_ VERIFICATION OF PROGRAMS WITH
DATA REFERENCING

by

Michael R. Levy
Department of Computer Science
University of Waterloo
Waterloo, Ontario

CS-78-27
June 1978

Faculty

of

Mathematics

University of Waterloo
Waterloo, Ontario, Canada

VERIFICATION OF PROGRAMS WITH
DATA REFERENCING

by

Michael R. Levy
Department of Computer Science
University of Waterloo
Waterloo, Ontario

CS-78-27
June 1978

T This is a revised and expanded version of a paper presented at the
3rd Symposium on Programming, Paris, March 1978.

ABSTRACT: Several techniques have been proposed for proving properties

of programs which manipulate data storage. These technigues all suffer the
disadvantage of being based on "operational" models of the underlying type,
rather than on an "abstract" denotational model. In this paper, the concepts of
many-sorted algebras and algebraic congruences are used to describe an
abstract data type called linked 1ist. This type is equivalent to the LISP
list data type, but it also allows operators equivalent to REPLACA and
REPLACD, hence allowing completely general assignment. The abstract
treatment of the type allows one directly to express concepts such as sharing
and also to reason diréctly about structures manipulated by programs. Axioms
are presented for the type and a simple proof rule which is general enough
for any assignment statement is given. Some properties of the type are
discussed. Finally, a program is presented together with its assertions to

illustrate correctness proofs of programs using the type.

1. INTRODUCTION

Several techniques have been proposed for proving properties of programs
which manipulate-data storage. (See for example Burstall 1972 -and Kowaltowski
1976). The issue is to develop a proof system for programs which operate
on complex data structures possibly with shared components. The semantics
on which these methods are based are usually of the Scott-Strachey type
(Scott and Strachey 1972), or a similar "machine" model which assumes
explicitly or implicitly the existence of "nodes" and node identifiers or
locations with associated values. (In real machine terms these would be words
and addresses.) These concepts are, however, not relevant to the semantics
of programs manipulating referenced data, because they often involve
extraneous details,and proofs in systems using such "operational" semantics
are 1ikely to be difficult.

We outline in this paper a semantics of a general data type (linked 1ist)
which allows sharing and circularity that is not based on an operational or
abstract-machine semantics. We show that it is possible to describe concepts
such as sharing and "in situ" manipulation without recourse to operational
devices such as addresses. A simple proof rule for the assignment operator
is presented; this proof rule can be used with any standard verification
technique suﬁh as the invariant assertion method (Hoare 1969). Furthermore,
the model can be described using well-known mathematical concepts or using
the notion of Algebraic Specifications (ADJ 1977b, Guttag 1977). (In fact,
we use many-sorted algebras, but only a superficial knowledge of this subject
is required to read the paper. The required definitions and theorems used
are stated in section 2.) Two important concepts from the theory of

many-sorted algebras are used - firstly, initiality is used to describe

conveniently the syntax of the languages under consideration, and secondly,
_the notion of gquotient is used for an "abstract" treatment of the type
described in the paper. Neither of these concepts should provide difficulty

to readers with an understanding of the more general mathematical notions

of syntax and congruences. The two papers by Goguen et al provide an exce]ient
discussion of these topics (ADJ 1977a, 1977b).

The difficulty with verifying programs which manipulate structures with
sharing arises mostly from the fact that a single assignment statement can
affect the values of several variables. For example, consider the sequence
of statements

1. x <« cons(a,cons(b,c))

2. y<« tfx

3. tly<«z
where <« 1is the (usual) assignment operator, and t£ 1is a function which

returns the second component of a cell. (We say
t@(cons(c],cz)) = Cys

an intuitive discussion of the type is presented below.) t& corresponds to
CDR in LISP (McCarthy et al 1962), and the assignment t& y <« z is
equivalent to REPLACD(y,z) in LISP. Intuitively, the second assignment
statement causes y to share the t€ of x. Hence the third assignment
statement will change the value of x as well as the value of y. If we

write down an assertjon as the post condition of statement 3, say
Q: x = cons(a,cons(b,cons(d,e))) & y = cons(b,cons(d,e)) & z = cons(d,e):

then the sharing between x, y and 2z cannot be explicitly determined. For

example, the following three assignments also satisfy the above assertion

2. y <« cons(b,cons(d,e))

3. z <« cons(d,e)
but in this case, there is no sharing.

In the above assertion we assumed that the values of the variables x, y
and z were the associated 1ists cons(a,cons(b,cons(d,e))), cons(b,cons(d,e))
and cons(d,e) respectively. This is consistent with assertions about "simple"

variables, where we may write
x=3 & y >25

as an assertion. 3 is the value of x, and the value of y 1is greater than
25. There are two difficulties in treating varjables and values of 1list

structures in this way. Firstly, an assignment statement of the form
te x « £
can introduce circularities into the Tist structure, for example

X <« cons(a,b)

tl x « x
after which the value of x would be recursive in x:

cons(a,x)

x
"

Is this value different from

cons(a,cons(a,x))?

x .
n

The second difficulty is that the contents of a "cell" are not sufficient to
identify that cell uniquely: hence the two possible interpretations of the

assertion Q stated above. It is possible to formulate proof rules for the
assignment statement, assuming some operational model of 1ists. (See

for example Oppen and Cook 1975.) These rules tend to be extremely complex,
however, and hence difficult to use in proofs. The approach taken here is

based on the observation that an assignment statement (such as
tly«z

above) changes not only the value of y, but in fact the entire 1ist structure
with which y 4s associated. This view is similar to the view that an array

assignment such as
A[i] « e

changes the entire array A (See Reynolds 1978).
Hence suppose that o 1is the name of a data structure. We view an
assignment

pX « e

(which implicitly refers to a particular structure o) as in fact being the

assignment
o' « U(o,px,e)

where U(o,px,e) 1is a function which changes o by changing px to e,
and p e {hd,te}*, that is px 1is an expression in terms of hd and tZ. Hence

the proof rule we need is

Qﬁ({px « e} Q

T,pX,e)

where Qa(c is Q with each occurrence of o replaced by U(c,px,e).

pX,e)

array rule in Reynolds 1978.)
For the sake of notation, we will write o' for U(o,px,e) provided
px and e can be determined from the context of the assertion. Hence the

proof rule will be written
Qg. {px «+ e} Q

where o¢' depends on the particular assignment.

In order for this simple proof rule to work, it is necessary to write
assertions about some structure o rather than components of the structure.
This, together with the treatment of referencing discussed below, allows
properties of a structure to be simply expressed. It also allows one
structure to be compared to another: for example the final "value" of a
structure can be compared with the initial structure by treating the initial
structure as a constant in the assertion. These ideas are illustrated in

the final section.

Finally, in order to be able to use the proof rule presented above,
the concepts of cell and reference must be carefully examined. A cell is
identified by a reference and its contents are denoted by a description.
References must have the property that they uniquely identify a cell, while
two distinct cells may have the same description. Note that the
description of a particular cell depends on the particular structure (or
state) in which the cell occurs. The process of describing a particular cell

(that is, giving a description of a cell) is called dereferencing. References

correspond to the L-values of Scott and Strachey 1972 and descriptions to the

R-values. However, a function could have a reference as a value, and we

have thus chosen the words reference and description in order not to overwork
the word value. In Algol 68, descriptions would be called values. (See
Barron 1977.)

In general, assertions about programs will be written in terms of
references rather than values. As will be seen below, this has the advantage
of allowing the proof rule discussed previously to be used for assignment
but also allows one to state concepts such as "in place" and “circularity"

in a natural and concise way. For example, the simple circularity
(came
discussed above can be described by the predicate

x(c) = t€ x(c) & +(hd x(0),0) = a

where + is used to denote the dereferencing operator.

Finally, it is necessary to be able to manipulate equations involving references.

For example, when using the proof rule for the assignment statement
tly<«z
if the post-condition is say
Q: te tf y(o) = x(o)
then the precondition would be

Wio,t2 y,z)° &t y(U(0:t v,2)) = x(U(o,tL y,2)).

Now in order for the proof rule to be useful in a program proof, it must
be possible to eliminate the term U(c,tf y,z) and have the assertion
Qﬁ(o,tz v.2) reduced to an equivalent assertion P which is expressed in
terms of o only. (In the case of the array proof rule in Reynolds, the
term U(A,i,e) will be eliminated so that only A 1is referred to in
assertions.)

In the above example, it may be reasonable to conclude that

tf tL y(U(o,tl y,z)) = tL z(o) (since tly 1is changed to 2z)
and that
x(U(o,tl y,z)) = x(o) (since x cannot have been changed),

and hence Qﬁ(is clearly implied by the precondition

o,tl y,z)

P: t€ z(o) = x(o).

(Intuitively, if t1 z and x refer to the same cell
in a structure and the t£ of y 1is made to refer to 1z, then after the
update the t€ of the t¢ of y must refer to that cell.)

In order to provide the appropriate "calculus" for manipulating equations
using references, we define the type linked Tist using the view that data
types are (many-sorted) algebras. (This view is discussed in detail by
ADJ 1977b.) The important property of this view is that a type so defined
(as an algebra) can be characterized as a quotient of the word algebra (defined
below). This gives us two useful properties:

1. The equational specification (axioms) used to define the type can

be used to make the kind of reduction referred to in the above

example: two terms are equivalent in the quotient if one can be
derived from the other using the axioms.

2. The quotient is defined by a congruence: if two terms are equivalent,
then they behave identically with respect to the operators of the
type. Thus one has referential transparency at least with respect

to the operators. For example if
i B

where r and r2 are references, then

Because of the particular way in which the type is defined here, it is

possible to give a formal definition of the concept of a cell and also to

relate cells in a structure o to cells in a structure 99 if o was

derived from % by a series of assignments. The next section gives the
necessary mathematical preliminaries. More details can be found in ADJ(1977b).
In section 3 the type linked 1ist is defined by giving the definition of

the type as an algebra with the associated axioms. The form of these axioms
makes it possible to use them directly in verification to make reductions of

the form discussed above. In section 4, a simple program from Burstall (1972) is
presented and a sample of the correctness proof is given. Section 5 contains

the conclusions.

2. PRELIMINARY DEFINITIONS AND RESULTS

A data type is viewed as a many-sorted algebra. Discussion of data
types as many-sorted algebras can be found in ADJ (1977b), Guttag (1977) and Levy
(1977). An algebra of one sort is roughly-speaking a set of objects and
a family of operators on the set. The set is called the carrier of the
algebra. Many-sorted algebras extend this notion by allowing the carrier
of the algebra to consist of many disjoint sets. Each of these sets is
said to have a sort. The operators are sorted or typed, but must be closed
with respect to the carrier. For example, if A,B,C are three sets in the

carrier of an algebra, then
+ :AxB~=>¢C

could be an operator of type < ab,c>, arity ab and sort ¢, where a,b
and c¢ are distinguished names (the sorts) of A,B and C respectively.
A data type is then a many-sorted algebra, while a data structure is an

element of the carrier of a data type.

Let S be a set whose elements are called sorts. An S-sorted operator
domain I s a family Zos of sets of symbols, for s ¢ S§ and w ¢ S* where

S* is the free monoid on 8. Zw s is the set of operator symbols of type

<w,s>, arity w and sort s.
A Z-algebra A consists of a family < Aj> o . g of sets called the

carrier of A, and for each =<w,s>¢ S* x S and each o ¢ Zw g @ function
9

(where w = S1Sp - sn) called the operation of A named by o.

Here < X% ¢ 3 denotes a family of objects Xg indexed by s,

such that there is exactly one object X for each s ¢ S. The subscript
s ¢S will be omitted when the index set S can be determined from the
context. For o ¢ ZA s where X 1is the empty string, Op € AS (also

written ap +'As). These operators are called constants of A of sort s.
= w
If ws= $1Sp +++ Spo then let A™ denote As]X oo X Asn.
If A and A' are both Z-algebras, then a Z-homomorphism h: A - A'

is a family of function
<hgt Ag>A'>5 o s

such that if o « Zw and < CEERRRRL MEg AY then

] n

he(op(ays...sa,)) = oA.(hS] (a]),--.,hsn(an))-

A I-algebra A 1in a class (of Z-algebras is said to be initial in C

iff for every B in (there exists a unique homomorphism
h: A~ B.

THEOREM 1 The class of all z-algebras has an initial algebra called TZ' O

(T. 1is sometimes called the free I-algebra.) This theorem, as well as the

z

others given in this section, is proved in (ADJ 1977b). TZ can be viewed
intuitively as the algebra of well formed expressions over ZI.

Variables can be included in terms in TZ in the following way. Let

-1y (M)
Xg = Ixg n e N}

where N 1is the set of natural numbers. The elements

(i)
X € XS

are symbols called variables of sort s. Suppose I 1is an S-sorted

operator domain. Let

X= UX

s€S °

where XS is a family of variables of sort s for each s e S. We say

that X s an S-indexed family of varijables.

Then let I(X) be the s-sorted operator domain defined as follows:

Z(X)A,s = I u X

1]
™
_h
(w)
-3
£

H
>

Z(X)w,s w,S

Thus varjables are being treated as nullaries or constants. Clearly
TZ(X) is an initial z(X)-algebra. We define TZ(X) as the algebra with
the same carrier as TZ(X)’ but with operations I. We say that TZ(X) is

the T-algebra freely generated by X.

For any S-sorted I-algebra A and an S-indexed family X of variables,

if

6: X+ A
denotes a family of functions

< 8" XS - AS>

then 6 1is called an interpretation or assiagnment of values of sort s in

A to variables of sort s in X.

THEOREM 2 Let A be a z-algebra and 9: X = A an assignment. Then there

exists a unique homomorphism

9: TZ(X) - A

that extends 9 in the sense that §g(x) = GS(X) for all s e S and x ¢ X. O
A Z-equation is a pair e = <L,R> where L,R ¢ TZ(X),s (the carrier
of TZ(X) of sort s). A z-algebra A satisfies e if

6(L) = 6(R)

for all assignments 6: X ~ A. If e is a set of I-equations, then A
satisfies e Jiff A satisfies each e ¢ . Thus a set of equations ¢
can be viewed as a set of axioms whose free variables are implicitly
universally quantified. The class of £-algebras which satisfy e is
denoted Alg, e

An equational specification is a triple <s,Z,e> where I 1is an

S-sorted operator domain and ¢ is a set of I-equations (called the type
axioms).
Let w = $159--+ S, and sy a% € As. for 1 < i <n. Then a

j
f-congruence = on a r-algebra A 1is a family < 2”5 ¢ 3 of equivalence

relations =_ on As such that if o ¢ Zw,s and if a; Esi a% for

S
1 <4 <n, then

GA(a1""’an) = cA(af,...,aA).

If A is a Z-algebra and = 1is a Z-congruence on A, let A/= = {As/ss}s e S
be the set of Es-equivalence classes of AS. For a e AS let [a]S denote
the =s-c1ass containing a. It is possible to make A/= into a I-algebra

by defining the operations Op/z S follows:

(i) If ¢ E.ZA,S then Op/z * [cAJs
(i1) If o e Zs and [ai]5§ As_/ES' for 1 <i<n

]...Sn, j i i

then
GA/E([a]]S." .. ’[an]s.) = [CA(a] s san)]s

Then it can be shown that A/= 1is a I-algebra called the quotient of A by
=. (The property of = being a congruence ensures that Op/= is well
defined.)

A set of I-equations e ={<L,R>| L,R ¢ TZ(X)} generates a binary
relation RS A x A on any algebra A. This relation is the set of all pairs
{ <8(L),8(R)> |6 1is an assignment}. (Intuitively, consider all pairs with
variables in L and R replaced by terms in Tz and the resulting expressions
then being evaluated in Az') Now any relation R on algebra A generates

a congruence g on A which is the least congruence on A containing R.

THEOREM 3 If ¢ 1is a set of I-equations generating a congruence q on

Ts» then T./q is initial in égkﬁf {

3. THE TYPE LINKED LISTS

The type to be described has essentially the same semantics as the
LISP type (McCarthy et al 1962), but uses Algol 60 syntax (as for
example in Burstall 1972). Roughly speaking an element of the type is
called a 1ist structure (or structure),and it consists of a finite set of
cells or nodes. Each cell has two components called the head and tail of
the cell. The head and tail of a cell each contain a reference to another
cell or an element called an atom. For example, we can represent a typical

1ist using a "box and arrow" diagram:

,Lal—]—>Lil +—lc [1
a] 2le | 2]

a,c,e and A are all atoms, with X being a distinguished element called
null.

The operators of the type include the following three operators: hd
and t& which take as argument a cell and return the head and tail of the
cell respectively, and cons which takes two arguments (atoms or cells) and
returns as its value the description of a cell containing in its head and
tail its two arguments. There are also three assignment operators in the
type. Simple assignment, <+(x,c,c) associates a varjable x with a cell
¢ in a given structure o. More general assignment operators change the
head or tail of a cell. These assignments are “hd (c],cz,c) (or
“tp (c],cz,c)) and the intended semantics is that the head (or tail) of
cell 4 is changed to refer to Cye hd and t& correspond to CAR and

COR in LISP, wnile <« corresponds to CSET. +hd(c],c2,0) corresponds

to REPLACA(C],CZ) and “tp (c],cz,c) to REPLACD(C],CZ). Note that
REPLACA and REPLACD were never formally defined in LISP because of the
difficulty of dealing with sharing in the LISP formalism.

The simplest form of a reference is denoted by the name of a variable
which refers in some structure to a cell. More complex references can be
built by examining the head or tail of a referenced cell. Consider for

example the structure

Box 1 is referenced by x, box 3 by y and box 2 by the tail of the cell
referenced by x, the tail of the cell referenced by y as well as by the
tail of itself. Letting x(o) and y(oc) denote the cells referenced in

c by x and y respectively, then box 2 is referenced in o by

t2 (x(o))(c) and t& (y(o))(c). Note that the cell referenced by x in

o (say) may have different contents at different "times". Hence the value

of the function t€ is itself a function of the same structure. If we regard
tZ (r) as a function, which given some structure o, returns the tail of the
cell referenced by r 1in structure o, then we can associate with each cell
in the above diagrams the references:

Cell 1. x(a)

Cell 3. y(o)

Cell 2. te(x(0))(o); tely(o))(o)s te(tl(x(0))(v))(o); te(te(y(o))(o))(o); ..

Suppose R is the set of all well-formed expressions of the above form over
hd, t£, x and y and o. Then the structure o partitions R into classes
such that the elements of a given class all reference the same cell. (There
is also a class of "undefined" references.)

Suppose that

0030],-..,On

is a sequence of structures where of is obtained from Tiqs i >0, by
an update. Then references in cj can be related to references in Uk,
0<J, k<n, by relating cells in the updated structure to cells in the
original structure. Conceptually, the new set of cells is obtained from
the old by changing one of the cells in the old set of cells, or by
associating a variable with a different cell. We can thus identify
particular cells in the old and the new structures.

For example, suppose the above structure is updated by the assignment

'(—tz (X,Y,U) s

giving o'. The updated structure is (pictorially)

In o' the partition is

Cell 1. x(c')

Cell 3. y(o'), th(x(a'))(o")

Cell 2. te(y(o"))(a"), te(tL(x(a"))(0'))(o") ...

as well as a number of expressions which are regarded as being undefined.
We can thus relate references in ¢' to o: Let R' be the set R
together with well-formed expressions in hd, t&, x, y and o'. Then
partition R' so that all elements in a class of the partition reference
the same cell. For example, x(o) and x{(c') will be in the same class;
te(y(c'))(c') and te(x(c))(c) will be in the same class. It is also
possible to "mix" structures. For example, x(o') refers to box 1 in o
and o' , so we can consider t&(x(c'))(c) (which refers to box 3). If o
and o' are unrelated, that is neither is derived by applying zero or more
updates to the other or they are not obtained by updating the same structure,

then expressions involving both o and o' are considered to be undefined.

Descriptions are denoted by expressions of the form
cons(d],dz)

where d],d2 are atoms, references or descriptions. Descriptions do not
themselves identify cells, but expressions involving descriptions may.

Consider for example, the expression
hd(cons(r],rz))(o)

where r; s a reference in o. The subexpression
cons(r],rz)

is the description of some cell with the reference ry in its head. Thus

hd(cons(rl,rz))(c) =1

is a reference and does identify a cell.

Finally we notice that references behave in the following "algebraic"
way: if N and r, reference the same cell, then hd(r])(c) and hd(rz)(o)
will either be equal as atoms or will both reference the same cell. Similarly,
tz(r1)(c) and tﬂ(rz)(c) are equal as atoms or reference the same cell.
In addition, if <1 references the same cell as c, or ¢ and ¢, are

the same descriptions (we write ¢y = c2) and cf = cé, then
cons(c],c{) = cons(cz,cé)

These informal ideas can all be formalized by defining a congruence over
well-formed expressions in the operators of the type. The congruence
captures both the notion of equivalence (of references that refer to the
same cell and of descriptions which are the same) and the notion of the
operators of the type preserving this equivalence. The congruence is
described by a set of equations of the type, called type axioms.

The carrier of the type linked 1ist will consist of four sets: A set

of variables called program variables of sort V, a set of sort Cell,

a set of sort Ref and a set of sort Struct. The operator domain ¥ is:

$: - Struct

hd,tl: Ref x Struct -» Ref

cons : Ref x Ref - Cell
Xx: Struct - Ref for each x ¢ V
x: =V for each x ¢ V

a: -+ Cell for each a ¢ Atom

«: V x Ref x Struct - Struct
:—Ref x Ref x Struct - Struct
<., ¢+ Ref x Ref x Struct - Struct
Cell - Ref
+: Ref x Struct - Cell

isref: Ref - Bool
We have also assumed that the sort Bool with operators

true, false: -+ Bool

if then else: Bool x tx t >t for each sort t

is implicitly part of the type. The axioms for these operators are the

usual "if then else" axioms, namely

if then else (true, t];tz) =Y
if then else (false, t;,t,) = t,.

The notation
Cell > Ref

denotes the fact that each element in the carrier of sort Cell is in the
carrier of sort Ref. It may also be viewed as a conversion operator which
is omjtted syntactically.

This definition of £ 1is sufficient to determine the algebra TZ
whose elements can be considered to be the well formed expressions over I.
If we denote the set in the carrier of TZ of sort Cell by Cell, then

cons(a,cons(b,cons(c,d))) ¢ Cell, assuming that a, b, ¢ and d < Atom,

for some distinguished set of elements called atoms. Similarly, if we

denote the set in the carrier of TZ of sort Struct by Struct, then

« (x,cons(a,cons(b,cons(c,d))),s) e Struct.

The most significant aspect of the above definition of I 1is in the

treatment of references. If x 1is a variable, x ¢ V, then

Xx: Struct - Ref
says that the cell referenced by x depends on some particular structure.
Hence the cell referenced by x in two different structures is not
necessarily the same. Similarly, hd and t& depend both on some referencé
r and on some structure o. We will write hd(r)(c) (or te(r)(c)) to
denote hd(r,0) (or t&(r,0).) Hence hd(tL(x(0))(c))(c) « Ref for scme
0 e Struct. The elements of Ref which are of the form
51(62(---(Sn(x(0n+]))(0n)---)(0]) where §; < {hd,te}, o, ¢ Struct and

1 <1

IN

n, will be called references. If g; =0 for each 1,

I

1 <1 < n+l, the element will be called a reference in g.

The quotient defined by the set of axioms to be presented will have the
property that it groups together all references which have equal value. Also
note that intuitively, a structure carries with it its "history". For
example, the structure pictured in the example above (page 15) may have been
derived from

g =« (ttl x,tl x,«(y,cons(c,tl x),«(x,cons(a,cons{b,r)),s))).
The "box and arrow" diagram in fact does not characterize a structure in
the sense intended here, since there are different sequences of assignments

that will "yjeld" the same diagram.

Remark on Notation

(1)

(ii1)

Expressions involving the assignment operators “hd and “t2 will

be written using the operator <« with hd or t£ to the lTeft of

the first argument to the operator. Thus we will write
*‘(5?‘] ,rz ,U)

to denote
“5(rqsrg:0)

where & < { hd,te}.

If every structure in a reference is the same,

the structure will only be written once. Hence for
te (hd(te(y(c))(o)){(o)) (o)
we will simply write

tZ hd t2 y(c).

In an assignment of the form
*'(X,rzao') ar *'(GP] ’rz:c)s

if all structures occurring in the expressions r and r, are g,
then o is omitted from " and roe.

For example, we write
«(te x, cons(tL y, z),0)
to denote

«(t2 x(o), cons(te (y(o))(s), z(a)),o).

Before presenting the type axioms, we discuss the intended semantics of the

three assignment operators «, “hd’ and “tp

(i) <«(x,r,0) updates o to a structure o' which is identical to o
except that x(o') 1s a reference to a different cell. If r is a
reference, then x(¢') references the cell referenced by r. If r
is a description, then x(c') references a "new" cell which has a
description equal to r. We call this type of assignment simple
assignment.

(ii) +(6r],r2,c) updates o to a new structure c¢' which is identical
to o except that the contents of cell r, are changed. If § = hd,
then the head of 8! is changed to reference ry If 6 = tZ, then
the tail of & is changed to reference FY We do not allow ro in
this case to be a description, but this type of assignment can always

be achieved at the expense of an extra variable since
+(5r], cons(rz,r3),c)
(which is not allowed) is equivalent to

*‘(sr'l s Z, *'(Za Cons(rzsrB)aG))'

Definition: The Type Axioms

Let r, rys Mps F3o Ty € Ref, o, T1s Oy € Struct and p,q € { hd,t1}*. Then

1. hd (cons(ri,ry))(a) = ry
te (COHS(Y’-I srz)) (U)

"2
x{(o)
X (<_t£ (r'l ’rzag)) = X(O)

2
3. X (*‘hd (Y‘] arz:c))
4

5.)qr(a) if x ==y & isref(qr(o))
ax («—(y,r,c)) =l
ax{o) if =~(x == y)

10.

11.
12.
13.

The
1,2.
3.,4.

hd(r) (+4p(rysrp,0)) = hd(r)(o)
te(r)(*‘hd(r] ,Y‘Z,O“)) = t@(r‘)(@)
grz if =~ (r,r])

hd(r)(« 4(risr,50)) =
LR hd(r)(c) otherwise

zrz if =~ (r,r])

t’e < 9 3
(r){ tz(r] "2 7)) te(r)(oc) otherwise

z (px (o7)s aylo,)) = (px == qy & oy == 0,)
if ~ isref(px(al)) & ~ isref(qy(cz))
z(cons(r],rz), cons(r3,r4)) = false
~(a,b) = false a,b ¢ Atom
false if r ¢ Atom or r = cons(r],rz)
isref(r) =
true otherwise
axioms may be read intuitively as follows
These are the usual 1ist axjoms.
The cell referenced by a variable is not changed by the
assignments “hd and “tp-
A simple assignment to y will affect any reference expressed
in terms of y. However, care must be taken not to identify

a reference with a description. For example, consider the

structure o' obtained by
o' = «(y, cons(r,b),q).
If r is not a description, say

r = x(c), then we would expect that
hd x(c') = hd(hd (cons(x(g),b)) (o)

= x(o).

However, if r is a description, say
r = cons(a,b), we would not want

hd x(c') = hd(cons(cons(a,b),b))(c)

cons(a,b)

because the description cons(a,b) does not uniquely identify
the cell referenced by hd x(c'). This is why the term
isref(qr(c)) appears on the right hand side of axiom 5.

6,7. “¢p Never affects the head of a cell and
“nhq Never affects the tail of a cell.

8,9. These axioms describe the assignments “hd and “tp The
symbol = may be interpreted as equality of references. Thus
the head of a cell r is affected by the assignment
“nd (r],rz,o) only if r and r reference the same cell.
“tp is treated in a similar way.

10,1],12. The definition of equality of references implicitly uses the
fact that any reference is equivalent to a "canonical" reference

of the form
px(+(x,r,0)).

where ~ isref(pr). The existence of these references is shown
in Levy 1978.
The symbol == 1is used to denote syntactic identity on terms. Thus
t1 == t2 iff t] and t2 are the sameréXb}essions.
The problem of errors has not been treated here, but a partial treatment

can be found in Levy 1978. For a discussion on the treatment of errors,

see Goguen 1977 and the more practical approaches of Guttag 1977, Tompa 1977.
Note that although the type axioms are not in equational form, they can
easily be recast into equational form by using the operator if then else

on the right sides of the axjoms, where this is necessary.

We illustrate the use of the type axioms with some simple examples.

We write

-y
Pn "3 9n-1

to denote the fact that og = +(p],r],¢) and o, = +(pi+],ri+]a01_]) for
T <1i=<n. Inaddition, it will be assumed that any references appearing

in a term ri are in fact references in 01

Example

1. Consider the assignments
x « cons(a,cons(b,c)); o
z « te x; o
y <« cons(a,z); o,

Pictorially, gy would be represented by

X Zz

a - b c

Consider t& y(cz). By axiom 5

St y(cz) = z(c])

= tL x(co) by axiom 5 again.
Similarly, t& x(cz) = t2 x(c]) by axiom 5
= tL x(oo) by axiom 5.
x < cons(a,cons(b,c)); 9
t2 X « X3 9

Here o is represented by

x — ¥)

7
a

te te te x(9;) = te (t2(telx(o}))(0;))(0,)) (o)
by notational convention.
Now x(c]) = x(co) by axiom 4
and tZ(x(oo))(o]) = x(co) by axiom 9, since x(co) ~ x(oo).
Hence (by symmetry)
te te te x(cl) = x(oo).

The above example illustrated the treatment of circularity.

Circularity may also be introduced indirectly.

X « cons{ap); 9
y < cons(a,x); o
tltl y « x; g,

o, may be represented by

[s}}
N ox
[a 1}

Consider t2 te te x(cz).

- x(05) = x(07) = x(o4) by axioms 4 and 5.

te x(0,) = t& (x(5,))(0,) = t& (x(oy))(o,) by notation and

the above argument.

tZ(x(oO))(oz) = x(o]) by axiom 9 since
te y(o]) = x(oo) by axiom 5
and hence x(co) ~ te y(o]).

Again by symmetry, therefore,

te te te x(oz) = x(oo).

The same variable may be used more than once.
x <« cons(a,cons(b,c)); o
x « cons(a,cons(b,x)); o

Diagramatically, o is

a | b | [a] b [c]

Then t2 x(cl) cannot be expressed in terms of ST but
te te x(o]) = x(oo) by axiom 5.
These examples illustrate that references of the form

61(62(...6n(x(on+]))(on))...)os])

can be reduced, by applying the axioms, to references of the form

qy(c")

such that o' 1is of the form

and qc is not a reference.
Intuitively, every cell has a canonical reference, namely the shortest
"path" to the cell from the variable used when the cell was created.
The axioms for dereferencing are:

14. +(cons(r],r2),c) = cons(+(r],o), +(r2,c))

15. ¥(a,o) = a3 for all a ¢ Atom
16. ¥ s0" if at y
Hpx(elxsrio)) ') = | VPIENT) AT aten (or(e))
cons(+(hd px(c'),0'), (t& px{c'),c'))
otherwise 0
Example
1. x « cons(a,cons(b,c)); g

y « cons(a,cons(d,e)); o
L x «y; O
hd x « y; 0g
¥(x(o3)503) = ¥(x(0),04)
cons(+(hd x(03),04), +(t€ x(04),05)) (*)

Now

¥ (hd x(o3),c3) = +(y(o]),03) by reducing hd x(03)
= cons(hd y(c3), tL y(o3))
= cons(a,cons(d,e))

and similarly we can show that

y(te x(os),o = cons(a,cons(d,e))

3)

Hence by (*) cons(cons(a,cons(d,e)),cons(a,cons(d,e))).

x <« cons(a,b); 9
- tl x « x; G]
“’(X(.G'l) 90"[) = 4’(X(Go) 30])

cons(¥(hd X(c1),c]), +(te x(o]),oT))

]

cons (¥ (hd x(0),07), +(x(0g)07))

cons(a,+(x(og),0))

cons(a,cons(a,+(x(oo),o])) etc.

4. VERIFICATION

The proof rule for assignment, discussed in section 1 is
assertions of a simple program taken from Burstall 1972. Following the
notational suggestion of section 1, we write o' to denote U(o,p,4)
provided that p and & can be determined by context. Note that

U{o,ps2) can now be defined formally, namely U{o,p,2) 8. (p,2,0).

The following simple program reverses a non-circular list 9y referenced

by k. {QO} thru {07} are assertions given below.

reverse(k,j); [Q,}

J =il {Qq)

while k = nil do {Q,}
i« tLk; {Q,)
te k<« J; { Q)
§ o+ ks {Qg)
K« 13 {0}

end {05}

Let TL = {t&}. Then TL* 1is the free monoid on TL, that is expressions of
arbitrary finite length composed of tf. Let A denote the empty string, and
define TL™ = TL* - {a}. If p ¢ TL*, then the length of p, |p| 1is defined
by |A] =0 [t&p| =1+ |p]. We write t2" to denote the element p e TL*
such that |[p| = n. Hence £e% = . The interpretation of a term ry =r,
where rpsty € Ref 1is simply congruence of g and s with respect to the

type axijoms.

Now the requirement for the program reverse is that the list referenced

by k be reversed "in place" and the resultant 1ist be referenced by j.

It s possible to state this assertion in terms of the elements in the head

of each cell of the 1ist, as is done for eiamp]e in Burstall, but this in itself

does not express the fact that the reversal is in place. Instead, we define for o,
Reverse(k,j) = 3mvn <m - tzm'n'Tj(c) = tﬂnk(co)

to denote the fact that the 1ist referenced by j in o 1is the in place

reverse of the 1ist referenced by k in 9y (nym € N+ the set of

non-negative integers). This is not quite sufficient for the post-condition,

however, since j might not be at the "end" of the 1ist. Hence we need

also tzmk(oo) = nil. Thus we have
Q7: Imyn <m - tl’_m_n'1j(c) = ti_nk(co) & tﬂmk(cyo) = nil.
The following predicates are also needed for the proof:

Unchanged(k): Vvp e TL* . p(k(c))(co) = pk(o)
Distinct(j,k): Py aPy € TL* . p]j(o) 2 pzk(O)
Noncircular(k): vp e . pk(c) = k(o).

Unchanged(k) expresses the fact roughly that the tails of each cell in the
1ist referred to by k 1in o are not changed from their original values.
Distinct(j,k) says that there is not sharing between j and k. Finally,

Noncircular(k) says that the 1ist k 1is not circular. The assertions are

Qg: Noncircular(k)

Q: Unchanged(k) & Noncircular(k) & j(o) = nil

Qy: (The invariant) Unchanged(k) & Noncircular(k) & Distinct(j,k) & Reverse(k,j)
& j{o) = nil =>t£ (§(0))(oy) = k(o)

Q30 Q& i(o) = t2 k(o)

Q4: Unghanged(i) & Noncircular(i) & Distinct(k,i) & Reverse(k,k)
& t2 (k(9))(og) = 1(0)

Q: Q & J(o) = k(o)

Qg Qo (the invariant)

Q7: as given above

Pictorally, the invariant 02 is

J k
N Y s O = =

The expression tZ(j(o))(oo) = k(o) 1illustrates the flavour of the assertion:

it asserts that the tail of the cell referred to in o by Jj originally
contained a reference to the cell now referred to by k. The proof of this
program is straightforward, and (usually) proceeds by showing that

Qi =>‘Qi+](o') where Q(c') denotes Qg.. Consider the verification of the

program segment
We must show that
Qy =>0Q5(c")

where Q(c') = Qg., and o' = «(i,t2 k,o). Now Q3(c') = Qz(o') & i(o') = tL k(o)
by definition. Since i does not appear in Q2’ we can clearly apply

axiom 5 to each term in QZQJ'), and hence Qz(o') = Q,. Furthermore

i(c') = te k(o) by axiom 5
and te k(c')

t2 k(o) also by axiom 5.

Hence Q, = Q,(c')
=>0Q,(0") & te k(o) = te k(o)
=>Q,(0") & i(0') = tL k(o)

= 03(0")

as required.

The program segment
{03} Lk« {Q4}

is more interesting: axjoms 4 and 9 must be used. We must show that
Q3 =>Qy(a").

Consider for example the portion of Q4(o') obtained from Reverse(k,k).

That is, we must show that
Q3 => Imyn <m - tﬁm'n']k(c') = tﬂ"k(oo).
To do this, we need the following clause from Q3:
Reverse(k,j) & Distinct(j,k) & t& (j(c))(oo) = k{o).
Note that Distinct(j,k) =>pj(c) # gk(c') for any p,g ¢ TL*. Now

™1t o)) (') = 2™ (G(0)) (@Y) by axiom 9
= ™" (5(0)) (o) by axjom 9
since Distinct(j.k).

Hence Qg =>3Jmyn <m - tﬂm-n_]j(o) = "k (o by definition of

0!
Reverse(k,j) (*)

=>3myn <m - " k(o) = t@nk(oo) by the above derivation.

Thus 3m'v¥n <m'-1 - t@ml-n']k(c') = t@nkbvo)

where m' = m+l.

But when n = m'-1, we have

2™ (o) = k(o)
since tﬂml'n']k(o') = tﬁok(o') = k(') = k(o) by axiom 4
= % (3(0))(oy) from Q,
= t@mk(oo) by an instantiation ofi
= t@m"]k(oo) as required.

Hence Q3 => dm'vn <m' - tem|'n'1k(o') = t@nk(oo).

Similar reasoning can be used to verify the remaining assertions and
hence obtain Q; => 04(0') as required. With experience, and when confidence
with the axioms has been gained, the assertions can be verified in less detail.
Of course the difficulty of finding the invariants of the program remains,
however the power of the language allows for much more ease in expressing
structures - consider for example, the ease of relating values of a structure
o to an "initial" structure g The method is also not restricted to any

particular class of programs, but may be applied to any program using the

type.

5. CONCLUSIONS

We have presented an abstract model of a type linked 1ist which allows
sha;;;; ;;d a completely general assignment. We have presented axioms for
the type and given an indication of the properties of the model in terms of
algebras and quotients. It is possible to use this model to express
naturally and succinctly such concepts as "in place" changes to a data
structure and to prove properties of programs manipulating the type. The
model differs from previous models in the way referencing is treated
abstractly and, because of the treatment, it becomes possible to reason about
sharing without having to resort to a notational device which makes the sharing

explicit. We believe that the semantic model will thus lead to simpler

proof methods for programs with referencing.

ACKNOWLEDGEMENTS

The work by Goguen, Thatcher, Wagner and Wright has a strong influence
on the idea of abstractions expressed in this paper. The author would also
1ike to thank Professors E.A. Ashcroft, T.S.E. Maibaum, R.M. Burstall and

R. Milner for their valuable suggestions.

REFERENCES

1.

10.

11.

12.
13.

4.

ADJ 1977a: Goguen, J.A., Thatcher, J.W., Wagner, E.G. and Wright, J.G.,

Initial Algebra Semantics and Continuous Algebras,
JACM, Vol. 24, No. T (Jan. 1977,

ADJ 1977b: Goguen, J.A., Thatcher, J.W., Wagner, E.G. and Wright, J.G.,
An Initial Algebra Approach to the Specirication Correctness and
Implementation of Abstract Data Types, IBM Research Report RC 6487.

Barron, D.W., An introduction to the study of programming languages,
Cambridge, C.Sc. Texts, 1977.

Burstall, R.M., Some Techniques for Proving Correctness of Programs
which Alter Data Structures, Machine Intelligence 7, Edinburgh, 1972.

Guttag, J., Abstract Data Types and the Development of Data Structures,
CACM, Vol. 20, No. 6 (June 1977).

Hoare, C.A.R., An Axiomatic Basis for Computer Programming, CACM, Vol. 12,
No. 10 (Oct. T1969).

Kowaltowski, T., Data Structures and Correctness of Programs,
Technical Report Departmento de Mathematica Aplicada,
Universidade de Sao Paulo, 1976.

Levy, M.R., Some Remarks on Abstract Data Types, Sigplan Notices,
Vol. 12, No. 7 (July 1977).

Levy, M.R., Data Types with Sharing and Circularity, Ph.D. Thesis,
University of Waterloo, Department of Computer Science, Technical
Report CS-78-26 (May 1978).

McCarthy, J. et al, The Lisp 1.5 Programmers Manual, MIT Press,
Cambridge, (1962).

Oppen, D.C. and Cook, S.A., Proving Assertions about Programs that
Manipulate Data Structures, Proc. 7th Annual ACM Symposium on Theory
of Computing, New Mexico, 1975.

Reynolds, J.C., Reasoning About Arrays, (To Appear).

Scott, D. and Strachey, C., Towards a Mathematical Semantics for Computer
Languages, Proc. Symp. on Computers and Automata, Microwave Research
Institute Symposium Series, Vol. 21, Polytechnic Institute of
Brooklyn, 1972.

Tompa, F.W., A Practical Example of the Specification of Abstract Data
Types, Tech. Report, Departamento de Informatica, Pontificia
Universidade Catolica do Rio de Janeiro (1978),

	

