=0 d12 for j 1l,...,k.

The part of the sequence of numbers that is already read by the program
is A = ERERFLIE In order to obtaln ultimately a balanced sum the program

maintains balanced sums of the following subsequences of A:

Aj = ®%p-n +1""’an—n_ 3

= O’OOQ,k
j-1 ’

furcticn bsum?: real;
var »: raal; jrk: integer; d: arrayld«.89) of O..1
H St arrayl0,.801 of real;
becin dl0l:=0; ki=~1
5 while Taouf co

begin (U} rsaci{x); ji=92
H while dl jl=1 dc
begin (L1} dljl:=0; x:=x+S{j1; S{jl:=0; j:=j+1 {V1}
end
; cljts=1; S{jle=x
{v}
; if jsk+1 then tegin ki=j; dik+11:20 eard
end
; {W} x120
; for j:=0 to k 40 if ¢l yl=1 *her x:zx+S[j]
H bsum: =y
{x¥}
enc
Figure 1

We claim that the assertion P, where

P = Pl & P2 & P3 & P4

holds whenever execution passes the checkpoints {U} or {7V} in the program

of figure 1, where

.Pl is: "d[0],...,d[k] is the binary representation of n, the length of
the part of the sequence read so far"

P, dis: "d[k+l] = O"

P, 1s: "S[j] 4is the sum of A.j for j = 0,...,k"

P, dis: '"the addition tree for each §S[j], such that d[j] =1, is thek

complete addition tree of 23 numbers"

It is clear that P holds the first time checkpoint {U} is reached.
Next, assuming that P holds at {U} we have to ascertain that P holds
when checkpoint {V} 1is reached the first time after. Let us first consider
Pl’ P2, and P3. The code between {U} and {V} reads an additional number,
so that some of the Aj change. The code then makes the corresponding
changes in the corresponding S[j]. These changes are determined by how the
binary representation of n 1is updated to the one for n+l.

In order to justify that P4 also holds when {V} is reached, it
suffices to ascertain that x has a complete addition tree of 2j numbers
whenever S[j]: = x is executed. We show that x has a complete addition
tree with 23 npumbers whenever execution reaches {Ul} or {Vl}. It is
obviously true the first time (since reaching {U}) execution reaches {Ul}.
Let us assume it holds at {Ul} . At fUl} both x and S[j] have complete
addition trees with 2j numbers each. An addition tree with these as
subtrees is complete and has 2j+l numbers. Therefore at {Vl} X has a
complete addition tree of 2j ~numbers.

At {W} we assert P in conjunction with eof. This implies that
S[0] + ... + S[k] 4is the sum of all numbers in the file. We now prove that
at {X} bsum contains the sum of all n numbers in the file and that its
addition tree has path length < n [1og2n]. We distinguish two cases. 1In
the first case, n = Zk and bsum = S[k]. The addition tree for bsum is
the complete one for S[k] with path length k2k = n logzn <n flogzn1.

In the other case 2k'< n < 2k+1; hence flogzn] = k+l. Let jo,jl,...,jm
be all values of j, In increasing order, for which d[j] = 1. Note that

i, = k. Between {W} and {X} a sequence of values of x is computed

according to

X
]

o = SI3,]

bl
1]

X + S[Ji_l] i=1,...,m

We prove by induction on 1 that the addition tree for X has path

3. For i = 0 the path length is the one of the complete
i 3
addition tree for S[j.], which is j.2 0. jan, .
0 0 0 g

length < (ji+1)n

The addition tree for Xi+1 has as left subtree the addition tree for

T It has nj numbers in it and, according to the induction hypothesis,
i
its path length < (ji+l)n

X

. The right subtree of the addition tree for

3.
which is complete, has 2 it numbers

34

X is the addition tree for §
i+1 3. i1
in it and has path length ji+12 1+1. We therefore have for the path length

Piy of the addition tree for Xigqt

3 3
L, i+l

Piyg S nj+(ji+1)nj + 2 i+12
i i
3.
. i+l
Piy1 < nj:-L + (ji+1)nji + (Ji+1+l)2
h|
i+l .

Pyyg € Gyt @ 77+ nji) = (Ji+1+l)nji+1

which was to be proved.

The path length of the addition tree for X (which becomes the value

of bsum) is < (jm+-l)nj = (k+l)nk = (k+1)n = n flogzn].
m

3. Analysis of the efficiency of the algorithm

The algorithm has two nested loops. The outer loop is executed n times,
where n 1is the length of the sequence summed. At the beginning of each
activation of the inner loop, d holds successively the binary representations

of 0, 1,..., n-1. Let f£f(i) be the largest integer such that

d[0] = d[1] = ... = d[f(i)] =1 when d holds the binary representation
of 1i. THerefore d[f(i)+1] = 0, unless the binary representation of i
contains only ones. In the i-~th execution of the outer loop, the inner
loop is executed f(i) times. The total number of times the inner loop is
executed is 22;3 £f(1).

It is easy to verify that Z?=lf(i) < n with equality iff n is one
less than a power of 2. That is, the number of times the inner loop is
executed, averaged over executions of the outer loop, is at most 1. Therefore
our algorithm requires for the balanced addition of n floating-point

numbers an execution time proportional to n.

4. Concluding Remarks

Linz (1970) has obtained experimental results comparing linear with
balanced addition of n = 2048 numbers randomly distributed between O and 1.
The improvement in the error bound of balanced addition over linear addition
is about n/(2 1og2n) which is about 100 for this value of n. Linz
observed an improvement in actual error by a factor of about 140. For n = 216
which is perfectly feasible with our algorithm, the factor n/ (2 logzn) is
already about 2000.

It is out of the question, because (as far as we know) computationally
prohibitive, to obtain always an addition tree with minimum path length,
which can, anyway, never be less than n 1og2n. It is therefore quite
satisfying to be able to add in linear time in such a way that the addition

tree has a path length bounded by n[logzn] which is not far from the

minimum for large n.

10

5. References

P. Linz (1970): Accurate floating-point summation.
Comm. ACM 13, pp. 361-362,

6. Acknowledgements

We gratefully acknowledge partial support from the Canadian National

Research Council.

	
	
	
	
	
	
	
	
	
	
	
	

